teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
teradataml/analytics/mle/LDA.py
DELETED
|
@@ -1,548 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Rohit Agrawal (rohit.agrawal@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.10
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class LDA:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
topic_num = None,
|
|
35
|
-
docid_column = None,
|
|
36
|
-
word_column = None,
|
|
37
|
-
alpha = 0.1,
|
|
38
|
-
eta = 0.1,
|
|
39
|
-
count_column = None,
|
|
40
|
-
maxiter = 50,
|
|
41
|
-
convergence_delta = 1.0E-4,
|
|
42
|
-
seed = None,
|
|
43
|
-
out_topicnum = "all",
|
|
44
|
-
out_topicwordnum = "none",
|
|
45
|
-
initmodeltaskcount = None,
|
|
46
|
-
data_sequence_column = None):
|
|
47
|
-
"""
|
|
48
|
-
DESCRIPTION:
|
|
49
|
-
The LDA function uses training data and parameters to build a
|
|
50
|
-
topic model, using an unsupervised method to estimate the correlation
|
|
51
|
-
between the topics and words according to the topic number and other
|
|
52
|
-
parameters. Optionally, the function generates the topic distributions
|
|
53
|
-
for each training document. The function uses an iterative algorithm;
|
|
54
|
-
therefore, applying it to large data sets with a large number of
|
|
55
|
-
topics can be time-consuming.
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
PARAMETERS:
|
|
59
|
-
data:
|
|
60
|
-
Required Argument.
|
|
61
|
-
Specifies the name of the teradataml DataFrame or view that contains
|
|
62
|
-
the new documents.
|
|
63
|
-
|
|
64
|
-
topic_num:
|
|
65
|
-
Required Argument.
|
|
66
|
-
Specifies the number of topics for all the documents in the
|
|
67
|
-
teradataml DataFrame 'data', an int value in the range [2, 1000].
|
|
68
|
-
Types: int
|
|
69
|
-
|
|
70
|
-
docid_column:
|
|
71
|
-
Required Argument.
|
|
72
|
-
Specifies the name of the input column that contains the document
|
|
73
|
-
identifiers.
|
|
74
|
-
Types: str OR list of Strings (str)
|
|
75
|
-
|
|
76
|
-
word_column:
|
|
77
|
-
Required Argument.
|
|
78
|
-
Specifies the name of the input column that contains the words (one
|
|
79
|
-
word in each row).
|
|
80
|
-
Types: str OR list of Strings (str)
|
|
81
|
-
|
|
82
|
-
alpha:
|
|
83
|
-
Optional Argument.
|
|
84
|
-
Specifies a hyperparameter of the model, the prior smooth parameter
|
|
85
|
-
for the topic distribution over documents. As alpha decreases,
|
|
86
|
-
fewer topics are associated with each document.
|
|
87
|
-
Default Value: 0.1
|
|
88
|
-
Types: float
|
|
89
|
-
|
|
90
|
-
eta:
|
|
91
|
-
Optional Argument.
|
|
92
|
-
Specifies a hyperparameter of the model, the prior smooth parameter
|
|
93
|
-
for the word distribution over topics. As eta decreases, fewer
|
|
94
|
-
words are associated with each topic.
|
|
95
|
-
Default Value: 0.1
|
|
96
|
-
Types: float
|
|
97
|
-
|
|
98
|
-
count_column:
|
|
99
|
-
Optional Argument.
|
|
100
|
-
Specifies the name of the input column that contains the count
|
|
101
|
-
of the corresponding word in the row, a NUMERIC value.
|
|
102
|
-
Types: str OR list of Strings (str)
|
|
103
|
-
|
|
104
|
-
maxiter:
|
|
105
|
-
Optional Argument.
|
|
106
|
-
Specifies the maximum number of iterations to perform if the
|
|
107
|
-
model does not converge, a positive int value.
|
|
108
|
-
Default Value: 50
|
|
109
|
-
Types: int
|
|
110
|
-
|
|
111
|
-
convergence_delta:
|
|
112
|
-
Optional Argument.
|
|
113
|
-
Specifies the convergence delta of log perplexity, a NUMERIC
|
|
114
|
-
value in the range [0.0,1.0].
