teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,737 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Rohit Agrawal (rohit.agrawal@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.4
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class Closeness:
31
-
32
- def __init__(self,
33
- vertices_data = None,
34
- edges_data = None,
35
- target_key = None,
36
- sources_data = None,
37
- targets_data = None,
38
- directed = True,
39
- edge_weight = None,
40
- max_distance = 10,
41
- group_size = None,
42
- sample_rate = 1.0,
43
- seed = None,
44
- accumulate = None,
45
- vertices_data_sequence_column = None,
46
- edges_data_sequence_column = None,
47
- sources_data_sequence_column = None,
48
- targets_data_sequence_column = None,
49
- vertices_data_partition_column = None,
50
- edges_data_partition_column = None,
51
- sources_data_partition_column = None,
52
- targets_data_partition_column = None,
53
- vertices_data_order_column = None,
54
- edges_data_order_column = None,
55
- sources_data_order_column = None,
56
- targets_data_order_column = None):
57
- """
58
- DESCRIPTION:
59
- The Closeness function returns closeness and k-degree scores for each
60
- specified source vertex in a graph. The closeness scores are the
61
- inverse of the sum, the inverse of the average, and the sum of inverses
62
- for the shortest distances to all reachable target vertices
63
- (excluding the source vertex itself). The graph can be directed or
64
- undirected, weighted or unweighted.
65
-
66
-
67
- PARAMETERS:
68
- vertices_data:
69
- Required Argument.
70
- Specifies the teradataml DataFrame where each row represents a
71
- vertex of the graph.
72
-
73
- vertices_data_partition_column:
74
- Required Argument.
75
- Specifies Partition By columns for vertices_data.
76
- Values to this argument can be provided as a list, if multiple columns
77
- are used for partition.
78
- Types: str OR list of Strings (str)
79
-
80
- vertices_data_order_column:
81
- Optional Argument.
82
- Specifies Order By columns for vertices_data.
83
- Values to this argument can be provided as a list, if multiple columns
84
- are used for ordering.
85
- Types: str OR list of Strings (str)
86
-
87
- edges_data:
88
- Required Argument.
89
- Specifies the teradataml DataFrame where each row represents an
90
- edge of the graph.
91
-
92
- edges_data_partition_column:
93
- Required Argument.
94
- Specifies Partition By columns for edges_data.
95
- Values to this argument can be provided as a list, if multiple columns
96
- are used for partition.
97
- Types: str OR list of Strings (str)
98
-
99
- edges_data_order_column:
100
- Optional Argument.
101
- Specifies Order By columns for edges_data.
102
- Values to this argument can be provided as a list, if multiple columns
103
- are used for ordering.
104
- Types: str OR list of Strings (str)
105
-
106
- target_key:
107
- Required Argument.
108
- Specifies the target key (the names of the edges_data teradataml DataFrame
109
- columns that identify the target vertex). If you specify
110
- targets_data, then the function uses only the vertices in
111
- targets_data as targets (which must be a subset of those that this
112
- argument specifies).
113
- Types: str OR list of Strings (str)
114
-
115
- sources_data:
116
- Required for directed graph, optional for undirected graph.
117
- Specifies the teradataml DataFrame which contains the vertices to use as sources.
118
-
119
- sources_data_partition_column:
120
- Required Argument when sources_data is used.
121
- Specifies Partition By columns for sources_data.
122
- Values to this argument can be provided as a list, if multiple columns
123
- are used for partition.
124
- Types: str OR list of Strings (str)
125
-
126
- sources_data_order_column:
127
- Optional Argument.
128
- Specifies Order By columns for sources_data.
129
- Values to this argument can be provided as a list, if multiple columns
130
- are used for ordering.
131
- Types: str OR list of Strings (str)
132
-
133
- targets_data:
134
- Required for directed graph, optional for undirected graph.
135
- Specifies the teradataml DataFrame which contains the vertices to use as targets.
136
-
137
- targets_data_partition_column:
138
- Required Argument when targets_data is used.
139
- Specifies Partition By columns for targets_data.
140
- Values to this argument can be provided as a list, if multiple columns
141
- are used for partition.
142
- Types: str OR list of Strings (str)
143
-
144
- targets_data_order_column:
145
- Optional Argument.
146
- Specifies Order By columns for targets_data.
147
- Values to this argument can be provided as a list, if multiple columns
148
- are used for ordering.
