teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,737 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Rohit Agrawal (rohit.agrawal@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.4
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class Closeness:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
vertices_data = None,
|
|
34
|
-
edges_data = None,
|
|
35
|
-
target_key = None,
|
|
36
|
-
sources_data = None,
|
|
37
|
-
targets_data = None,
|
|
38
|
-
directed = True,
|
|
39
|
-
edge_weight = None,
|
|
40
|
-
max_distance = 10,
|
|
41
|
-
group_size = None,
|
|
42
|
-
sample_rate = 1.0,
|
|
43
|
-
seed = None,
|
|
44
|
-
accumulate = None,
|
|
45
|
-
vertices_data_sequence_column = None,
|
|
46
|
-
edges_data_sequence_column = None,
|
|
47
|
-
sources_data_sequence_column = None,
|
|
48
|
-
targets_data_sequence_column = None,
|
|
49
|
-
vertices_data_partition_column = None,
|
|
50
|
-
edges_data_partition_column = None,
|
|
51
|
-
sources_data_partition_column = None,
|
|
52
|
-
targets_data_partition_column = None,
|
|
53
|
-
vertices_data_order_column = None,
|
|
54
|
-
edges_data_order_column = None,
|
|
55
|
-
sources_data_order_column = None,
|
|
56
|
-
targets_data_order_column = None):
|
|
57
|
-
"""
|
|
58
|
-
DESCRIPTION:
|
|
59
|
-
The Closeness function returns closeness and k-degree scores for each
|
|
60
|
-
specified source vertex in a graph. The closeness scores are the
|
|
61
|
-
inverse of the sum, the inverse of the average, and the sum of inverses
|
|
62
|
-
for the shortest distances to all reachable target vertices
|
|
63
|
-
(excluding the source vertex itself). The graph can be directed or
|
|
64
|
-
undirected, weighted or unweighted.
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
PARAMETERS:
|
|
68
|
-
vertices_data:
|
|
69
|
-
Required Argument.
|
|
70
|
-
Specifies the teradataml DataFrame where each row represents a
|
|
71
|
-
vertex of the graph.
|
|
72
|
-
|
|
73
|
-
vertices_data_partition_column:
|
|
74
|
-
Required Argument.
|
|
75
|
-
Specifies Partition By columns for vertices_data.
|
|
76
|
-
Values to this argument can be provided as a list, if multiple columns
|
|
77
|
-
are used for partition.
|
|
78
|
-
Types: str OR list of Strings (str)
|
|
79
|
-
|
|
80
|
-
vertices_data_order_column:
|
|
81
|
-
Optional Argument.
|
|
82
|
-
Specifies Order By columns for vertices_data.
|
|
83
|
-
Values to this argument can be provided as a list, if multiple columns
|
|
84
|
-
are used for ordering.
|
|
85
|
-
Types: str OR list of Strings (str)
|
|
86
|
-
|
|
87
|
-
edges_data:
|
|
88
|
-
Required Argument.
|
|
89
|
-
Specifies the teradataml DataFrame where each row represents an
|
|
90
|
-
edge of the graph.
|
|
91
|
-
|
|
92
|
-
edges_data_partition_column:
|
|
93
|
-
Required Argument.
|
|
94
|
-
Specifies Partition By columns for edges_data.
|
|
95
|
-
Values to this argument can be provided as a list, if multiple columns
|
|
96
|
-
are used for partition.
|
|
97
|
-
Types: str OR list of Strings (str)
|
|
98
|
-
|
|
99
|
-
edges_data_order_column:
|
|
100
|
-
Optional Argument.
|
|
101
|
-
Specifies Order By columns for edges_data.
|
|
102
|
-
Values to this argument can be provided as a list, if multiple columns
|
|
103
|
-
are used for ordering.
|
|
104
|
-
Types: str OR list of Strings (str)
|
|
105
|
-
|
|
106
|
-
target_key:
|
|
107
|
-
Required Argument.
|
|
108
|
-
Specifies the target key (the names of the edges_data teradataml DataFrame
|
|
109
|
-
columns that identify the target vertex). If you specify
|
|
110
|
-
targets_data, then the function uses only the vertices in
|
|
111
|
-
targets_data as targets (which must be a subset of those that this
|
|
112
|
-
argument specifies).
|
|
113
|
-
Types: str OR list of Strings (str)
|
|
114
|
-
|
|
115
|
-
sources_data:
|
|
116
|
-
Required for directed graph, optional for undirected graph.
|
|
117
|
-
Specifies the teradataml DataFrame which contains the vertices to use as sources.
|
|
118
|
-
|
|
119
|
-
sources_data_partition_column:
|
|
120
|
-
Required Argument when sources_data is used.
|
|
121
|
-
Specifies Partition By columns for sources_data.
|
|
122
|
-
Values to this argument can be provided as a list, if multiple columns
|
|
123
|
-
are used for partition.