|
|
115
|
-
Default Value: 1.0E-4
|
|
116
|
-
Types: float
|
|
117
|
-
|
|
118
|
-
seed:
|
|
119
|
-
Optional Argument.
|
|
120
|
-
Specifies the seed with which to initialize the model, a int value.
|
|
121
|
-
Given the same seed, cluster configuration, and data, the
|
|
122
|
-
function generates the same model. By default, the function
|
|
123
|
-
initializes the model randomly.
|
|
124
|
-
Types: int
|
|
125
|
-
|
|
126
|
-
out_topicnum:
|
|
127
|
-
Optional Argument.
|
|
128
|
-
Specifies the number of top-weighted topics and their weights to
|
|
129
|
-
include in the output teradataml DataFrame for each training
|
|
130
|
-
document. The value out_topicnum must be a positive int. The value,
|
|
131
|
-
"all", specifies all topics and their weights.
|
|
132
|
-
Default Value: "all"
|
|
133
|
-
Types: str
|
|
134
|
-
|
|
135
|
-
out_topicwordnum:
|
|
136
|
-
Optional Argument.
|
|
137
|
-
Specifies the number of top topic words and their topic identifiers
|
|
138
|
-
to include in the output teradataml DataFrame for each training
|
|
139
|
-
document. The value out_topicwordnum must be a positive int.
|
|
140
|
-
The value "all" specifies all topic words and their topic
|
|
141
|
-
identifiers. The value, "none", specifies no topic words or
|
|
142
|
-
topic identifiers.
|
|
143
|
-
Default Value: "none"
|
|
144
|
-
Types: str
|
|
145
|
-
|
|
146
|
-
initmodeltaskcount:
|
|
147
|
-
Optional Argument.
|
|
148
|
-
Specifies the number of vWorkers that are adopted to generate
|
|
149
|
-
initialized model. By default, the function uses all the available
|
|
150
|
-
vworkers to initialize the model.
|
|
151
|
-
Note: This argument is available only when teradataml is connected to
|
|
152
|
-
Vantage 1.1.1 or later versions.
|
|
153
|
-
Types: int
|
|
154
|
-
|
|
155
|
-
data_sequence_column:
|
|
156
|
-
Optional Argument.
|
|
157
|
-
Specifies the list of column(s) that uniquely identifies each
|
|
158
|
-
row of the input argument "data". The argument is used to ensure
|
|
159
|
-
deterministic results for functions which produce results that
|
|
160
|
-
vary from run to run.
|
|
161
|
-
Types: str OR list of Strings (str)
|
|
162
|
-
|
|
163
|
-
RETURNS:
|
|
164
|
-
Instance of LDA.
|
|
165
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
166
|
-
references, such as LDAObj.<attribute_name>.
|
|
167
|
-
Output teradataml DataFrame attribute names are:
|
|
168
|
-
1. model_table
|
|
169
|
-
2. doc_distribution_data
|
|
170
|
-
3. output
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
RAISES:
|
|
174
|
-
TeradataMlException
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
EXAMPLES:
|
|
178
|
-
# Load example data.
|
|
179
|
-
load_example_data("LDA", "complaints_traintoken")
|
|
180
|
-
|
|
181
|
-
# Create teradataml DataFrame objects.
|
|
182
|
-
# The training table is log of vehicle complaints. The 'category'
|
|
183
|
-
# column indicates whether the car has been in a crash.
|
|
184
|
-
complaints_traintoken = DataFrame.from_table("complaints_traintoken")