149
- Types: str OR list of Strings (str)
150
-
151
- directed:
152
- Optional Argument.
153
- Specifies whether the graph is directed.
154
- Default Value: True
155
- Types: bool
156
-
157
- edge_weight:
158
- Optional Argument.
159
- Specifies the name of the edges_data teradataml DataFrame column that
160
- contains edge weights. The weights are positive values.
161
- By default, the weight of each edge is 1 (that is, the graph is unweighted).
162
- Types: str
163
-
164
- max_distance:
165
- Optional Argument.
166
- Specifies the maximum distance between the source and
167
- target vertices. A negative max_distance specifies an infinite
168
- distance. If vertices are separated by more than max_distance, the
169
- function does not output them.
170
- Default Value: 10
171
- Types: int
172
-
173
- group_size:
174
- Optional Argument.
175
- Specifies the number of source vertices that execute a single-node shortest
176
- path (SNSP) algorithm in parallel. If group_size exceeds the number of
177
- source vertices in each partition, s, then s is the group size.
178
- By default, the function calculates the optimal group size based on
179
- various cluster and query characteristics.
180
- Running a group of vertices on each vWorker, in parallel, uses less
181
- memory than running all vertices on each vWorker.
182
- Types: int
183
-
184
- sample_rate:
185
- Optional Argument.
186
- Specifies the sample rate (the percentage of source vertices to
187
- sample), a numeric value in the range (0, 1].
188
- Default Value: 1.0
189
- Types: float
190
-
191
- seed:
192
- Optional Argument.
193
- Specifies the random seed, used for deterministic results.
194
- Types: int
195
-
196
- accumulate:
197
- Optional Argument.
198
- Specifies the names of the vertices_data teradataml DataFrame columns to
199
- copy to the output teradataml DataFrame.
200
- Types: str OR list of Strings (str)
201
-
202
- vertices_data_sequence_column:
203
- Optional Argument.
204
- Specifies the list of column(s) that uniquely identifies each row of
205
- the input argument "vertices_data". The argument is used to ensure
206
- deterministic results for functions which produce results that vary
207
- from run to run.
208
- Types: str OR list of Strings (str)
209
-
210
- edges_data_sequence_column:
211
- Optional Argument.
212
- Specifies the list of column(s) that uniquely identifies each row of
213
- the input argument "edges_data". The argument is used to ensure
214
- deterministic results for functions which produce results that vary
215
- from run to run.
216
- Types: str OR list of Strings (str)
217
-
218
- sources_data_sequence_column:
219
- Optional Argument.
220
- Specifies the list of column(s) that uniquely identifies each row of
221
- the input argument "sources_data". The argument is used to ensure
222
- deterministic results for functions which produce results that vary
223
- from run to run.
224
- Types: str OR list of Strings (str)
225
-
226
- targets_data_sequence_column:
227
- Optional Argument.
228
- Specifies the list of column(s) that uniquely identifies each row of
229
- the input argument "targets_data". The argument is used to ensure
230
- deterministic results for functions which produce results that vary
231
- from run to run.
232
- Types: str OR list of Strings (str)
233
-
234
- RETURNS:
235
- Instance of Closeness.
236
- Output teradataml DataFrames can be accessed using attribute
237
- references, such as ClosenessObj.<attribute_name>.
238
- Output teradataml DataFrame attribute name is:
239
- result
240
-
241
-
242
- RAISES:
243
- TeradataMlException
244
-
245
-
246
- EXAMPLES:
247
- # Load the data to run the example.
248
- load_example_data("Closeness", ["callers", "calls"])
249
-
250
- # Create teradataml DataFrame object.
251
- callers = DataFrame.from_table("callers")
252
- calls = DataFrame.from_table("calls")
253
- sources = DataFrame.from_query("select * from callers where callerid <= 3")
254
- target = DataFrame.from_query("select * from callers where callerid >3")
255
-
256
- # Example 1 - Running Closeness function for unweighted and unbounded.
257
- closeness_out1 = Closeness(vertices_data=callers,
258
- vertices_data_partition_column='callerid',
259
- edges_data=calls,
260
- edges_data_partition_column='callerfrom',
261
- sources_data=sources,
262
- sources_data_partition_column='callerid',
263
- targets_data=target,
264
- targets_data_partition_column='callerid',
265
- target_key='callerto',
266
- accumulate=['callerid', 'callername'],
267
- max_distance=-1,
268
- edges_data_sequence_column='callerfrom',
269
- vertices_data_sequence_column='callerid'
270
- )
271
-
272
- # Print the output DataFrames.
