teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,641 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Mounika Kotha (mounika.kotha@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.13
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class SeriesSplitter:
31
-
32
- def __init__(self,
33
- data = None,
34
- partition_columns = None,
35
- duplicate_rows_count = 1,
36
- order_by_columns = None,
37
- split_count = 4,
38
- rows_per_split = 1000,
39
- accumulate = None,
40
- split_id_column = "split_id",
41
- return_stats_table = True,
42
- values_before_first = "-1",
43
- values_after_last = "null",
44
- duplicate_column = None,
45
- partial_split_id = False,
46
- data_sequence_column = None):
47
- """
48
- DESCRIPTION:
49
- The SeriesSplitter function splits partitions into subpartitions
50
- (called splits) to balance the partitions for time series
51
- manipulation. The function creates an additional column that contains
52
- split identifiers. Each row contains the identifier of the split to
53
- which the row belongs. Optionally, the function also copies a
54
- specified number of boundary rows to each split.
55
-
56
-
57
- PARAMETERS:
58
- data:
59
- Required Argument.
60
- Specifies the name of the input teradataml DataFrame to be split.
61
-
62
- partition_columns:
63
- Required Argument.
64
- Specifies the partitioning columns of teradataml DataFrame.
65
- These columns determines the identity of a partition.
66
- Types: str OR list of Strings (str)
67
-
68
- duplicate_rows_count:
69
- Optional Argument.
70
- Specifies the number of rows to duplicate across split boundaries.
71
- By default, the function duplicates one row from the previous
72
- partition and one row from the next partition. If you specify
73
- only one value v1, then the function duplicates v1 rows from the
74
- previous partition and v1 rows from the next partition. If you
75
- specify two values v1 and v2, then the function duplicates v1
76
- rows from the previous partition and v2 rows from the next
77
- partition. Each argument value must be non-negative integer
78
- less than or equal to 1000.
79
- Default Value: 1
80
- Types: int or list of Integers (int)
81
-
82
- order_by_columns:
83
- Optional Argument.
84
- Specifies the ordering columns of teradataml DataFrame. These
85
- columns establish the order of the rows and splits. Without
86
- this argument, the function can split the rows in any order.
87
- Types: str OR list of Strings (str)
88
-
89
- split_count:
90
- Optional Argument.
91
- Specifies the desired number of splits in a partition of the output
92
- table. The value of "split_count" must be a positive int, and
93
- its upper bound is the number of rows in the partition.
94
- Note: If underlying table on Vantage, pointed by 'data', has
95
- multiple partitions, then you cannot specify "split_count". Instead,
96
- specify "rows_per_split". Base the value of "split_count" on the
97
- desired amount of parallelism.
98
- For example, for a cluster with 10 vworkers, make "split_count"
99
- a multiple of 10. If the number of rows in teradataml DataFrame
100
- (n) is not exactly divisible by "split_count", then the function
101
- estimates the number of splits in the partition, using this formula:
102
- ceiling (n / ceiling (n / split_count) )
103
- Default Value: 4
104
- Types: int
105
-
106
- rows_per_split:
107
- Optional Argument.
108
- Specifies the desired maximum number of rows in each split in
109
- the output teradataml DataFrame. If the number of rows in
110
- input table is not exactly divisible by "rows_per_split", then
111
- the last split contains fewer than "rows_per_split" rows, but
112
- no row contains more than "rows_per_split" rows. The value of
113
- "rows_per_split" must be a positive int.
114
- Note: If underlying table on Vantage, pointed by 'data', has
115
- multiple partitions, then specify "rows_per_split" instead of
116
- "split_count".
117
- Default Value: 1000
118
- Types: int
119
-
120
- accumulate:
121
- Optional Argument.
122
- Specifies the names of teradataml DataFrame columns (other than
123
- those specified by "partition_columns" and "order_by_columns") to
124
- copy to the output teradataml DataFrame. By default, only the
125
- columns specified by "partition_columns" and "order_by_columns" are
126
- copied to the output teradataml DataFrame.
127
- Types: str OR list of Strings (str)
128
-
129
- split_id_column:
130
- Optional Argument.