|
|
124
|
-
Types: str OR list of Strings (str)
|
|
125
|
-
|
|
126
|
-
sources_data_order_column:
|
|
127
|
-
Optional Argument.
|
|
128
|
-
Specifies Order By columns for sources_data.
|
|
129
|
-
Values to this argument can be provided as a list, if multiple columns
|
|
130
|
-
are used for ordering.
|
|
131
|
-
Types: str OR list of Strings (str)
|
|
132
|
-
|
|
133
|
-
targets_data:
|
|
134
|
-
Required for directed graph, optional for undirected graph.
|
|
135
|
-
Specifies the teradataml DataFrame which contains the vertices to use as targets.
|
|
136
|
-
|
|
137
|
-
targets_data_partition_column:
|
|
138
|
-
Required Argument when targets_data is used.
|
|
139
|
-
Specifies Partition By columns for targets_data.
|
|
140
|
-
Values to this argument can be provided as a list, if multiple columns
|
|
141
|
-
are used for partition.
|
|
142
|
-
Types: str OR list of Strings (str)
|
|
143
|
-
|
|
144
|
-
targets_data_order_column:
|
|
145
|
-
Optional Argument.
|
|
146
|
-
Specifies Order By columns for targets_data.
|
|
147
|
-
Values to this argument can be provided as a list, if multiple columns
|
|
148
|
-
are used for ordering.
|
|
149
|
-
Types: str OR list of Strings (str)
|
|
150
|
-
|
|
151
|
-
directed:
|
|
152
|
-
Optional Argument.
|
|
153
|
-
Specifies whether the graph is directed.
|
|
154
|
-
Default Value: True
|
|
155
|
-
Types: bool
|
|
156
|
-
|
|
157
|
-
edge_weight:
|
|
158
|
-
Optional Argument.
|
|
159
|
-
Specifies the name of the edges_data teradataml DataFrame column that
|
|
160
|
-
contains edge weights. The weights are positive values.
|
|
161
|
-
By default, the weight of each edge is 1 (that is, the graph is unweighted).
|
|
162
|
-
Types: str
|
|
163
|
-
|
|
164
|
-
max_distance:
|
|
165
|
-
Optional Argument.
|
|
166
|
-
Specifies the maximum distance between the source and
|
|
167
|
-
target vertices. A negative max_distance specifies an infinite
|
|
168
|
-
distance. If vertices are separated by more than max_distance, the
|
|
169
|
-
function does not output them.
|
|
170
|
-
Default Value: 10
|
|
171
|
-
Types: int
|
|
172
|
-
|
|
173
|
-
group_size:
|
|
174
|
-
Optional Argument.
|
|
175
|
-
Specifies the number of source vertices that execute a single-node shortest
|
|
176
|
-
path (SNSP) algorithm in parallel. If group_size exceeds the number of
|
|
177
|
-
source vertices in each partition, s, then s is the group size.
|
|
178
|
-
By default, the function calculates the optimal group size based on
|
|
179
|
-
various cluster and query characteristics.
|
|
180
|
-
Running a group of vertices on each vWorker, in parallel, uses less
|
|
181
|
-
memory than running all vertices on each vWorker.
|
|
182
|
-
Types: int
|
|
183
|
-
|
|
184
|
-
sample_rate:
|
|
185
|
-
Optional Argument.
|
|
186
|
-
Specifies the sample rate (the percentage of source vertices to
|
|
187
|
-
sample), a numeric value in the range (0, 1].
|
|
188
|
-
Default Value: 1.0
|
|
189
|
-
Types: float
|
|
190
|
-
|
|
191
|
-
seed:
|
|
192
|
-
Optional Argument.
|
|
193
|
-
Specifies the random seed, used for deterministic results.
|
|
194
|
-
Types: int
|
|
195
|
-
|
|
196
|
-
accumulate:
|
|
197
|
-
Optional Argument.
|
|
198
|
-
Specifies the names of the vertices_data teradataml DataFrame columns to
|
|
199
|
-
copy to the output teradataml DataFrame.
|
|
200
|
-
Types: str OR list of Strings (str)
|
|
201
|
-
|
|
202
|
-
vertices_data_sequence_column:
|
|
203
|
-
Optional Argument.
|
|
204
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
205
|
-
the input argument "vertices_data". The argument is used to ensure
|
|
206
|
-
deterministic results for functions which produce results that vary
|
|
207
|
-
from run to run.
|
|
208
|
-
Types: str OR list of Strings (str)
|
|
209
|
-
|
|
210
|
-
edges_data_sequence_column:
|
|
211
|
-
Optional Argument.
|
|
212
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
213
|
-
the input argument "edges_data". The argument is used to ensure
|
|
214
|
-
deterministic results for functions which produce results that vary
|
|
215
|
-
from run to run.
|
|
216
|
-
Types: str OR list of Strings (str)
|
|
217
|
-
|
|
218
|
-
sources_data_sequence_column:
|
|
219
|
-
Optional Argument.