|
|
185
|
-
|
|
186
|
-
# Example 1 - Function uses training data and parameters to build a topic model.
|
|
187
|
-
LDA_out = LDA(data = complaints_traintoken,
|
|
188
|
-
topic_num = 5,
|
|
189
|
-
docid_column = "doc_id",
|
|
190
|
-
word_column = "token",
|
|
191
|
-
count_column = "frequency",
|
|
192
|
-
maxiter = 30,
|
|
193
|
-
convergence_delta = 1e-3,
|
|
194
|
-
seed = 2
|
|
195
|
-
)
|
|
196
|
-
|
|
197
|
-
# Print the result teradataml DataFrame
|
|
198
|
-
print(LDA_out)
|
|
199
|
-
|
|
200
|
-
"""
|
|
201
|
-
|
|
202
|
-
# Start the timer to get the build time
|
|
203
|
-
_start_time = time.time()
|
|
204
|
-
|
|
205
|
-
self.data = data
|
|
206
|
-
self.topic_num = topic_num
|
|
207
|
-
self.docid_column = docid_column
|
|
208
|
-
self.word_column = word_column
|
|
209
|
-
self.alpha = alpha
|
|
210
|
-
self.eta = eta
|
|
211
|
-
self.count_column = count_column
|
|
212
|
-
self.maxiter = maxiter
|
|
213
|
-
self.convergence_delta = convergence_delta
|
|
214
|
-
self.seed = seed
|
|
215
|
-
self.out_topicnum = out_topicnum
|
|
216
|
-
self.out_topicwordnum = out_topicwordnum
|
|
217
|
-
self.initmodeltaskcount = initmodeltaskcount
|
|
218
|
-
self.data_sequence_column = data_sequence_column
|
|
219
|
-
|
|
220
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
221
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
222
|
-
self.__aed_utils = AedUtils()
|
|
223
|
-
|
|
224
|
-
# Create argument information matrix to do parameter checking
|
|
225
|
-
self.__arg_info_matrix = []
|
|
226
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
227
|
-
self.__arg_info_matrix.append(["topic_num", self.topic_num, False, (int)])
|
|
228
|
-
self.__arg_info_matrix.append(["docid_column", self.docid_column, False, (str)])
|
|
229
|
-
self.__arg_info_matrix.append(["word_column", self.word_column, False, (str)])
|
|
230
|
-
self.__arg_info_matrix.append(["alpha", self.alpha, True, (float)])
|
|
231
|
-
self.__arg_info_matrix.append(["eta", self.eta, True, (float)])
|
|
232
|
-
self.__arg_info_matrix.append(["count_column", self.count_column, True, (str)])
|
|
233
|
-
self.__arg_info_matrix.append(["maxiter", self.maxiter, True, (int)])
|
|
234
|
-
self.__arg_info_matrix.append(["convergence_delta", self.convergence_delta, True, (float)])
|
|
235
|
-
self.__arg_info_matrix.append(["seed", self.seed, True, (int)])
|
|
236
|
-
self.__arg_info_matrix.append(["out_topicnum", self.out_topicnum, True, (str)])
|
|
237
|
-
self.__arg_info_matrix.append(["out_topicwordnum", self.out_topicwordnum, True, (str)])
|
|
238
|
-
self.__arg_info_matrix.append(["initmodeltaskcount", self.initmodeltaskcount, True, (int)])
|
|
239
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
240
|
-
|
|
241
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
242
|
-
# Perform the function validations
|
|
243
|
-
self.__validate()
|
|
244
|
-
# Generate the ML query
|
|
245
|
-
self.__form_tdml_query()
|
|
246
|
-
# Execute ML query
|
|
247
|
-
self.__execute()
|
|
248
|
-
# Get the prediction type
|
|
249
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
250
|
-
|
|
251
|
-
# End the timer to get the build time
|
|
252
|
-
_end_time = time.time()
|
|
253
|
-
|
|
254
|
-
# Calculate the build time
|
|
255
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
256
|
-
|
|
257
|
-
def __validate(self):
|
|
258
|
-
"""
|
|
259
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
260
|
-
arguments, input argument and table types. Also processes the
|
|
261
|
-
argument values.
|
|
262
|
-
"""
|
|
263
|
-
|
|
264
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
265
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
266
|
-
|
|
267
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
268
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
269
|
-
|
|
270
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
271
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
272
|
-
|
|
273
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
274
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
275
|
-
self.__awu._validate_input_columns_not_empty(self.docid_column, "docid_column")
|
|
276
|
-
self.__awu._validate_dataframe_has_argument_columns(self.docid_column, "docid_column", self.data, "data", False)
|
|
277
|
-
|
|
278
|
-
self.__awu._validate_input_columns_not_empty(self.word_column, "word_column")
|
|
279
|
-
self.__awu._validate_dataframe_has_argument_columns(self.word_column, "word_column", self.data, "data", False)
|
|
280
|
-
|
|
281
|
-
self.__awu._validate_input_columns_not_empty(self.count_column, "count_column")
|
|
282
|
-
self.__awu._validate_dataframe_has_argument_columns(self.count_column, "count_column", self.data, "data", False)
|
|
283
|
-
|
|
284
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
285
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
286
|
-
|
|
287
|
-
if self.initmodeltaskcount is not None and self.initmodeltaskcount < 1:
|
|
288
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_POSITIVE_INT, "initmodeltaskcount",
|
|
289
|
-
"greater than"), MessageCodes.TDMLDF_POSITIVE_INT)
|
|
290
|
-
|
|
291
|
-
def __form_tdml_query(self):
|
|
292
|
-
"""
|
|
293
|
-
Function to generate the analytical function queries. The function defines
|
|
294
|
-
variables and list of arguments required to form the query.