273
- print(closeness_out1.result)
274
-
275
- # Example 2 - Running Closeness function for weighted, bounded graph and with max_distance
276
- # argument taking 12.
277
- closeness_out2 = Closeness(vertices_data=callers,
278
- vertices_data_partition_column='callerid',
279
- edges_data=calls,
280
- edges_data_partition_column='callerfrom',
281
- sources_data=sources,
282
- sources_data_partition_column='callerid',
283
- targets_data=target,
284
- targets_data_partition_column='callerid',
285
- target_key='callerto',
286
- edge_weight='calls',
287
- accumulate=['callerid', 'callername'],
288
- max_distance=12,
289
- edges_data_sequence_column='callerfrom',
290
- vertices_data_sequence_column='callerid'
291
- )
292
-
293
- # Print the output DataFrames.
294
- print(closeness_out2.result)
295
-
296
- # Example 3 - Running Closeness function for weighted, bounded graph and with max_distance
297
- # argument taking 8.
298
- closeness_out3 = Closeness(vertices_data=callers,
299
- vertices_data_partition_column='callerid',
300
- edges_data=calls,
301
- edges_data_partition_column='callerfrom',
302
- sources_data=sources,
303
- sources_data_partition_column='callerid',
304
- targets_data=target,
305
- targets_data_partition_column='callerid',
306
- target_key='callerto',
307
- edge_weight='calls',
308
- accumulate=['callerid', 'callername'],
309
- max_distance=8,
310
- edges_data_sequence_column='callerfrom',
311
- vertices_data_sequence_column='callerid'
312
- )
313
-
314
- # Print the output DataFrames.
315
- print(closeness_out3.result)
316
-
317
- # Example 4 - Running Closeness function for unweighted and unbounded graph
318
- # without sources_data and target_data.
319
- closeness_out4 = Closeness(vertices_data=callers,
320
- vertices_data_partition_column='callerid',
321
- edges_data=calls,
322
- edges_data_partition_column='callerfrom',
323
- target_key='callerto',
324
- accumulate=['callerid', 'callername'],
325
- max_distance=-1,
326
- edges_data_sequence_column='callerfrom',
327
- vertices_data_sequence_column='callerid'
328
- )
329
-
330
- # Print the output DataFrames.
331
- print(closeness_out4.result)
332
-
333
- """
334
-
335
- # Start the timer to get the build time
336
- _start_time = time.time()
337
-
338
- self.vertices_data = vertices_data
339
- self.edges_data = edges_data
340
- self.target_key = target_key
341
- self.sources_data = sources_data
342
- self.targets_data = targets_data
343
- self.directed = directed
344
- self.edge_weight = edge_weight
345
- self.max_distance = max_distance
346
- self.group_size = group_size
347
- self.sample_rate = sample_rate
348
- self.seed = seed
349
- self.accumulate = accumulate
350
- self.vertices_data_sequence_column = vertices_data_sequence_column
351
- self.edges_data_sequence_column = edges_data_sequence_column
352
- self.sources_data_sequence_column = sources_data_sequence_column
353
- self.targets_data_sequence_column = targets_data_sequence_column
354
- self.vertices_data_partition_column = vertices_data_partition_column
355
- self.edges_data_partition_column = edges_data_partition_column
356
- self.sources_data_partition_column = sources_data_partition_column
357
- self.targets_data_partition_column = targets_data_partition_column
358
- self.vertices_data_order_column = vertices_data_order_column
359
- self.edges_data_order_column = edges_data_order_column
360
- self.sources_data_order_column = sources_data_order_column
361
- self.targets_data_order_column = targets_data_order_column
362
-
363
- # Create TeradataPyWrapperUtils instance which contains validation functions.