|
|
220
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
221
|
-
the input argument "sources_data". The argument is used to ensure
|
|
222
|
-
deterministic results for functions which produce results that vary
|
|
223
|
-
from run to run.
|
|
224
|
-
Types: str OR list of Strings (str)
|
|
225
|
-
|
|
226
|
-
targets_data_sequence_column:
|
|
227
|
-
Optional Argument.
|
|
228
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
229
|
-
the input argument "targets_data". The argument is used to ensure
|
|
230
|
-
deterministic results for functions which produce results that vary
|
|
231
|
-
from run to run.
|
|
232
|
-
Types: str OR list of Strings (str)
|
|
233
|
-
|
|
234
|
-
RETURNS:
|
|
235
|
-
Instance of Closeness.
|
|
236
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
237
|
-
references, such as ClosenessObj.<attribute_name>.
|
|
238
|
-
Output teradataml DataFrame attribute name is:
|
|
239
|
-
result
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
RAISES:
|
|
243
|
-
TeradataMlException
|
|
244
|
-
|
|
245
|
-
|
|
246
|
-
EXAMPLES:
|
|
247
|
-
# Load the data to run the example.
|
|
248
|
-
load_example_data("Closeness", ["callers", "calls"])
|
|
249
|
-
|
|
250
|
-
# Create teradataml DataFrame object.
|
|
251
|
-
callers = DataFrame.from_table("callers")
|
|
252
|
-
calls = DataFrame.from_table("calls")
|
|
253
|
-
sources = DataFrame.from_query("select * from callers where callerid <= 3")
|
|
254
|
-
target = DataFrame.from_query("select * from callers where callerid >3")
|
|
255
|
-
|
|
256
|
-
# Example 1 - Running Closeness function for unweighted and unbounded.
|
|
257
|
-
closeness_out1 = Closeness(vertices_data=callers,
|
|
258
|
-
vertices_data_partition_column='callerid',
|
|
259
|
-
edges_data=calls,
|
|
260
|
-
edges_data_partition_column='callerfrom',
|
|
261
|
-
sources_data=sources,
|
|
262
|
-
sources_data_partition_column='callerid',
|
|
263
|
-
targets_data=target,
|
|
264
|
-
targets_data_partition_column='callerid',
|
|
265
|
-
target_key='callerto',
|
|
266
|
-
accumulate=['callerid', 'callername'],
|
|
267
|
-
max_distance=-1,
|
|
268
|
-
edges_data_sequence_column='callerfrom',
|
|
269
|
-
vertices_data_sequence_column='callerid'
|
|
270
|
-
)
|
|
271
|
-
|
|
272
|
-
# Print the output DataFrames.
|
|
273
|
-
print(closeness_out1.result)
|
|
274
|
-
|
|
275
|
-
# Example 2 - Running Closeness function for weighted, bounded graph and with max_distance
|
|
276
|
-
# argument taking 12.
|
|
277
|
-
closeness_out2 = Closeness(vertices_data=callers,
|
|
278
|
-
vertices_data_partition_column='callerid',
|
|
279
|
-
edges_data=calls,
|
|
280
|
-
edges_data_partition_column='callerfrom',
|
|
281
|
-
sources_data=sources,
|
|
282
|
-
sources_data_partition_column='callerid',
|
|
283
|
-
targets_data=target,
|
|
284
|
-
targets_data_partition_column='callerid',
|
|
285
|
-
target_key='callerto',
|
|
286
|
-
edge_weight='calls',
|
|
287
|
-
accumulate=['callerid', 'callername'],
|
|
288
|
-
max_distance=12,
|
|
289
|
-
edges_data_sequence_column='callerfrom',
|
|
290
|
-
vertices_data_sequence_column='callerid'
|
|
291
|
-
)
|
|
292
|
-
|
|
293
|
-
# Print the output DataFrames.
|
|
294
|
-
print(closeness_out2.result)
|
|
295
|
-
|
|
296
|
-
# Example 3 - Running Closeness function for weighted, bounded graph and with max_distance
|
|
297
|
-
# argument taking 8.
|
|
298
|
-
closeness_out3 = Closeness(vertices_data=callers,
|
|
299
|
-
vertices_data_partition_column='callerid',
|
|
300
|
-
edges_data=calls,
|
|
301
|
-
edges_data_partition_column='callerfrom',
|
|
302
|
-
sources_data=sources,
|
|
303
|
-
sources_data_partition_column='callerid',
|
|
304
|
-
targets_data=target,
|
|
305
|
-
targets_data_partition_column='callerid',
|
|
306
|
-
target_key='callerto',
|
|
307
|
-
edge_weight='calls',
|
|
308
|
-
accumulate=['callerid', 'callername'],
|
|
309
|
-
max_distance=8,
|
|
310
|
-
edges_data_sequence_column='callerfrom',
|
|
311
|
-
vertices_data_sequence_column='callerid'
|
|
312
|
-
)