|
|
295
|
-
"""
|
|
296
|
-
# Generate temp table names for output table parameters if any.
|
|
297
|
-
self.__model_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_lda0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
298
|
-
self.__doc_distribution_data_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_lda1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
299
|
-
|
|
300
|
-
# Output table arguments list
|
|
301
|
-
self.__func_output_args_sql_names = ["ModelTable", "OutputTable"]
|
|
302
|
-
self.__func_output_args = [self.__model_table_temp_tablename, self.__doc_distribution_data_temp_tablename]
|
|
303
|
-
|
|
304
|
-
# Model Cataloging related attributes.
|
|
305
|
-
self._sql_specific_attributes = {}
|
|
306
|
-
self._sql_formula_attribute_mapper = {}
|
|
307
|
-
self._target_column = None
|
|
308
|
-
self._algorithm_name = None
|
|
309
|
-
|
|
310
|
-
# Generate lists for rest of the function arguments
|
|
311
|
-
self.__func_other_arg_sql_names = []
|
|
312
|
-
self.__func_other_args = []
|
|
313
|
-
self.__func_other_arg_json_datatypes = []
|
|
314
|
-
|
|
315
|
-
self.__func_other_arg_sql_names.append("DocIDColumn")
|
|
316
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.docid_column, "\""), "'"))
|
|
317
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
318
|
-
|
|
319
|
-
self.__func_other_arg_sql_names.append("WordColumn")
|
|
320
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.word_column, "\""), "'"))
|
|
321
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
322
|
-
|
|
323
|
-
if self.count_column is not None:
|
|
324
|
-
self.__func_other_arg_sql_names.append("CountColumn")
|
|
325
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.count_column, "\""), "'"))
|
|
326
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
327
|
-
|
|
328
|
-
self.__func_other_arg_sql_names.append("TopicNum")
|
|
329
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.topic_num, "'"))
|
|
330
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
331
|
-
|
|
332
|
-
if self.alpha is not None and self.alpha != 0.1:
|
|
333
|
-
self.__func_other_arg_sql_names.append("Alpha")
|
|
334
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.alpha, "'"))
|
|
335
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
336
|
-
|
|
337
|
-
if self.eta is not None and self.eta != 0.1:
|
|
338
|
-
self.__func_other_arg_sql_names.append("Eta")
|
|
339
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.eta, "'"))
|
|
340
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
341
|
-
|
|
342
|
-
if self.maxiter is not None and self.maxiter != 50:
|
|
343
|
-
self.__func_other_arg_sql_names.append("MaxIterNum")
|
|
344
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.maxiter, "'"))
|
|
345
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
346
|
-
|
|
347
|
-
if self.convergence_delta is not None and self.convergence_delta != 1.0E-4:
|
|
348
|
-
self.__func_other_arg_sql_names.append("ConvergenceDelta")
|
|
349
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.convergence_delta, "'"))
|
|
350
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
351
|
-
|
|
352
|
-
if self.seed is not None:
|
|
353
|
-
self.__func_other_arg_sql_names.append("Seed")
|
|
354
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seed, "'"))
|
|
355
|
-
self.__func_other_arg_json_datatypes.append("LONG")
|
|
356
|
-
|
|
357
|
-
if self.initmodeltaskcount is not None:
|
|
358
|
-
self.__func_other_arg_sql_names.append("InitModelTaskCount")
|
|
359
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.initmodeltaskcount, "'"))
|
|
360
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
361
|
-
|
|
362
|
-
if self.out_topicnum is not None and self.out_topicnum != "all":
|
|
363
|
-
self.__func_other_arg_sql_names.append("OutputTopicNum")
|
|
364
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.out_topicnum, "'"))
|
|
365
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
366
|
-
|
|
367
|
-
if self.out_topicwordnum is not None and self.out_topicwordnum != "none":
|
|
368
|
-
self.__func_other_arg_sql_names.append("OutputTopicWordNum")
|
|
369
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.out_topicwordnum, "'"))
|
|
370
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
371
|
-
|
|
372
|
-
# Generate lists for rest of the function arguments
|
|
373
|
-
sequence_input_by_list = []
|
|
374
|
-
if self.data_sequence_column is not None:
|
|
375
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
376
|
-
|
|
377
|
-
if len(sequence_input_by_list) > 0:
|
|
378
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
379
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
380
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
381
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
382
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
# Declare empty lists to hold input table information.
|
|
386
|
-
self.__func_input_arg_sql_names = []
|
|
387
|
-
self.__func_input_table_view_query = []
|
|
388
|
-
self.__func_input_dataframe_type = []
|
|
389
|
-
self.__func_input_distribution = []
|
|
390
|
-
self.__func_input_partition_by_cols = []
|
|
391
|
-
self.__func_input_order_by_cols = []
|
|
392
|
-
|
|
393
|
-
# Process data
|
|
394
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
395
|
-
self.__func_input_distribution.append("NONE")
|
|
396
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
397
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
398
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
399
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
400
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
401
|
-
|
|
402
|
-
function_name = "LDA"
|
|
403
|
-
# Create instance to generate SQLMR.
|
|
404
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
405
|
-
self.__func_input_arg_sql_names,
|
|
406
|
-
self.__func_input_table_view_query,
|
|
407
|
-
self.__func_input_dataframe_type,
|
|
408
|
-
self.__func_input_distribution,
|
|
409
|
-
self.__func_input_partition_by_cols,
|
|
410
|
-
self.__func_input_order_by_cols,
|
|
411
|
-
self.__func_other_arg_sql_names,
|
|
412
|
-
self.__func_other_args,
|
|
413
|
-
self.__func_other_arg_json_datatypes,
|
|
414
|
-
self.__func_output_args_sql_names,
|
|
415
|
-
self.__func_output_args,
|
|
416
|
-
engine="ENGINE_ML")
|
|
417
|
-
# Invoke call to SQL-MR generation.
|
|
418
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
419
|
-
|
|
420
|
-
# Print SQL-MR query if requested to do so.
|
|
421
|
-
if display.print_sqlmr_query:
|
|
422
|
-
print(self.sqlmr_query)
|
|
423
|
-
|
|
424
|
-
# Set the algorithm name for Model Cataloging.
|
|
425
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
426
|
-
|
|
427
|
-
def __execute(self):
|
|
428
|
-
"""
|
|
429
|
-
Function to execute SQL-MR queries.
|
|
430
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
431
|
-
"""
|
|
432
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
433
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
434
|
-
try:
|
|
435
|
-
# Generate the output.
|
|
436
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
437
|
-
except Exception as emsg:
|
|
438
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
439
|
-
|
|
440
|
-
# Update output table data frames.
|
|
441
|
-
self._mlresults = []
|
|
442
|
-
self.model_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__model_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__model_table_temp_tablename))
|
|
443
|
-
self.doc_distribution_data = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__doc_distribution_data_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__doc_distribution_data_temp_tablename))
|
|
444
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
445
|
-
self._mlresults.append(self.model_table)
|
|
446
|
-
self._mlresults.append(self.doc_distribution_data)
|
|
447
|
-
self._mlresults.append(self.output)
|
|
448
|
-
|
|
449
|
-
def show_query(self):
|
|
450
|
-
"""
|
|
451
|
-
Function to return the underlying SQL query.
|
|
452
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
453
|
-
"""
|
|
454
|
-
return self.sqlmr_query
|
|
455
|
-
|
|
456
|
-
def get_prediction_type(self):
|
|
457
|
-
"""
|
|
458
|
-
Function to return the Prediction type of the algorithm.
|
|
459
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
460
|
-
as saved in the Model Catalog.