364
- self.__awu = AnalyticsWrapperUtils()
365
- self.__aed_utils = AedUtils()
366
-
367
- # Create argument information matrix to do parameter checking
368
- self.__arg_info_matrix = []
369
- self.__arg_info_matrix.append(["vertices_data", self.vertices_data, False, (DataFrame)])
370
- self.__arg_info_matrix.append(["vertices_data_partition_column", self.vertices_data_partition_column, False, (str,list)])
371
- self.__arg_info_matrix.append(["vertices_data_order_column", self.vertices_data_order_column, True, (str,list)])
372
- self.__arg_info_matrix.append(["edges_data", self.edges_data, False, (DataFrame)])
373
- self.__arg_info_matrix.append(["edges_data_partition_column", self.edges_data_partition_column, False, (str,list)])
374
- self.__arg_info_matrix.append(["edges_data_order_column", self.edges_data_order_column, True, (str,list)])
375
- self.__arg_info_matrix.append(["target_key", self.target_key, False, (str,list)])
376
- self.__arg_info_matrix.append(["sources_data", self.sources_data, True, (DataFrame)])
377
- self.__arg_info_matrix.append(["sources_data_partition_column", self.sources_data_partition_column, self.sources_data is None, (str, list)])
378
- self.__arg_info_matrix.append(["sources_data_order_column", self.sources_data_order_column, True, (str,list)])
379
- self.__arg_info_matrix.append(["targets_data", self.targets_data, True, (DataFrame)])
380
- self.__arg_info_matrix.append(["targets_data_partition_column", self.targets_data_partition_column, self.targets_data is None, (str, list)])
381
- self.__arg_info_matrix.append(["targets_data_order_column", self.targets_data_order_column, True, (str,list)])
382
- self.__arg_info_matrix.append(["directed", self.directed, True, (bool)])
383
- self.__arg_info_matrix.append(["edge_weight", self.edge_weight, True, (str)])
384
- self.__arg_info_matrix.append(["max_distance", self.max_distance, True, (int)])
385
- self.__arg_info_matrix.append(["group_size", self.group_size, True, (int)])
386
- self.__arg_info_matrix.append(["sample_rate", self.sample_rate, True, (float)])
387
- self.__arg_info_matrix.append(["seed", self.seed, True, (int)])
388
- self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
389
- self.__arg_info_matrix.append(["vertices_data_sequence_column", self.vertices_data_sequence_column, True, (str,list)])
390
- self.__arg_info_matrix.append(["edges_data_sequence_column", self.edges_data_sequence_column, True, (str,list)])
391
- self.__arg_info_matrix.append(["sources_data_sequence_column", self.sources_data_sequence_column, True, (str,list)])
392
- self.__arg_info_matrix.append(["targets_data_sequence_column", self.targets_data_sequence_column, True, (str,list)])
393
-
394
- if inspect.stack()[1][3] != '_from_model_catalog':
395
- # Perform the function validations
396
- self.__validate()
397
- # Generate the ML query
398
- self.__form_tdml_query()
399
- # Execute ML query
400
- self.__execute()
401
- # Get the prediction type
402
- self._prediction_type = self.__awu._get_function_prediction_type(self)
403
-
404
- # End the timer to get the build time
405
- _end_time = time.time()
406
-
407
- # Calculate the build time
408
- self._build_time = (int)(_end_time - _start_time)
409
-
410
- def __validate(self):
411
- """
412
- Function to validate sqlmr function arguments, which verifies missing
413
- arguments, input argument and table types. Also processes the
414
- argument values.
415
- """
416
-
417
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
418
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
419
-
420
- # Make sure that a non-NULL value has been supplied correct type of argument
421
- self.__awu._validate_argument_types(self.__arg_info_matrix)
422
-
423
- # Check to make sure input table types are strings or data frame objects or of valid type.
424
- self.__awu._validate_input_table_datatype(self.vertices_data, "vertices_data", None)
425
- self.__awu._validate_input_table_datatype(self.edges_data, "edges_data", None)
426
- self.__awu._validate_input_table_datatype(self.sources_data, "sources_data", None)
427
- self.__awu._validate_input_table_datatype(self.targets_data, "targets_data", None)
428
-
429
- # Check whether the input columns passed to the argument are not empty.
430
- # Also check whether the input columns passed to the argument valid or not.