|
|
313
|
-
|
|
314
|
-
# Print the output DataFrames.
|
|
315
|
-
print(closeness_out3.result)
|
|
316
|
-
|
|
317
|
-
# Example 4 - Running Closeness function for unweighted and unbounded graph
|
|
318
|
-
# without sources_data and target_data.
|
|
319
|
-
closeness_out4 = Closeness(vertices_data=callers,
|
|
320
|
-
vertices_data_partition_column='callerid',
|
|
321
|
-
edges_data=calls,
|
|
322
|
-
edges_data_partition_column='callerfrom',
|
|
323
|
-
target_key='callerto',
|
|
324
|
-
accumulate=['callerid', 'callername'],
|
|
325
|
-
max_distance=-1,
|
|
326
|
-
edges_data_sequence_column='callerfrom',
|
|
327
|
-
vertices_data_sequence_column='callerid'
|
|
328
|
-
)
|
|
329
|
-
|
|
330
|
-
# Print the output DataFrames.
|
|
331
|
-
print(closeness_out4.result)
|
|
332
|
-
|
|
333
|
-
"""
|
|
334
|
-
|
|
335
|
-
# Start the timer to get the build time
|
|
336
|
-
_start_time = time.time()
|
|
337
|
-
|
|
338
|
-
self.vertices_data = vertices_data
|
|
339
|
-
self.edges_data = edges_data
|
|
340
|
-
self.target_key = target_key
|
|
341
|
-
self.sources_data = sources_data
|
|
342
|
-
self.targets_data = targets_data
|
|
343
|
-
self.directed = directed
|
|
344
|
-
self.edge_weight = edge_weight
|
|
345
|
-
self.max_distance = max_distance
|
|
346
|
-
self.group_size = group_size
|
|
347
|
-
self.sample_rate = sample_rate
|
|
348
|
-
self.seed = seed
|
|
349
|
-
self.accumulate = accumulate
|
|
350
|
-
self.vertices_data_sequence_column = vertices_data_sequence_column
|
|
351
|
-
self.edges_data_sequence_column = edges_data_sequence_column
|
|
352
|
-
self.sources_data_sequence_column = sources_data_sequence_column
|
|
353
|
-
self.targets_data_sequence_column = targets_data_sequence_column
|
|
354
|
-
self.vertices_data_partition_column = vertices_data_partition_column
|
|
355
|
-
self.edges_data_partition_column = edges_data_partition_column
|
|
356
|
-
self.sources_data_partition_column = sources_data_partition_column
|
|
357
|
-
self.targets_data_partition_column = targets_data_partition_column
|
|
358
|
-
self.vertices_data_order_column = vertices_data_order_column
|
|
359
|
-
self.edges_data_order_column = edges_data_order_column
|
|
360
|
-
self.sources_data_order_column = sources_data_order_column
|
|
361
|
-
self.targets_data_order_column = targets_data_order_column
|
|
362
|
-
|
|
363
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
364
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
365
|
-
self.__aed_utils = AedUtils()
|
|
366
|
-
|
|
367
|
-
# Create argument information matrix to do parameter checking
|
|
368
|
-
self.__arg_info_matrix = []
|
|
369
|
-
self.__arg_info_matrix.append(["vertices_data", self.vertices_data, False, (DataFrame)])
|
|
370
|
-
self.__arg_info_matrix.append(["vertices_data_partition_column", self.vertices_data_partition_column, False, (str,list)])
|
|
371
|
-
self.__arg_info_matrix.append(["vertices_data_order_column", self.vertices_data_order_column, True, (str,list)])
|
|
372
|
-
self.__arg_info_matrix.append(["edges_data", self.edges_data, False, (DataFrame)])
|
|
373
|
-
self.__arg_info_matrix.append(["edges_data_partition_column", self.edges_data_partition_column, False, (str,list)])
|
|
374
|
-
self.__arg_info_matrix.append(["edges_data_order_column", self.edges_data_order_column, True, (str,list)])
|
|
375
|
-
self.__arg_info_matrix.append(["target_key", self.target_key, False, (str,list)])
|
|
376
|
-
self.__arg_info_matrix.append(["sources_data", self.sources_data, True, (DataFrame)])
|
|
377
|
-
self.__arg_info_matrix.append(["sources_data_partition_column", self.sources_data_partition_column, self.sources_data is None, (str, list)])
|
|
378
|
-
self.__arg_info_matrix.append(["sources_data_order_column", self.sources_data_order_column, True, (str,list)])
|
|
379
|
-
self.__arg_info_matrix.append(["targets_data", self.targets_data, True, (DataFrame)])
|
|
380
|
-
self.__arg_info_matrix.append(["targets_data_partition_column", self.targets_data_partition_column, self.targets_data is None, (str, list)])
|
|
381
|
-
self.__arg_info_matrix.append(["targets_data_order_column", self.targets_data_order_column, True, (str,list)])
|
|
382
|
-
self.__arg_info_matrix.append(["directed", self.directed, True, (bool)])
|
|
383
|
-
self.__arg_info_matrix.append(["edge_weight", self.edge_weight, True, (str)])
|
|
384
|
-
self.__arg_info_matrix.append(["max_distance", self.max_distance, True, (int)])
|
|
385
|
-
self.__arg_info_matrix.append(["group_size", self.group_size, True, (int)])
|
|
386
|
-
self.__arg_info_matrix.append(["sample_rate", self.sample_rate, True, (float)])
|
|
387
|
-
self.__arg_info_matrix.append(["seed", self.seed, True, (int)])