131
- Specifies the name for the output teradataml DataFrame column
132
- to contain the split identifiers. If the output teradataml
133
- DataFrame has another column name as that specified in
134
- "split_id_column", the function returns an error. Therefore, if
135
- the output teradataml DataFrame has a column named 'split_id'
136
- (specified by "accumulate", "partition_columns", or
137
- "order_by_columns"), you must use "split_id_column" to specify
138
- a different value.
139
- Default Value: "split_id"
140
- Types: str
141
-
142
- return_stats_table:
143
- Optional Argument.
144
- Specifies whether the function returns the data in "stats_table"
145
- output teradataml DataFrame. When this value is "False", the
146
- function returns only the data in "output_table" output
147
- teradataml DataFrame.
148
- Default Value: True
149
- Types: bool
150
-
151
- values_before_first:
152
- Optional Argument.
153
- If "duplicate_rows_count" is nonzero and "order_by_columns" is
154
- specified, then "values_before_first" specifies the values to be
155
- stored in the ordering columns that precede the first row of
156
- the first split in a partition as a result of duplicating rows
157
- across split boundaries. If "values_before_first" specifies only
158
- one value and "order_by_columns" specifies multiple ordering columns,
159
- then the specified value is stored in every ordering column.
160
- If "values_before_first" specifies multiple values, then it must
161
- specify a value for each ordering column. The value and the
162
- ordering column must have the same data type. For the data type
163
- str, the values are case-insensitive. The values for different
164
- data types are:
165
- int: -1,
166
- str : "-1",
167
- Date or time-based: 1900-01-01 0:00:00,
168
- Boolean: False
169
- Default Value: "-1"
170
- Types: str
171
-
172
- values_after_last:
173
- Optional Argument.
174
- If "duplicate_rows_count" is nonzero and orde_by_columns is
175
- specified, then "values_after_last" specifies the values to be
176
- stored in the ordering columns that follow the last row of the
177
- last split in a partition as a result of duplicating rows across
178
- split boundaries. If "values_after_last" specifies only one value
179
- and "order_by_columns" specifies multiple ordering columns, then
180
- the specified value is stored in every ordering column. If
181
- "values_after_last" specifies multiple values, then it must specify
182
- a value for each ordering column. The value and the ordering
183
- column must have the same data type. For the data type str, the
184
- values are case-insensitive.
185
- Default Value: "null"
186
- Types: str
187
-
188
- duplicate_column:
189
- Optional Argument.
190
- Specifies the name of the column that indicates whether a row is
191
- duplicated from the neighboring split. If the row is duplicated,
192
- this column contains 1; otherwise it contains 0.
193
- Types: str
194
-
195
- partial_split_id:
196
- Optional Argument.
197
- Specifies whether "split_id_column" contains only the numeric split
198
- identifier. If the value is "True", then "split_id_column"
199
- contains a numeric representation of the split identifier that
200
- is unique for each partition. To distribute the output
201
- teradataml DataFrame by split, use a combination of all
202
- partitioning columns and "split_id_column". If the value is "False",
203
- then "split_id_column" contains a string representation of the
204
- split that is unique across all partitions. The function
205
- generates the string representation by concatenating the
206
- partitioning columns with the order of the split inside the
207
- partition (the numeric representation). In the string
208
- representation, hyphens separate partitioning column names from
209
- each other and from the order. For example, "pcol1- pcol2-3".
210
- Default Value: False
211
- Types: bool
212
-
213
- data_sequence_column:
214
- Optional Argument.
215
- Specifies the list of column(s) that uniquely identifies each row of
216
- the input argument "data". The argument is used to ensure
217
- deterministic results for functions which produce results that vary
218
- from run to run.
219
- Types: str OR list of Strings (str)
220
-
221
- RETURNS:
222
- Instance of SeriesSplitter.
223
- Output teradataml DataFrames can be accessed using attribute
224
- references, such as SeriesSplitterObj.<attribute_name>.
225
- Output teradataml DataFrame attribute names are:
226
- 1. output_table
227
- 2. stats_table
228
- 3. output
229
-
230
- When the argument "return_stats_table" is set to True, all the three
231
- output teradataml DataFrames are generated. But, when the argument
232
- 'return_stats_table' is False, the "stats_table" output teradataml
233
- DataFrame will not be generated.