431
- self.__awu._validate_input_columns_not_empty(self.target_key, "target_key")
432
- self.__awu._validate_dataframe_has_argument_columns(self.target_key, "target_key", self.edges_data, "edges_data", False)
433
-
434
- self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
435
- self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.vertices_data, "vertices_data", False)
436
-
437
- self.__awu._validate_input_columns_not_empty(self.edge_weight, "edge_weight")
438
- self.__awu._validate_dataframe_has_argument_columns(self.edge_weight, "edge_weight", self.edges_data, "edges_data", False)
439
-
440
- self.__awu._validate_input_columns_not_empty(self.vertices_data_sequence_column, "vertices_data_sequence_column")
441
- self.__awu._validate_dataframe_has_argument_columns(self.vertices_data_sequence_column, "vertices_data_sequence_column", self.vertices_data, "vertices_data", False)
442
-
443
- self.__awu._validate_input_columns_not_empty(self.edges_data_sequence_column, "edges_data_sequence_column")
444
- self.__awu._validate_dataframe_has_argument_columns(self.edges_data_sequence_column, "edges_data_sequence_column", self.edges_data, "edges_data", False)
445
-
446
- self.__awu._validate_input_columns_not_empty(self.sources_data_sequence_column, "sources_data_sequence_column")
447
- self.__awu._validate_dataframe_has_argument_columns(self.sources_data_sequence_column, "sources_data_sequence_column", self.sources_data, "sources_data", False)
448
-
449
- self.__awu._validate_input_columns_not_empty(self.targets_data_sequence_column, "targets_data_sequence_column")
450
- self.__awu._validate_dataframe_has_argument_columns(self.targets_data_sequence_column, "targets_data_sequence_column", self.targets_data, "targets_data", False)
451
-
452
- self.__awu._validate_input_columns_not_empty(self.vertices_data_partition_column, "vertices_data_partition_column")
453
- self.__awu._validate_dataframe_has_argument_columns(self.vertices_data_partition_column, "vertices_data_partition_column", self.vertices_data, "vertices_data", True)
454
-
455
- self.__awu._validate_input_columns_not_empty(self.edges_data_partition_column, "edges_data_partition_column")
456
- self.__awu._validate_dataframe_has_argument_columns(self.edges_data_partition_column, "edges_data_partition_column", self.edges_data, "edges_data", True)
457
-
458
- self.__awu._validate_input_columns_not_empty(self.sources_data_partition_column, "sources_data_partition_column")
459
- self.__awu._validate_dataframe_has_argument_columns(self.sources_data_partition_column, "sources_data_partition_column", self.sources_data, "sources_data", True)
460
-
461
- self.__awu._validate_input_columns_not_empty(self.targets_data_partition_column, "targets_data_partition_column")
462
- self.__awu._validate_dataframe_has_argument_columns(self.targets_data_partition_column, "targets_data_partition_column", self.targets_data, "targets_data", True)
463
-
464
- self.__awu._validate_input_columns_not_empty(self.vertices_data_order_column, "vertices_data_order_column")
465
- self.__awu._validate_dataframe_has_argument_columns(self.vertices_data_order_column, "vertices_data_order_column", self.vertices_data, "vertices_data", False)
466
-
467
- self.__awu._validate_input_columns_not_empty(self.edges_data_order_column, "edges_data_order_column")
468
- self.__awu._validate_dataframe_has_argument_columns(self.edges_data_order_column, "edges_data_order_column", self.edges_data, "edges_data", False)
469
-
470
- self.__awu._validate_input_columns_not_empty(self.sources_data_order_column, "sources_data_order_column")
471
- self.__awu._validate_dataframe_has_argument_columns(self.sources_data_order_column, "sources_data_order_column", self.sources_data, "sources_data", False)
472
-
473
- self.__awu._validate_input_columns_not_empty(self.targets_data_order_column, "targets_data_order_column")
474
- self.__awu._validate_dataframe_has_argument_columns(self.targets_data_order_column, "targets_data_order_column", self.targets_data, "targets_data", False)
475
-
476
-
477
- def __form_tdml_query(self):
478
- """
479
- Function to generate the analytical function queries. The function defines
480
- variables and list of arguments required to form the query.
481
- """
482
-
483
- # Output table arguments list
484
- self.__func_output_args_sql_names = []
485
- self.__func_output_args = []
486
-
487
- # Model Cataloging related attributes.