|
|
388
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
|
|
389
|
-
self.__arg_info_matrix.append(["vertices_data_sequence_column", self.vertices_data_sequence_column, True, (str,list)])
|
|
390
|
-
self.__arg_info_matrix.append(["edges_data_sequence_column", self.edges_data_sequence_column, True, (str,list)])
|
|
391
|
-
self.__arg_info_matrix.append(["sources_data_sequence_column", self.sources_data_sequence_column, True, (str,list)])
|
|
392
|
-
self.__arg_info_matrix.append(["targets_data_sequence_column", self.targets_data_sequence_column, True, (str,list)])
|
|
393
|
-
|
|
394
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
395
|
-
# Perform the function validations
|
|
396
|
-
self.__validate()
|
|
397
|
-
# Generate the ML query
|
|
398
|
-
self.__form_tdml_query()
|
|
399
|
-
# Execute ML query
|
|
400
|
-
self.__execute()
|
|
401
|
-
# Get the prediction type
|
|
402
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
403
|
-
|
|
404
|
-
# End the timer to get the build time
|
|
405
|
-
_end_time = time.time()
|
|
406
|
-
|
|
407
|
-
# Calculate the build time
|
|
408
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
409
|
-
|
|
410
|
-
def __validate(self):
|
|
411
|
-
"""
|
|
412
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
413
|
-
arguments, input argument and table types. Also processes the
|
|
414
|
-
argument values.
|
|
415
|
-
"""
|
|
416
|
-
|
|
417
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
418
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
419
|
-
|
|
420
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
421
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
422
|
-
|
|
423
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
424
|
-
self.__awu._validate_input_table_datatype(self.vertices_data, "vertices_data", None)
|
|
425
|
-
self.__awu._validate_input_table_datatype(self.edges_data, "edges_data", None)
|
|
426
|
-
self.__awu._validate_input_table_datatype(self.sources_data, "sources_data", None)
|
|
427
|
-
self.__awu._validate_input_table_datatype(self.targets_data, "targets_data", None)
|
|
428
|
-
|
|
429
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
430
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
431
|
-
self.__awu._validate_input_columns_not_empty(self.target_key, "target_key")
|
|
432
|
-
self.__awu._validate_dataframe_has_argument_columns(self.target_key, "target_key", self.edges_data, "edges_data", False)
|
|
433
|
-
|
|
434
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
435
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.vertices_data, "vertices_data", False)
|
|
436
|
-
|
|
437
|
-
self.__awu._validate_input_columns_not_empty(self.edge_weight, "edge_weight")
|
|
438
|
-
self.__awu._validate_dataframe_has_argument_columns(self.edge_weight, "edge_weight", self.edges_data, "edges_data", False)
|
|
439
|
-
|
|
440
|
-
self.__awu._validate_input_columns_not_empty(self.vertices_data_sequence_column, "vertices_data_sequence_column")
|
|
441
|
-
self.__awu._validate_dataframe_has_argument_columns(self.vertices_data_sequence_column, "vertices_data_sequence_column", self.vertices_data, "vertices_data", False)
|
|
442
|
-
|
|
443
|
-
self.__awu._validate_input_columns_not_empty(self.edges_data_sequence_column, "edges_data_sequence_column")
|
|
444
|
-
self.__awu._validate_dataframe_has_argument_columns(self.edges_data_sequence_column, "edges_data_sequence_column", self.edges_data, "edges_data", False)
|
|
445
|
-
|
|
446
|
-
self.__awu._validate_input_columns_not_empty(self.sources_data_sequence_column, "sources_data_sequence_column")
|
|
447
|
-
self.__awu._validate_dataframe_has_argument_columns(self.sources_data_sequence_column, "sources_data_sequence_column", self.sources_data, "sources_data", False)
|
|
448
|
-
|
|
449
|
-
self.__awu._validate_input_columns_not_empty(self.targets_data_sequence_column, "targets_data_sequence_column")
|
|
450
|
-
self.__awu._validate_dataframe_has_argument_columns(self.targets_data_sequence_column, "targets_data_sequence_column", self.targets_data, "targets_data", False)
|
|
451
|
-
|
|
452
|
-
self.__awu._validate_input_columns_not_empty(self.vertices_data_partition_column, "vertices_data_partition_column")
|
|
453
|
-
self.__awu._validate_dataframe_has_argument_columns(self.vertices_data_partition_column, "vertices_data_partition_column", self.vertices_data, "vertices_data", True)
|
|
454
|
-
|
|
455
|
-
self.__awu._validate_input_columns_not_empty(self.edges_data_partition_column, "edges_data_partition_column")
|
|
456
|
-