234
-
235
-
236
-
237
- RAISES:
238
- TeradataMlException
239
-
240
-
241
- EXAMPLES:
242
- # Load example data.
243
- load_example_data("seriessplitter", "ibm_stock")
244
-
245
- # Create teradataml DataFrame objects.
246
- # The input table has the daily stock prices from 1961 to 1962.
247
- ibm_stock = DataFrame.from_table("ibm_stock")
248
-
249
- # Example 1 - This examples splits the time series stock data into
250
- # subpartitions.
251
- SeriesSplitter_out1 = SeriesSplitter(data = ibm_stock,
252
- partition_columns = ["name"],
253
- order_by_columns = ["period"],
254
- split_count = 50,
255
- accumulate = ["stockprice"]
256
- )
257
-
258
- # Print the results
259
- print(SeriesSplitter_out1.output_table)
260
- print(SeriesSplitter_out1.stats_table)
261
- print(SeriesSplitter_out1.output)
262
-
263
- # Example 2 - In the example "return_stats_table" is False which returns
264
- # only the output_table.
265
- SeriesSplitter_out2 = SeriesSplitter(data=ibm_stock,
266
- partition_columns='name',
267
- order_by_columns = 'period',
268
- split_count = 9,
269
- split_id_column = 'split_id',
270
- duplicate_rows_count = [1,1],
271
- return_stats_table = False,
272
- accumulate = 'stockprice',
273
- values_before_first = "1961-01-01",
274
- values_after_last = "NULL",
275
- partial_split_id = False
276
- )
277
- # Print the results
278
- print(SeriesSplitter_out1.output_table)
279
- print(SeriesSplitter_out1.output)
280
-
281
- # Note: When argument return_stats_table is False output teradataml DataFrame,
282
- # (stats_table) is not created. If tried to access this attribute
283
- # an INFO message will be thrown mentioning the same.
284
-
285
- """
286
-
287
- # Start the timer to get the build time
288
- _start_time = time.time()
289
-
290
- self.data = data
291
- self.partition_columns = partition_columns
292
- self.duplicate_rows_count = duplicate_rows_count
293
- self.order_by_columns = order_by_columns
294
- self.split_count = split_count
295
- self.rows_per_split = rows_per_split
296
- self.accumulate = accumulate
297
- self.split_id_column = split_id_column
298
- self.return_stats_table = return_stats_table
299
- self.values_before_first = values_before_first
300
- self.values_after_last = values_after_last
301
- self.duplicate_column = duplicate_column
302
- self.partial_split_id = partial_split_id
303
- self.data_sequence_column = data_sequence_column
304
-
305
- # Create TeradataPyWrapperUtils instance which contains validation functions.
306
- self.__awu = AnalyticsWrapperUtils()
307
- self.__aed_utils = AedUtils()
308
-
309
- # Create argument information matrix to do parameter checking
310
- self.__arg_info_matrix = []
311
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
312
- self.__arg_info_matrix.append(["partition_columns", self.partition_columns, False, (str,list)])
313
- self.__arg_info_matrix.append(["duplicate_rows_count", self.duplicate_rows_count, True, (int,list)])
314
- self.__arg_info_matrix.append(["order_by_columns", self.order_by_columns, True, (str,list)])
315
- self.__arg_info_matrix.append(["split_count", self.split_count, True, (int)])
316
- self.__arg_info_matrix.append(["rows_per_split", self.rows_per_split, True, (int)])
317
- self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
318
- self.__arg_info_matrix.append(["split_id_column", self.split_id_column, True, (str)])
319
- self.__arg_info_matrix.append(["return_stats_table", self.return_stats_table, True, (bool)])
320
- self.__arg_info_matrix.append(["values_before_first", self.values_before_first, True, (str,list)])
321
- self.__arg_info_matrix.append(["values_after_last", self.values_after_last, True, (str,list)])
322
- self.__arg_info_matrix.append(["duplicate_column", self.duplicate_column, True, (str)])
323
- self.__arg_info_matrix.append(["partial_split_id", self.partial_split_id, True, (bool)])
324
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
325
-
326
- if inspect.stack()[1][3] != '_from_model_catalog':
327
- # Perform the function validations
328
- self.__validate()
329
- # Generate the ML query
330
- self.__form_tdml_query()
331
- # Execute ML query
332
- self.__execute()
333
- # Get the prediction type
334
- self._prediction_type = self.__awu._get_function_prediction_type(self)
335
-
336
- # End the timer to get the build time
337
- _end_time = time.time()
338
-
339
- # Calculate the build time
340
- self._build_time = (int)(_end_time - _start_time)
341
-
342
- def __validate(self):
343
- """
344
- Function to validate sqlmr function arguments, which verifies missing
345
- arguments, input argument and table types. Also processes the
346
- argument values.
