teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -37,13 +37,18 @@ import warnings
|
|
|
37
37
|
import webbrowser
|
|
38
38
|
from urllib.parse import parse_qs, urlparse
|
|
39
39
|
from teradataml.utils.utils import _async_run_id_info
|
|
40
|
+
from teradatasqlalchemy.telemetry.queryband import collect_queryband
|
|
40
41
|
|
|
41
42
|
|
|
43
|
+
@collect_queryband(queryband="LstBsEnv")
|
|
42
44
|
def list_base_envs():
|
|
43
45
|
"""
|
|
44
46
|
DESCRIPTION:
|
|
45
|
-
Lists the available Python
|
|
47
|
+
Lists the available Python and R base environments versions configured in the
|
|
46
48
|
Open Analytics Framework.
|
|
49
|
+
Note:
|
|
50
|
+
Function is not applicable for conda environments.
|
|
51
|
+
User can use any Python version while creating conda environment as long as Anaconda supports it.
|
|
47
52
|
|
|
48
53
|
PARAMETERS:
|
|
49
54
|
None.
|
|
@@ -90,6 +95,7 @@ def list_base_envs():
|
|
|
90
95
|
raise TeradataMlException(error_msg, msg_code)
|
|
91
96
|
|
|
92
97
|
|
|
98
|
+
@collect_queryband(queryband="LstUsrEnv")
|
|
93
99
|
def list_user_envs(env_name=None, **kwargs):
|
|
94
100
|
"""
|
|
95
101
|
DESCRIPTION:
|
|
@@ -118,7 +124,15 @@ def list_user_envs(env_name=None, **kwargs):
|
|
|
118
124
|
Specifies whether filtering operation should be case sensitive or not.
|
|
119
125
|
Default Value: False
|
|
120
126
|
Types: boolean
|
|
121
|
-
|
|
127
|
+
|
|
128
|
+
conda_env:
|
|
129
|
+
Optional Argument.
|
|
130
|
+
Specifies the boolean value to filter the conda environment(s).
|
|
131
|
+
When set to True, all conda environments are listed.
|
|
132
|
+
When set to False, all non-conda environments are listed.
|
|
133
|
+
If not specified, all user environments are listed.
|
|
134
|
+
Types: bool
|
|
135
|
+
|
|
122
136
|
regex:
|
|
123
137
|
Optional Argument.
|
|
124
138
|
Specifies whether string passed to "env_name", "base_env", and "desc"
|
|
@@ -172,64 +186,74 @@ def list_user_envs(env_name=None, **kwargs):
|
|
|
172
186
|
... 'r_3.6.3',
|
|
173
187
|
... 'Prediction of carbon credits consumption.')
|
|
174
188
|
User environment 'Carbon_Credits' created.
|
|
175
|
-
|
|
189
|
+
>>> create_env('Sales_cond_env',
|
|
190
|
+
... 'python_3.9',
|
|
191
|
+
... 'Sales team environment.',
|
|
192
|
+
... conda_env=True)
|
|
193
|
+
Conda environment creation initiated
|
|
194
|
+
User environment 'Sales_cond_env' created.
|
|
195
|
+
|
|
176
196
|
# Example 1: List all available user environments.
|
|
177
197
|
>>> list_user_envs()