self.__awu._validate_dataframe_has_argument_columns(self.edges_data_partition_column, "edges_data_partition_column", self.edges_data, "edges_data", True)
|
|
457
|
-
|
|
458
|
-
self.__awu._validate_input_columns_not_empty(self.sources_data_partition_column, "sources_data_partition_column")
|
|
459
|
-
self.__awu._validate_dataframe_has_argument_columns(self.sources_data_partition_column, "sources_data_partition_column", self.sources_data, "sources_data", True)
|
|
460
|
-
|
|
461
|
-
self.__awu._validate_input_columns_not_empty(self.targets_data_partition_column, "targets_data_partition_column")
|
|
462
|
-
self.__awu._validate_dataframe_has_argument_columns(self.targets_data_partition_column, "targets_data_partition_column", self.targets_data, "targets_data", True)
|
|
463
|
-
|
|
464
|
-
self.__awu._validate_input_columns_not_empty(self.vertices_data_order_column, "vertices_data_order_column")
|
|
465
|
-
self.__awu._validate_dataframe_has_argument_columns(self.vertices_data_order_column, "vertices_data_order_column", self.vertices_data, "vertices_data", False)
|
|
466
|
-
|
|
467
|
-
self.__awu._validate_input_columns_not_empty(self.edges_data_order_column, "edges_data_order_column")
|
|
468
|
-
self.__awu._validate_dataframe_has_argument_columns(self.edges_data_order_column, "edges_data_order_column", self.edges_data, "edges_data", False)
|
|
469
|
-
|
|
470
|
-
self.__awu._validate_input_columns_not_empty(self.sources_data_order_column, "sources_data_order_column")
|
|
471
|
-
self.__awu._validate_dataframe_has_argument_columns(self.sources_data_order_column, "sources_data_order_column", self.sources_data, "sources_data", False)
|
|
472
|
-
|
|
473
|
-
self.__awu._validate_input_columns_not_empty(self.targets_data_order_column, "targets_data_order_column")
|
|
474
|
-
self.__awu._validate_dataframe_has_argument_columns(self.targets_data_order_column, "targets_data_order_column", self.targets_data, "targets_data", False)
|
|
475
|
-
|
|
476
|
-
|
|
477
|
-
def __form_tdml_query(self):
|
|
478
|
-
"""
|
|
479
|
-
Function to generate the analytical function queries. The function defines
|
|
480
|
-
variables and list of arguments required to form the query.
|
|
481
|
-
"""
|
|
482
|
-
|
|
483
|
-
# Output table arguments list
|
|
484
|
-
self.__func_output_args_sql_names = []
|
|
485
|
-
self.__func_output_args = []
|
|
486
|
-
|
|
487
|
-
# Model Cataloging related attributes.
|
|
488
|
-
self._sql_specific_attributes = {}
|
|
489
|
-
self._sql_formula_attribute_mapper = {}
|
|
490
|
-
self._target_column = None
|
|
491
|
-
self._algorithm_name = None
|
|
492
|
-
|
|
493
|
-
# Generate lists for rest of the function arguments
|
|
494
|
-
self.__func_other_arg_sql_names = []
|
|
495
|
-
self.__func_other_args = []
|
|
496
|
-
self.__func_other_arg_json_datatypes = []
|
|
497
|
-
|
|
498
|
-
self.__func_other_arg_sql_names.append("TargetKey")
|
|
499
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.target_key, "\""), "'"))
|
|
500
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
501
|
-
|
|
502
|
-
if self.accumulate is not None:
|
|
503
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
504
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
505
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
506
|
-
|
|
507
|
-
if self.edge_weight is not None:
|
|
508
|
-
self.__func_other_arg_sql_names.append("EdgeWeight")
|
|
509
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.edge_weight, "\""), "'"))
|
|
510
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
511
|
-
|
|
512
|
-
if self.sample_rate is not None and self.sample_rate != 1.0:
|
|
513
|
-
self.__func_other_arg_sql_names.append("SampleRate")
|
|
514
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.sample_rate, "'"))
|
|
515
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
516
|
-
|
|
517
|
-
if self.seed is not None:
|
|
518
|
-
self.__func_other_arg_sql_names.append("seed")
|
|
519
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seed, "'"))
|
|
520
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
521
|
-
|
|
522
|
-
if self.max_distance is not None and self.max_distance != 10:
|
|
523
|
-
self.__func_other_arg_sql_names.append("MaxDistance")
|
|
524
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_distance, "'"))
|
|
525
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
526
|
-
|
|
527
|
-
if self.directed is not None and self.directed != True:
|
|
528
|
-
self.__func_other_arg_sql_names.append("Directed")
|
|
529
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.directed, "'"))
|
|
530
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
531
|
-
|
|
532
|
-
if self.group_size is not None:
|
|
533
|
-