|
|
461
|
-
"""
|
|
462
|
-
return self._prediction_type
|
|
463
|
-
|
|
464
|
-
def get_target_column(self):
|
|
465
|
-
"""
|
|
466
|
-
Function to return the Target Column of the algorithm.
|
|
467
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
468
|
-
as saved in the Model Catalog.
|
|
469
|
-
"""
|
|
470
|
-
return self._target_column
|
|
471
|
-
|
|
472
|
-
def get_build_time(self):
|
|
473
|
-
"""
|
|
474
|
-
Function to return the build time of the algorithm in seconds.
|
|
475
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
476
|
-
as saved in the Model Catalog.
|
|
477
|
-
"""
|
|
478
|
-
return self._build_time
|
|
479
|
-
|
|
480
|
-
def _get_algorithm_name(self):
|
|
481
|
-
"""
|
|
482
|
-
Function to return the name of the algorithm.
|
|
483
|
-
"""
|
|
484
|
-
return self._algorithm_name
|
|
485
|
-
|
|
486
|
-
def _get_sql_specific_attributes(self):
|
|
487
|
-
"""
|
|
488
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
489
|
-
"""
|
|
490
|
-
return self._sql_specific_attributes
|
|
491
|
-
|
|
492
|
-
@classmethod
|
|
493
|
-
def _from_model_catalog(cls,
|
|
494
|
-
model_table = None,
|
|
495
|
-
doc_distribution_data = None,
|
|
496
|
-
output = None,
|
|
497
|
-
**kwargs):
|
|
498
|
-
"""
|
|
499
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
500
|
-
"""
|
|
501
|
-
kwargs.pop("model_table", None)
|
|
502
|
-
kwargs.pop("doc_distribution_data", None)
|
|
503
|
-
kwargs.pop("output", None)
|
|
504
|
-
|
|
505
|
-
# Model Cataloging related attributes.
|
|
506
|
-
target_column = kwargs.pop("__target_column", None)
|
|
507
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
508
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
509
|
-
build_time = kwargs.pop("__build_time", None)
|
|
510
|
-
|
|
511
|
-
# Let's create an object of this class.
|
|
512
|
-
obj = cls(**kwargs)
|
|
513
|
-
obj.model_table = model_table
|
|
514
|
-
obj.doc_distribution_data = doc_distribution_data
|
|
515
|
-
obj.output = output
|
|
516
|
-
|
|
517
|
-
# Initialize the sqlmr_query class attribute.
|
|
518
|
-
obj.sqlmr_query = None
|
|
519
|
-
|
|
520
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
521
|
-
obj._sql_specific_attributes = None
|
|
522
|
-
obj._target_column = target_column
|
|
523
|
-
obj._prediction_type = prediction_type
|
|
524
|
-
obj._algorithm_name = algorithm_name
|
|
525
|
-
obj._build_time = build_time
|
|
526
|
-
|
|
527
|
-
# Update output table data frames.
|
|
528
|
-
obj._mlresults = []
|
|
529
|
-
obj.model_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.model_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.model_table))
|
|
530
|
-
obj.doc_distribution_data = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.doc_distribution_data), source_type="table", database_name=UtilFuncs._extract_db_name(obj.doc_distribution_data))
|
|
531
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
532
|
-
obj._mlresults.append(obj.model_table)
|
|
533
|
-
obj._mlresults.append(obj.doc_distribution_data)
|
|
534
|
-
obj._mlresults.append(obj.output)
|
|
535
|
-
return obj
|
|
536
|
-
|
|
537
|
-
def __repr__(self):
|
|
538
|
-
"""
|
|
539
|
-
Returns the string representation for a LDA class instance.
|
|
540
|
-
"""
|
|
541
|
-
repr_string="############ STDOUT Output ############"
|
|
542
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
543
|
-
repr_string="{}\n\n\n############ model_table Output ############".format(repr_string)
|
|
544
|
-
repr_string = "{}\n\n{}".format(repr_string,self.model_table)
|
|
545
|
-
repr_string="{}\n\n\n############ doc_distribution_data Output ############".format(repr_string)
|
|
546
|
-
repr_string = "{}\n\n{}".format(repr_string,self.doc_distribution_data)
|
|
547
|
-
return repr_string
|
|
548
|
-
|