|
|
178
|
-
env_name env_description base_env_name language
|
|
179
|
-
0 Carbon_Credits Prediction of carbon credits consumption r_3.6.3 R
|
|
180
|
-
1 Customer_Trends Analyse customer trends r_4.1.3 R
|
|
181
|
-
2 Fraud_Detection Fraud detection through time matching python_3.7.13 Python
|
|
182
|
-
3 Lie_Detection Lie detection through time matching python_3.7.13 Python
|
|
183
|
-
4 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python
|
|
184
|
-
5 Sales_env Sales team environment. python_3.9.13 Python
|
|
185
|
-
|
|
198
|
+
env_name env_description base_env_name language conda
|
|
199
|
+
0 Carbon_Credits Prediction of carbon credits consumption r_3.6.3 R False
|
|
200
|
+
1 Customer_Trends Analyse customer trends r_4.1.3 R False
|
|
201
|
+
2 Fraud_Detection Fraud detection through time matching python_3.7.13 Python False
|
|
202
|
+
3 Lie_Detection Lie detection through time matching python_3.7.13 Python False
|
|
203
|
+
4 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python False
|
|
204
|
+
5 Sales_env Sales team environment. python_3.9.13 Python False
|
|
205
|
+
6 Sales_cond_env Sales team environment. python_3.9 Python True
|
|
206
|
+
|
|
186
207
|
|
|
187
208
|
# Example 2: List all user environments with environment name containing string
|
|
188
209
|
# "Detection" and description that contains string "."(period).
|
|
189
210
|
>>> list_user_envs(env_name="Detection", desc=".", regex=False)
|
|
190
|
-
env_name env_description
|
|
191
|
-
|
|
211
|
+
env_name env_description base_env_name language conda
|
|
212
|
+
2 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python False
|
|
192
213
|
>>>
|
|
193
214
|
|
|
194
215
|
# Example 3: List all user environments with description that contains string "lie"
|
|
195
216
|
# and is case sensitive.
|
|
196
217
|
>>> list_user_envs(desc="lie", case=True)
|
|
197
|
-
env_name env_description base_env_name language
|
|
198
|
-
4 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python
|
|
218
|
+
env_name env_description base_env_name language conda
|
|
219
|
+
4 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python False
|
|
199
220
|
>>>
|
|
200
221
|
|
|
201
222
|
# Example 4: List all user environments with base environment version containing string
|
|
202
223
|
# "3.".
|
|
203
224
|
>>> list_user_envs(base_env="3.")
|
|
204
|
-
env_name env_description base_env_name language
|
|
205
|
-
0 Carbon_Credits Prediction of carbon credits consumption r_3.6.3 R
|
|
206
|
-
2 Fraud_Detection Fraud detection through time matching python_3.7.13 Python
|
|
207
|
-
3 Lie_Detection Lie detection through time matching python_3.7.13 Python
|
|
208
|
-
4 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python
|
|
209
|
-
5 Sales_env Sales team environment. python_3.9.13 Python
|
|
225
|
+
env_name env_description base_env_name language conda
|
|
226
|
+
0 Carbon_Credits Prediction of carbon credits consumption r_3.6.3 R False
|
|
227
|
+
2 Fraud_Detection Fraud detection through time matching python_3.7.13 Python False
|
|
228
|
+
3 Lie_Detection Lie detection through time matching python_3.7.13 Python False
|
|
229
|
+
4 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python False
|
|
230
|
+
5 Sales_env Sales team environment. python_3.9.13 Python False
|
|
231
|
+
6 Sales_conda_env Sales team environment. python_3.9 Python True
|
|
232
|
+
|
|
210
233
|
>>>
|
|
211
234
|
|
|
212
235
|
# Example 5: List all user environments with environment name contains string "detection",
|
|
213
236
|
# description containing string "fraud" and base environment containing string "3.7".
|
|
214
237
|
>>> list_user_envs("detection", desc="fraud", base_env="3.7")
|
|
215
|
-
env_name env_description base_env_name language
|
|
216
|
-
2 Fraud_Detection Fraud detection through time matching python_3.7.13 Python
|
|
238
|
+
env_name env_description base_env_name language conda
|
|
239
|
+
2 Fraud_Detection Fraud detection through time matching python_3.7.13 Python False
|
|
217
240
|
>>>
|
|
218
241
|
|
|
219
242
|
# Example 6: List all user environments with environment name that ends with "detection".
|
|
220
243
|
>>> list_user_envs("detection$")