self.__func_other_arg_sql_names.append("GroupSize")
|
|
534
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.group_size, "'"))
|
|
535
|
-
self.__func_other_arg_json_datatypes.append("LONG")
|
|
536
|
-
|
|
537
|
-
# Generate lists for rest of the function arguments
|
|
538
|
-
sequence_input_by_list = []
|
|
539
|
-
if self.vertices_data_sequence_column is not None:
|
|
540
|
-
sequence_input_by_list.append("vertices:" + UtilFuncs._teradata_collapse_arglist(self.vertices_data_sequence_column, ""))
|
|
541
|
-
|
|
542
|
-
if self.edges_data_sequence_column is not None:
|
|
543
|
-
sequence_input_by_list.append("edges:" + UtilFuncs._teradata_collapse_arglist(self.edges_data_sequence_column, ""))
|
|
544
|
-
|
|
545
|
-
if self.sources_data_sequence_column is not None:
|
|
546
|
-
sequence_input_by_list.append("sources:" + UtilFuncs._teradata_collapse_arglist(self.sources_data_sequence_column, ""))
|
|
547
|
-
|
|
548
|
-
if self.targets_data_sequence_column is not None:
|
|
549
|
-
sequence_input_by_list.append("targets:" + UtilFuncs._teradata_collapse_arglist(self.targets_data_sequence_column, ""))
|
|
550
|
-
|
|
551
|
-
if len(sequence_input_by_list) > 0:
|
|
552
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
553
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
554
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
555
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
556
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
557
|
-
|
|
558
|
-
|
|
559
|
-
# Declare empty lists to hold input table information.
|
|
560
|
-
self.__func_input_arg_sql_names = []
|
|
561
|
-
self.__func_input_table_view_query = []
|
|
562
|
-
self.__func_input_dataframe_type = []
|
|
563
|
-
self.__func_input_distribution = []
|
|
564
|
-
self.__func_input_partition_by_cols = []
|
|
565
|
-
self.__func_input_order_by_cols = []
|
|
566
|
-
|
|
567
|
-
# Process vertices_data
|
|
568
|
-
self.vertices_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.vertices_data_partition_column, "\"")
|
|
569
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.vertices_data, False)
|
|
570
|
-
self.__func_input_distribution.append("FACT")
|
|
571
|
-
self.__func_input_arg_sql_names.append("vertices")
|
|
572
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
573
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
574
|
-
self.__func_input_partition_by_cols.append(self.vertices_data_partition_column)
|
|
575
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.vertices_data_order_column, "\""))
|
|
576
|
-
|
|
577
|
-
# Process edges_data
|
|
578
|
-
self.edges_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.edges_data_partition_column, "\"")
|
|
579
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.edges_data, False)
|
|
580
|
-
self.__func_input_distribution.append("FACT")
|
|
581
|
-
self.__func_input_arg_sql_names.append("edges")
|
|
582
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
583
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
584
|
-
self.__func_input_partition_by_cols.append(self.edges_data_partition_column)
|
|
585
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.edges_data_order_column, "\""))
|
|
586
|
-
|
|
587
|
-
# Process sources_data
|
|
588
|
-
self.sources_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.sources_data_partition_column, "\"")
|
|
589
|
-
if self.sources_data is not None:
|
|
590
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.sources_data, False)
|
|
591
|
-
self.__func_input_distribution.append("FACT")
|
|
592
|
-
self.__func_input_arg_sql_names.append("sources")
|
|
593
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
594
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
595
|
-
self.__func_input_partition_by_cols.append(self.sources_data_partition_column)
|
|
596
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.sources_data_order_column, "\""))
|
|
597
|
-
|
|
598
|
-
# Process targets_data
|
|
599
|
-
self.targets_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.targets_data_partition_column, "\"")
|
|
600
|
-
if self.targets_data is not None:
|
|
601
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.targets_data, False)
|
|
602
|
-
self.__func_input_distribution.append("FACT")
|
|
603
|
-
self.__func_input_arg_sql_names.append("targets")
|
|
604
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
605
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
606
|
-
self.__func_input_partition_by_cols.append(self.targets_data_partition_column)
|
|
607
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.targets_data_order_column, "\""))
|
|
608
|
-
|
|
609
|
-
function_name = "Closeness"