488
- self._sql_specific_attributes = {}
489
- self._sql_formula_attribute_mapper = {}
490
- self._target_column = None
491
- self._algorithm_name = None
492
-
493
- # Generate lists for rest of the function arguments
494
- self.__func_other_arg_sql_names = []
495
- self.__func_other_args = []
496
- self.__func_other_arg_json_datatypes = []
497
-
498
- self.__func_other_arg_sql_names.append("TargetKey")
499
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.target_key, "\""), "'"))
500
- self.__func_other_arg_json_datatypes.append("COLUMNS")
501
-
502
- if self.accumulate is not None:
503
- self.__func_other_arg_sql_names.append("Accumulate")
504
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
505
- self.__func_other_arg_json_datatypes.append("COLUMNS")
506
-
507
- if self.edge_weight is not None:
508
- self.__func_other_arg_sql_names.append("EdgeWeight")
509
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.edge_weight, "\""), "'"))
510
- self.__func_other_arg_json_datatypes.append("COLUMNS")
511
-
512
- if self.sample_rate is not None and self.sample_rate != 1.0:
513
- self.__func_other_arg_sql_names.append("SampleRate")
514
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.sample_rate, "'"))
515
- self.__func_other_arg_json_datatypes.append("DOUBLE")
516
-
517
- if self.seed is not None:
518
- self.__func_other_arg_sql_names.append("seed")
519
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seed, "'"))
520
- self.__func_other_arg_json_datatypes.append("INTEGER")
521
-
522
- if self.max_distance is not None and self.max_distance != 10:
523
- self.__func_other_arg_sql_names.append("MaxDistance")
524
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_distance, "'"))
525
- self.__func_other_arg_json_datatypes.append("INTEGER")
526
-
527
- if self.directed is not None and self.directed != True:
528
- self.__func_other_arg_sql_names.append("Directed")
529
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.directed, "'"))
530
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
531
-
532
- if self.group_size is not None:
533
- self.__func_other_arg_sql_names.append("GroupSize")
534
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.group_size, "'"))
535
- self.__func_other_arg_json_datatypes.append("LONG")
536
-
537
- # Generate lists for rest of the function arguments
538
- sequence_input_by_list = []
539
- if self.vertices_data_sequence_column is not None:
540
- sequence_input_by_list.append("vertices:" + UtilFuncs._teradata_collapse_arglist(self.vertices_data_sequence_column, ""))
541
-
542
- if self.edges_data_sequence_column is not None:
543
- sequence_input_by_list.append("edges:" + UtilFuncs._teradata_collapse_arglist(self.edges_data_sequence_column, ""))
544
-
545
- if self.sources_data_sequence_column is not None:
546
- sequence_input_by_list.append("sources:" + UtilFuncs._teradata_collapse_arglist(self.sources_data_sequence_column, ""))
547
-
548
- if self.targets_data_sequence_column is not None:
549
- sequence_input_by_list.append("targets:" + UtilFuncs._teradata_collapse_arglist(self.targets_data_sequence_column, ""))
550
-
551
- if len(sequence_input_by_list) > 0:
552
- self.__func_other_arg_sql_names.append("SequenceInputBy")
553
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
554
- self.__func_other_args.append(sequence_input_by_arg_value)
555
- self.__func_other_arg_json_datatypes.append("STRING")
556
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
557
-
558
-
559
- # Declare empty lists to hold input table information.
560
- self.__func_input_arg_sql_names = []
561
- self.__func_input_table_view_query = []
562
- self.__func_input_dataframe_type = []
563
- self.__func_input_distribution = []
564
- self.__func_input_partition_by_cols = []
565
- self.__func_input_order_by_cols = []
566
-
567
- # Process vertices_data
568
- self.vertices_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.vertices_data_partition_column, "\"")
569
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.vertices_data, False)
570
- self.__func_input_distribution.append("FACT")
571
- self.__func_input_arg_sql_names.append("vertices")
572
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
573
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
574
- self.__func_input_partition_by_cols.append(self.vertices_data_partition_column)
575
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.vertices_data_order_column, "\""))
576
-
577
- # Process edges_data
578
- self.edges_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.edges_data_partition_column, "\"")
579
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.edges_data, False)
580
- self.__func_input_distribution.append("FACT")
581
- self.__func_input_arg_sql_names.append("edges")
582
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
583
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
584
- self.__func_input_partition_by_cols.append(self.edges_data_partition_column)
585
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.edges_data_order_column, "\""))
586
-
587
- # Process sources_data
588
- self.sources_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.sources_data_partition_column, "\"")
589
- if self.sources_data is not None:
590
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.sources_data, False)
591
- self.__func_input_distribution.append("FACT")
592
- self.__func_input_arg_sql_names.append("sources")
593
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
594
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
595
- self.__func_input_partition_by_cols.append(self.sources_data_partition_column)
596
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.sources_data_order_column, "\""))
597
-
598
- # Process targets_data
599
- self.targets_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.targets_data_partition_column, "\"")
600
- if self.targets_data is not None:
601
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.targets_data, False)
602
- self.__func_input_distribution.append("FACT")
603
- self.__func_input_arg_sql_names.append("targets")
604
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
605
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
606
- self.__func_input_partition_by_cols.append(self.targets_data_partition_column)
607
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.targets_data_order_column, "\""))
608
-
609
- function_name = "Closeness"
610
- # Create instance to generate SQLMR.