|
|
221
|
-
env_name env_description base_env_name language
|
|
222
|
-
2 Fraud_Detection Fraud detection through time matching python_3.7.13 Python
|
|
223
|
-
3 Lie_Detection Lie detection through time matching python_3.7.13 Python
|
|
244
|
+
env_name env_description base_env_name language conda
|
|
245
|
+
2 Fraud_Detection Fraud detection through time matching python_3.7.13 Python False
|
|
246
|
+
3 Lie_Detection Lie detection through time matching python_3.7.13 Python False
|
|
224
247
|
>>>
|
|
225
248
|
|
|
226
249
|
# Example 7: List all user environments with description that has either "lie" or "sale".
|
|
227
250
|
# Use re.VERBOSE flag to add inline comment.
|
|
228
251
|
>>> list_user_envs(desc="lie|sale # Search for lie or sale.", flags=re.VERBOSE)
|
|
229
|
-
env_name env_description base_env_name language
|
|
230
|
-
3 Lie_Detection Lie detection through time matching python_3.7.13 Python
|
|
231
|
-
4 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python
|
|
232
|
-
5 Sales_env Sales team environment. python_3.9.13 Python
|
|
252
|
+
env_name env_description base_env_name language conda
|
|
253
|
+
3 Lie_Detection Lie detection through time matching python_3.7.13 Python False
|
|
254
|
+
4 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python False
|
|
255
|
+
5 Sales_env Sales team environment. python_3.9.13 Python False
|
|
256
|
+
6 Sales_conda_env Sales team environment. python_3.9 Python True
|
|
233
257
|
>>>
|
|
234
258
|
|
|
235
259
|
# Example 8: List all user environments where python 3 environment release version has
|
|
@@ -242,6 +266,11 @@ def list_user_envs(env_name=None, **kwargs):
|
|
|
242
266
|
5 Sales_env Sales team environment. python_3.9.13 Python
|
|
243
267
|
>>>
|
|
244
268
|
|
|
269
|
+
# Example 9: List all conda environments.
|
|
270
|
+
>>> list_user_envs(conda_env=True)
|
|
271
|
+
env_name env_description base_env_name language conda
|
|
272
|
+
6 Sales_conda_env Sales team environment. python_3.9 Python True
|
|
273
|
+
>>>
|
|
245
274
|
# Remove example environments.
|
|
246
275
|
remove_env("Fraud_Detection")
|
|
247
276
|
remove_env("Lie_Detection")
|
|
@@ -249,14 +278,18 @@ def list_user_envs(env_name=None, **kwargs):
|
|
|
249
278
|
remove_env("Sales_env")
|
|
250
279
|
remove_env("Carbon_Credits")
|
|
251
280
|
remove_env("Customer_Trends")
|
|
281
|
+
remove_env("Sales_conda_env")
|
|
252
282
|
"""
|
|
253
283
|
base_env = kwargs.pop("base_env", None)
|
|
254
284
|
desc = kwargs.pop("desc", None)
|
|
255
285
|
case = kwargs.pop("case", False)
|
|
286
|
+
conda_env = kwargs.pop("conda_env", None)
|
|
287
|
+
|
|
256
288
|
__arg_info_matrix = []
|
|
257
289
|
__arg_info_matrix.append(["env_name", env_name, True, (str), True])
|
|
258
290
|
__arg_info_matrix.append(["base_env", base_env, True, (str), True])
|
|
259
291
|
__arg_info_matrix.append(["desc", desc, True, (str), True])
|
|
292
|
+
__arg_info_matrix.append(["conda_env", conda_env, True, (bool)])
|
|
260
293
|
|
|
261
294
|
# Validate arguments
|
|
262
295
|
_Validators._validate_function_arguments(__arg_info_matrix)
|
|
@@ -283,7 +316,6 @@ def list_user_envs(env_name=None, **kwargs):
|
|
|
283
316
|
|
|
284
317
|
# Return result as Pandas dataframe.
|
|
285
318
|
pandas_df = pd.DataFrame.from_records(data)