|
|
610
|
-
# Create instance to generate SQLMR.
|
|
611
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
612
|
-
self.__func_input_arg_sql_names,
|
|
613
|
-
self.__func_input_table_view_query,
|
|
614
|
-
self.__func_input_dataframe_type,
|
|
615
|
-
self.__func_input_distribution,
|
|
616
|
-
self.__func_input_partition_by_cols,
|
|
617
|
-
self.__func_input_order_by_cols,
|
|
618
|
-
self.__func_other_arg_sql_names,
|
|
619
|
-
self.__func_other_args,
|
|
620
|
-
self.__func_other_arg_json_datatypes,
|
|
621
|
-
self.__func_output_args_sql_names,
|
|
622
|
-
self.__func_output_args,
|
|
623
|
-
engine="ENGINE_ML")
|
|
624
|
-
# Invoke call to SQL-MR generation.
|
|
625
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
626
|
-
|
|
627
|
-
# Print SQL-MR query if requested to do so.
|
|
628
|
-
if display.print_sqlmr_query:
|
|
629
|
-
print(self.sqlmr_query)
|
|
630
|
-
|
|
631
|
-
# Set the algorithm name for Model Cataloging.
|
|
632
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
633
|
-
|
|
634
|
-
def __execute(self):
|
|
635
|
-
"""
|
|
636
|
-
Function to execute SQL-MR queries.
|
|
637
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
638
|
-
"""
|
|
639
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
640
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
641
|
-
try:
|
|
642
|
-
# Generate the output.
|
|
643
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
644
|
-
except Exception as emsg:
|
|
645
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
646
|
-
|
|
647
|
-
# Update output table data frames.
|
|
648
|
-
self._mlresults = []
|
|
649
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
650
|
-
self._mlresults.append(self.result)
|
|
651
|
-
|
|
652
|
-
def show_query(self):
|
|
653
|
-
"""
|
|
654
|
-
Function to return the underlying SQL query.
|
|
655
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
656
|
-
"""
|
|
657
|
-
return self.sqlmr_query
|
|
658
|
-
|
|
659
|
-
def get_prediction_type(self):
|
|
660
|
-
"""
|
|
661
|
-
Function to return the Prediction type of the algorithm.
|
|
662
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
663
|
-
as saved in the Model Catalog.
|
|
664
|
-
"""
|
|
665
|
-
return self._prediction_type
|
|
666
|
-
|
|
667
|
-
def get_target_column(self):
|
|
668
|
-
"""
|
|
669
|
-
Function to return the Target Column of the algorithm.
|
|
670
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
671
|
-
as saved in the Model Catalog.
|
|
672
|
-
"""
|
|
673
|
-
return self._target_column
|
|
674
|
-
|
|
675
|
-
def get_build_time(self):
|
|
676
|
-
"""
|
|
677
|
-
Function to return the build time of the algorithm in seconds.
|
|
678
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
679
|
-
as saved in the Model Catalog.
|
|
680
|
-
"""
|
|
681
|
-
return self._build_time
|
|
682
|
-
|
|
683
|
-
def _get_algorithm_name(self):
|
|
684
|
-
"""
|
|
685
|
-
Function to return the name of the algorithm.
|
|
686
|
-
"""
|
|
687
|
-
return self._algorithm_name
|
|
688
|
-
|
|
689
|
-
def _get_sql_specific_attributes(self):
|
|
690
|
-
"""
|
|
691
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
692
|
-
"""
|
|
693
|
-
return self._sql_specific_attributes
|
|
694
|
-
|
|
695
|
-
@classmethod
|
|
696
|
-
def _from_model_catalog(cls,
|
|
697
|
-
result = None,
|
|
698
|
-
**kwargs):
|
|
699
|
-
"""
|
|
700
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
701
|
-
"""
|
|
702
|
-
kwargs.pop("result", None)
|
|
703
|
-
|
|
704
|
-
# Model Cataloging related attributes.
|
|
705
|
-
target_column = kwargs.pop("__target_column", None)
|
|
706
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
707
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
708
|
-
build_time = kwargs.pop("__build_time", None)
|
|
709
|
-
|
|
710
|
-
# Let's create an object of this class.
|
|
711
|
-
obj = cls(**kwargs)
|
|
712
|
-
obj.result = result
|
|
713
|
-
|
|
714
|
-
# Initialize the sqlmr_query class attribute.
|
|
715
|
-
obj.sqlmr_query = None
|
|
716
|
-
|
|
717
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
718
|
-
obj._sql_specific_attributes = None
|
|
719
|
-
obj._target_column = target_column
|
|
720
|
-
obj._prediction_type = prediction_type
|
|
721
|
-
obj._algorithm_name = algorithm_name
|
|
722
|
-
obj._build_time = build_time
|
|
723
|
-
|
|
724
|
-
# Update output table data frames.
|
|
725
|
-
obj._mlresults = []
|
|
726
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
727
|
-
obj._mlresults.append(obj.result)
|
|
728
|
-
return obj
|
|
729
|
-
|
|
730
|
-
def __repr__(self):
|
|
731
|
-
"""
|
|
732
|
-
Returns the string representation for a Closeness class instance.
|
|
733
|
-
"""
|
|
734
|
-
repr_string="############ STDOUT Output ############"
|
|
735
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
736
|
-
return repr_string
|
|
737
|
-
|