611
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
612
- self.__func_input_arg_sql_names,
613
- self.__func_input_table_view_query,
614
- self.__func_input_dataframe_type,
615
- self.__func_input_distribution,
616
- self.__func_input_partition_by_cols,
617
- self.__func_input_order_by_cols,
618
- self.__func_other_arg_sql_names,
619
- self.__func_other_args,
620
- self.__func_other_arg_json_datatypes,
621
- self.__func_output_args_sql_names,
622
- self.__func_output_args,
623
- engine="ENGINE_ML")
624
- # Invoke call to SQL-MR generation.
625
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
626
-
627
- # Print SQL-MR query if requested to do so.
628
- if display.print_sqlmr_query:
629
- print(self.sqlmr_query)
630
-
631
- # Set the algorithm name for Model Cataloging.
632
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
633
-
634
- def __execute(self):
635
- """
636
- Function to execute SQL-MR queries.
637
- Create DataFrames for the required SQL-MR outputs.
638
- """
639
- # Generate STDOUT table name and add it to the output table list.
640
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
641
- try:
642
- # Generate the output.
643
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
644
- except Exception as emsg:
645
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
646
-
647
- # Update output table data frames.
648
- self._mlresults = []
649
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
650
- self._mlresults.append(self.result)
651
-
652
- def show_query(self):
653
- """
654
- Function to return the underlying SQL query.
655
- When model object is created using retrieve_model(), then None is returned.
656
- """
657
- return self.sqlmr_query
658
-
659
- def get_prediction_type(self):
660
- """
661
- Function to return the Prediction type of the algorithm.
662
- When model object is created using retrieve_model(), then the value returned is
663
- as saved in the Model Catalog.
664
- """
665
- return self._prediction_type
666
-
667
- def get_target_column(self):
668
- """
669
- Function to return the Target Column of the algorithm.
670
- When model object is created using retrieve_model(), then the value returned is
671
- as saved in the Model Catalog.
672
- """
673
- return self._target_column
674
-
675
- def get_build_time(self):
676
- """
677
- Function to return the build time of the algorithm in seconds.
678
- When model object is created using retrieve_model(), then the value returned is
679
- as saved in the Model Catalog.
680
- """
681
- return self._build_time
682
-
683
- def _get_algorithm_name(self):
684
- """
685
- Function to return the name of the algorithm.
686
- """
687
- return self._algorithm_name
688
-
689
- def _get_sql_specific_attributes(self):
690
- """
691
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
692
- """
693
- return self._sql_specific_attributes
694
-
695
- @classmethod
696
- def _from_model_catalog(cls,
697
- result = None,
698
- **kwargs):
699
- """
700
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
701
- """
702
- kwargs.pop("result", None)
703
-
704
- # Model Cataloging related attributes.
705
- target_column = kwargs.pop("__target_column", None)
706
- prediction_type = kwargs.pop("__prediction_type", None)
707
- algorithm_name = kwargs.pop("__algorithm_name", None)
708
- build_time = kwargs.pop("__build_time", None)
709
-
710
- # Let's create an object of this class.
711
- obj = cls(**kwargs)
712
- obj.result = result
713
-
714
- # Initialize the sqlmr_query class attribute.
715
- obj.sqlmr_query = None
716
-
717
- # Initialize the SQL specific Model Cataloging attributes.
718
- obj._sql_specific_attributes = None
719
- obj._target_column = target_column
720
- obj._prediction_type = prediction_type
721
- obj._algorithm_name = algorithm_name
722
- obj._build_time = build_time
723
-
724
- # Update output table data frames.
725
- obj._mlresults = []
726
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
727
- obj._mlresults.append(obj.result)
728
- return obj
729
-
730
- def __repr__(self):
731
- """
732
- Returns the string representation for a Closeness class instance.
733
- """
734
- repr_string="############ STDOUT Output ############"
735
- repr_string = "{}\n\n{}".format(repr_string,self.result)
736
- return repr_string
737
-