|
|
286
|
-
|
|
287
319
|
# Filter based on arguments passed by user.
|
|
288
320
|
exprs = []
|
|
289
321
|
if env_name is not None:
|
|
@@ -292,6 +324,8 @@ def list_user_envs(env_name=None, **kwargs):
|
|
|
292
324
|
exprs.append(pandas_df.base_env_name.str.contains(pat=base_env, case=case, **kwargs))
|
|
293
325
|
if desc is not None:
|
|
294
326
|
exprs.append(pandas_df.env_description.str.contains(pat=desc, case=case, **kwargs))
|
|
327
|
+
if conda_env is not None:
|
|
328
|
+
exprs.append(pandas_df.conda == conda_env)
|
|
295
329
|
|
|
296
330
|
pandas_df = pandas_df[functools.reduce(operator.and_, exprs)] if exprs else pandas_df
|
|
297
331
|
|
|
@@ -361,6 +395,8 @@ def __create_envs(template):
|
|
|
361
395
|
for env_request in requested_envs:
|
|
362
396
|
# Create env.
|
|
363
397
|
env_name = env_request.get('env_name', None)
|
|
398
|
+
conda_env = env_request.get('conda_env', False)
|
|
399
|
+
|
|
364
400
|
if env_name:
|
|
365
401
|
try:
|
|
366
402
|
# Remove from dictionary and store the specifications
|
|
@@ -371,7 +407,9 @@ def __create_envs(template):
|
|
|
371
407
|
|
|
372
408
|
print("Creating environment '{}'...".format(env_name))
|
|
373
409
|
create_env(**env_request)
|
|
410
|
+
|
|
374
411
|
print("An empty environment '{}' is created.".format(env_name))
|
|
412
|
+
|
|
375
413
|
env_handle = get_env(env_name)
|
|
376
414
|
|
|
377
415
|
errored = False
|
|
@@ -450,7 +488,8 @@ def __install_files(env, directory):
|
|
|
450
488
|
env.install_file(os.path.join(dir_path, file_name))
|
|
451
489
|
|
|
452
490
|
|
|
453
|
-
|
|
491
|
+
@collect_queryband(queryband="CrtEnv")
|
|
492
|
+
def create_env(env_name=None, base_env=None, desc=None, template=None, conda_env=False):
|
|
454
493
|
"""
|
|
455
494
|
DESCRIPTION:
|
|
456
495
|
Creates isolated remote user environment(s) in the Open Analytics
|
|
@@ -474,10 +513,12 @@ def create_env(env_name=None, base_env=None, desc=None, template=None):
|
|
|
474
513
|
Specifies the name of the base Python or R environment
|
|
475
514
|
to be used to create remote user environment when "env_name"
|
|
476
515
|
is provided. This argument is ignored when "template" is provided.
|
|
477
|
-
|
|
478
|
-
|
|
479
|
-
|
|
480
|
-
|
|
516
|
+
Notes:
|
|
517
|
+
* When "base_env" is not provided, highest Python
|
|
518
|
+
base environment listed by list_base_envs() is used.
|
|
519
|
+
* When creating a conda environment, user can pass any Python version
|
|
520
|
+
supported by Anaconda to "base_env", irrespective of base environments
|
|
521
|
+
listed with list_base_envs().
|
|
481
522
|
Types: str
|
|
482
523
|
|
|
483
524
|
desc:
|
|
@@ -533,6 +574,16 @@ def create_env(env_name=None, base_env=None, desc=None, template=None):
|
|
|
533
574
|
above. Check example for more details.
|
|
534
575
|
Types: str
|
|
535
576
|
|
|
577
|
+
conda_env:
|
|
578
|
+
Optional Argument.
|
|
579
|
+
Specifies whether the environment to be created is a conda environment or not.
|
|
580
|
+
When set to True, conda environment is created.
|
|
581
|
+
Otherwise, non conda environment is created.
|
|
582
|
+
Note:
|
|
583
|
+
* Currently, only Python conda environment is supported.
|
|
584
|
+
Default value: False
|
|
585
|
+
Types: bool
|
|
586
|
+
|
|
536
587
|
|
|
537
588
|
RETURNS:
|
|
538
589
|
An object of class UserEnv representing the user environment.