347
- """
348
-
349
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
350
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
351
-
352
- # Make sure that a non-NULL value has been supplied correct type of argument
353
- self.__awu._validate_argument_types(self.__arg_info_matrix)
354
-
355
- # Check to make sure input table types are strings or data frame objects or of valid type.
356
- self.__awu._validate_input_table_datatype(self.data, "data", None)
357
-
358
- # Check whether the input columns passed to the argument are not empty.
359
- # Also check whether the input columns passed to the argument valid or not.
360
- self.__awu._validate_input_columns_not_empty(self.partition_columns, "partition_columns")
361
- self.__awu._validate_dataframe_has_argument_columns(self.partition_columns, "partition_columns", self.data, "data", False)
362
-
363
- self.__awu._validate_input_columns_not_empty(self.order_by_columns, "order_by_columns")
364
- self.__awu._validate_dataframe_has_argument_columns(self.order_by_columns, "order_by_columns", self.data, "data", False)
365
-
366
- self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
367
- self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.data, "data", False)
368
-
369
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
370
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
371
-
372
- # Validate that value passed to the output column argument is not empty.
373
- self.__awu._validate_input_columns_not_empty(self.split_id_column, "split_id_column")
374
- self.__awu._validate_input_columns_not_empty(self.duplicate_column, "duplicate_column")
375
-
376
- def __form_tdml_query(self):
377
- """
378
- Function to generate the analytical function queries. The function defines
379
- variables and list of arguments required to form the query.
380
- """
381
- # Generate temp table names for output table parameters if any.
382
- self.__output_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_seriessplitter0", use_default_database = True, gc_on_quit = True, quote=False, table_type = TeradataConstants.TERADATA_TABLE)
383
- self.__stats_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_seriessplitter1", use_default_database = True, gc_on_quit = True, quote=False, table_type = TeradataConstants.TERADATA_TABLE)
384
-
385
- # Output table arguments list
386
- self.__func_output_args_sql_names = ["OutputTable", "StatsTable"]
387
- self.__func_output_args = [self.__output_table_temp_tablename, self.__stats_table_temp_tablename]
388
-
389
- # Model Cataloging related attributes.
390
- self._sql_specific_attributes = {}
391
- self._sql_formula_attribute_mapper = {}
392
- self._target_column = None
393
- self._algorithm_name = None
394
-
395
- # Generate lists for rest of the function arguments
396
- self.__func_other_arg_sql_names = []
397
- self.__func_other_args = []
398
- self.__func_other_arg_json_datatypes = []
399
-
400
- self.__func_other_arg_sql_names.append("PartitionByColumns")
401
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.partition_columns, "\""), "'"))
402
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
403
-
404
- if self.order_by_columns is not None:
405
- self.__func_other_arg_sql_names.append("OrderByColumns")
406
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.order_by_columns, "\""), "'"))
407
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
408
-
409
- if self.accumulate is not None:
410
- self.__func_other_arg_sql_names.append("Accumulate")
411
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
412
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
413
-
414
- if self.split_count is not None and self.split_count != 4:
415
- self.__func_other_arg_sql_names.append("SplitCount")
416
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.split_count, "'"))
417
- self.__func_other_arg_json_datatypes.append("LONG")
418
-
419
- if self.rows_per_split is not None and self.rows_per_split != 1000:
420
- self.__func_other_arg_sql_names.append("RowsPerSplit")
421
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.rows_per_split, "'"))
422
- self.__func_other_arg_json_datatypes.append("LONG")
423
-
424
- if self.duplicate_rows_count is not None and self.duplicate_rows_count != 1:
425
- self.__func_other_arg_sql_names.append("DuplicateRowsCount")
426
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.duplicate_rows_count, "'"))
427
- self.__func_other_arg_json_datatypes.append("LONG")
428
-
429
- if self.split_id_column is not None and self.split_id_column != "split_id":
430
- self.__func_other_arg_sql_names.append("SplitIdColumn")
431
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.split_id_column, "'"))
432
- self.__func_other_arg_json_datatypes.append("STRING")
433
-
434
- if self.return_stats_table is not None and self.return_stats_table != True:
435
- self.__func_other_arg_sql_names.append("ReturnStatsTable")
436
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.return_stats_table, "'"))
437
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
438
-
439
- if self.values_before_first is not None and self.values_before_first != "-1":
440
- self.__func_other_arg_sql_names.append("ValuesBeforeFirst")
441
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.values_before_first, "'"))
442
- self.__func_other_arg_json_datatypes.append("STRING")
443
-
444
- if self.values_after_last is not None and self.values_after_last != "null":
445
- self.__func_other_arg_sql_names.append("ValuesAfterLast")
446
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.values_after_last, "'"))
447
- self.__func_other_arg_json_datatypes.append("STRING")
448
-
449
- if self.duplicate_column is not None:
450
- self.__func_other_arg_sql_names.append("DuplicateColumn")
451
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.duplicate_column, "'"))
452
- self.__func_other_arg_json_datatypes.append("STRING")
453
-
454
- if self.partial_split_id is not None and self.partial_split_id != False:
455
- self.__func_other_arg_sql_names.append("PartialSplitId")
456
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.partial_split_id, "'"))
457
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
458
-
459
- # Generate lists for rest of the function arguments
460
- sequence_input_by_list = []
461
- if self.data_sequence_column is not None:
462
- sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
463
-
464
- if len(sequence_input_by_list) > 0:
465
- self.__func_other_arg_sql_names.append("SequenceInputBy")
466
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
467
- self.__func_other_args.append(sequence_input_by_arg_value)
468
- self.__func_other_arg_json_datatypes.append("STRING")
469
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
470
-
471
-
472
- # Declare empty lists to hold input table information.
473
- self.__func_input_arg_sql_names = []
474
- self.__func_input_table_view_query = []
475
- self.__func_input_dataframe_type = []
476
- self.__func_input_distribution = []
477
- self.__func_input_partition_by_cols = []
478
- self.__func_input_order_by_cols = []
479
-
480
- # Process data
481
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
482
- self.__func_input_distribution.append("NONE")
483
- self.__func_input_arg_sql_names.append("InputTable")
484
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
485
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
486
- self.__func_input_partition_by_cols.append("NA_character_")
487
- self.__func_input_order_by_cols.append("NA_character_")
488
-
489
- function_name = "SeriesSplitter"
490
- # Create instance to generate SQLMR.
491
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
492
- self.__func_input_arg_sql_names,
493
- self.__func_input_table_view_query,
494
- self.__func_input_dataframe_type,
495
- self.__func_input_distribution,
496
- self.__func_input_partition_by_cols,
497
- self.__func_input_order_by_cols,
498
- self.__func_other_arg_sql_names,
499
- self.__func_other_args,
500
- self.__func_other_arg_json_datatypes,
501
- self.__func_output_args_sql_names,
502
- self.__func_output_args,
503
- engine="ENGINE_ML")
504
- # Invoke call to SQL-MR generation.
505
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
506
-
507
- # Print SQL-MR query if requested to do so.
508
- if display.print_sqlmr_query:
509
- print(self.sqlmr_query)
510
-
511
- # Set the algorithm name for Model Cataloging.
512
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
513
-
514
- def __execute(self):
515
- """
516
- Function to execute SQL-MR queries.
517
- Create DataFrames for the required SQL-MR outputs.
518
- """
519
- # Generate STDOUT table name and add it to the output table list.
520
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix = "td_sqlmr_out_", use_default_database = True, gc_on_quit = True, quote = False, table_type = TeradataConstants.TERADATA_TABLE)
521
- try:
522
- # Generate the output.
523
- UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
524
- except Exception as emsg:
525
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
526
-
527
- # Update output table data frames.
528
- self._mlresults = []
529
- self.output_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__output_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__output_table_temp_tablename))
530
- self._mlresults.append(self.output_table)
531
- if self.return_stats_table:
532
- self.stats_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__stats_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__stats_table_temp_tablename))
533
- self._mlresults.append(self.stats_table)
534
- else:
535
- self.stats_table = "INFO: 'stats_table' output DataFrame is not created, when 'return_stats_table' is set to False."
536
- self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
537
- self._mlresults.append(self.output)
538
-
539
- def show_query(self):
540
- """
541
- Function to return the underlying SQL query.
542
- When model object is created using retrieve_model(), then None is returned.
543
- """
544
- return self.sqlmr_query
545
-
546
- def get_prediction_type(self):
547
- """
548
- Function to return the Prediction type of the algorithm.
549
- When model object is created using retrieve_model(), then the value returned is
550
- as saved in the Model Catalog.
551
- """
552
- return self._prediction_type
553
-
554
- def get_target_column(self):
555
- """
556
- Function to return the Target Column of the algorithm.
557
- When model object is created using retrieve_model(), then the value returned is
558
- as saved in the Model Catalog.
559
- """
560
- return self._target_column
561
-
562
- def get_build_time(self):
563
- """
564
- Function to return the build time of the algorithm in seconds.
565
- When model object is created using retrieve_model(), then the value returned is
566
- as saved in the Model Catalog.
567
- """
568
- return self._build_time
569
-
570
- def _get_algorithm_name(self):
571
- """
572
- Function to return the name of the algorithm.
573
- """
574
- return self._algorithm_name
575
-
576
- def _get_sql_specific_attributes(self):
577
- """
578
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
579
- """
580
- return self._sql_specific_attributes
581
-
582
- @classmethod
583
- def _from_model_catalog(cls,
584
- output_table = None,
585
- stats_table = None,
586
- output = None,
587
- **kwargs):
588
- """
589
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
590
- """
591
- kwargs.pop("output_table", None)
592
- kwargs.pop("stats_table", None)
593
- kwargs.pop("output", None)
594
-
595
- # Model Cataloging related attributes.
596
- target_column = kwargs.pop("__target_column", None)
597
- prediction_type = kwargs.pop("__prediction_type", None)
598
- algorithm_name = kwargs.pop("__algorithm_name", None)
599
- build_time = kwargs.pop("__build_time", None)
600
-
601
- # Let's create an object of this class.
602
- obj = cls(**kwargs)
603
- obj.output_table = output_table
604
- obj.stats_table = stats_table
605
- obj.output = output
606
-
607
- # Initialize the sqlmr_query class attribute.
608
- obj.sqlmr_query = None
609
-
610
- # Initialize the SQL specific Model Cataloging attributes.
611
- obj._sql_specific_attributes = None
612
- obj._target_column = target_column
613
- obj._prediction_type = prediction_type
614
- obj._algorithm_name = algorithm_name
615
- obj._build_time = build_time
616
-
617
- # Update output table data frames.
618
- obj._mlresults = []
619
- obj.output_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_table))
620
- obj._mlresults.append(obj.output_table)
621
- if obj.stats_table is None:
622
- obj.stats_table = "INFO: 'stats_table' output DataFrame is not created, when 'return_stats_table' is set to False."
623
- else:
624
- obj.stats_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.stats_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.stats_table))
625
- obj._mlresults.append(obj.stats_table)
626
- obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
627
- obj._mlresults.append(obj.output)
628
- return obj
629
-
630
- def __repr__(self):
631
- """
632
- Returns the string representation for a SeriesSplitter class instance.
633
- """
634
- repr_string="############ STDOUT Output ############"
635
- repr_string = "{}\n\n{}".format(repr_string,self.output)
636
- repr_string="{}\n\n\n############ output_table Output ############".format(repr_string)
637
- repr_string = "{}\n\n{}".format(repr_string,self.output_table)
638
- repr_string="{}\n\n\n############ stats_table Output ############".format(repr_string)
639
- repr_string = "{}\n\n{}".format(repr_string,self.stats_table)
640
- return repr_string
641
-