|
|
@@ -660,6 +711,15 @@ def create_env(env_name=None, base_env=None, desc=None, template=None):
|
|
|
660
711
|
27 tcltk 4.1.3
|
|
661
712
|
28 tools 4.1.3
|
|
662
713
|
29 utils 4.1.3
|
|
714
|
+
|
|
715
|
+
# Example 4: Create a Conda Python 3.8 environment with given name and
|
|
716
|
+
# description in the Vantage.
|
|
717
|
+
>>> fraud_detection_env = create_env('Fraud_detection_conda',
|
|
718
|
+
... 'python_3.8',
|
|
719
|
+
... 'Fraud detection through time matching',
|
|
720
|
+
conda_env=True)
|
|
721
|
+
Conda environment creation initiated
|
|
722
|
+
User environment 'Fraud_detection_conda' created.
|
|
663
723
|
"""
|
|
664
724
|
|
|
665
725
|
# Either env_name or template can be used.
|
|
@@ -675,6 +735,8 @@ def create_env(env_name=None, base_env=None, desc=None, template=None):
|
|
|
675
735
|
__arg_info_matrix.append(["env_name", env_name, False, (str), True])
|
|
676
736
|
__arg_info_matrix.append(["base_env", base_env, True, (str), True])
|
|
677
737
|
__arg_info_matrix.append(["desc", desc, True, (str)])
|
|
738
|
+
__arg_info_matrix.append(["conda_env", conda_env, True, (bool)])
|
|
739
|
+
|
|
678
740
|
# Validate arguments
|
|
679
741
|
_Validators._validate_function_arguments(__arg_info_matrix, skip_empty_check=False)
|
|
680
742
|
|
|
@@ -689,14 +751,21 @@ def create_env(env_name=None, base_env=None, desc=None, template=None):
|
|
|
689
751
|
"env_description": desc,
|
|
690
752
|
"base_env_name": base_env
|
|
691
753
|
}
|
|
692
|
-
|
|
693
754
|
response = UtilFuncs._http_request(
|
|
694
|
-
_get_ues_url(), HTTPRequest.POST, headers=_get_auth_token(), json=data)
|
|
755
|
+
_get_ues_url(conda_env=conda_env), HTTPRequest.POST, headers=_get_auth_token(), json=data)
|
|
695
756
|
|
|
696
|
-
#
|
|
697
|
-
_process_ues_response(api_name="create_env", response=response)
|
|
757
|
+
# UES reponse.
|
|
758
|
+
resp = _process_ues_response(api_name="create_env", response=response)
|
|
698
759
|
|
|
699
|
-
|
|
760
|
+
msg = "User environment '{}' created."
|
|
761
|
+
|
|
762
|
+
if conda_env:
|
|
763
|
+
print("Conda environment creation initiated")
|
|
764
|
+
# Get claim_id.
|
|
765
|
+
claim_id = response.json().get("claim_id", "")
|
|
766
|
+
# Poll the claim_id status.
|
|
767
|
+
__poll_claim_id_status(claim_id, "create_env")
|
|
768
|
+
print(msg.format(env_name))
|
|
700
769
|
|
|
701
770
|
# Return an instance of class UserEnv.
|
|
702
771
|
return UserEnv(env_name, base_env, desc)
|
|
@@ -709,8 +778,9 @@ def create_env(env_name=None, base_env=None, desc=None, template=None):
|
|
|
709
778
|
error_msg = Messages.get_message(msg_code, "create_env", str(emsg))
|
|
710
779
|
raise TeradataMlException(error_msg, msg_code)
|
|
711
780
|
|
|
712
|
-
|
|
713
|
-
|
|
781
|
+
else:
|
|
782
|
+
# When template is provided, proceed with recursive way.
|
|
783
|
+
return __create_envs(template)
|
|
714
784
|
|
|
715
785
|
|
|
716
786
|
def _async_run_status_open_af(claim_id):
|
|
@@ -782,6 +852,7 @@ def __get_status(claim_id):
|
|
|
782
852
|
response=response).json()
|
|
783
853
|
|
|
784
854
|
|
|
855
|
+
@collect_queryband(queryband="RmEnv")
|
|
785
856
|
def remove_env(env_name, **kwargs):
|
|
786
857
|
"""
|
|
787
858
|
DESCRIPTION:
|
|
@@ -909,8 +980,8 @@ def __manage_envs(env_name=None, api_name="remove_env", **kwargs):
|
|
|
909
980
|
|
|
910
981
|
try:
|
|
911
982
|
# Get the ues url for corresponding API.
|
|
912
|
-
ues_url = _get_ues_url(env_name=env_name) if api_name == "remove_env" \
|
|
913
|
-
else _get_ues_url(remove_all_envs=True)
|
|
983
|
+
ues_url = _get_ues_url(env_name=env_name, api_name=api_name) if api_name == "remove_env" \
|
|
984
|
+
else _get_ues_url(remove_all_envs=True, api_name=api_name)
|
|
914
985
|
|
|
915
986
|
response = UtilFuncs._http_request(ues_url, HTTPRequest.DELETE,
|
|
916
987
|
headers=_get_auth_token())
|
|
@@ -968,7 +1039,7 @@ def __poll_claim_id_status(claim_id, api_name="remove_env"):
|
|
|
968
1039
|
api_name:
|
|
969
1040
|
Optional Argument.
|
|
970
1041
|
Specifies the name of the API.
|
|
971
|
-
Permitted Values: remove_env, remove_all_envs
|
|
1042
|
+
Permitted Values: remove_env, remove_all_envs, create_env
|
|
972
1043
|
Default Value: remove_env
|
|
973
1044
|
Types: str
|
|
974
1045
|
|
|
@@ -990,14 +1061,15 @@ def __poll_claim_id_status(claim_id, api_name="remove_env"):
|
|
|
990
1061
|
resp_data = __get_status(claim_id)
|
|
991
1062
|
|
|
992
1063
|
# Breaking condition -
|
|
993
|
-
# For remove_env: Check for the 'Finished' stage in the list of resp.
|
|
1064
|
+
# For create_env and remove_env: Check for the 'Finished' stage in the list of resp.
|
|
994
1065
|
# For remove_all_envs: above cond. and No user envs condition should break it .
|
|
995
1066
|
for data in resp_data:
|
|
996
1067
|
if ("Finished" in data["stage"]) or \
|
|
997
|
-
(api_name
|
|
1068
|
+
(api_name in ["create_env", "remove_all_envs"] and "Errored" in data["stage"]):
|
|
998
1069
|
return
|
|
999
1070
|
|
|
1000
1071
|
|
|
1072
|
+
@collect_queryband(queryband="GtEnv")
|
|
1001
1073
|
def get_env(env_name):
|
|
1002
1074
|
"""
|
|
1003
1075
|
DESCRIPTION:
|
|
@@ -1081,6 +1153,7 @@ def get_env(env_name):
|
|
|
1081
1153
|
raise TeradataMlException(error_msg, msg_code)
|
|
1082
1154
|
|
|
1083
1155
|
|
|
1156
|
+
@collect_queryband(queryband="RmAllEnvs")
|
|
1084
1157
|
def remove_all_envs(env_type=None, **kwargs):
|
|
1085
1158
|
"""
|
|
1086
1159
|
DESCRIPTION:
|
|
@@ -1317,13 +1390,19 @@ def _remove_all_envs(env_type, **kwargs):
|
|
|
1317
1390
|
>>> remove_all_envs(env_type="R", asynchronous=True)
|
|
1318
1391
|
Request to remove environment initiated successfully. Check status using async_run_status(['82cd24d6-1264-49f5-81e1-76e83e09c303'])
|
|
1319
1392
|
"""
|
|
1320
|
-
|
|
1393
|
+
# Variable for the message on lines 1437 and 1444.
|
|
1394
|
+
env_type_message = "Python"
|
|
1395
|
+
if env_type.capitalize() == "Py":
|
|
1396
|
+
env_type = ["Python", "python"]
|
|
1397
|
+
else:
|
|
1398
|
+
env_type = ["R"]
|
|
1399
|
+
env_type_message = "R"
|
|
1321
1400
|
asynchronous = kwargs.get("asynchronous", False)
|
|
1322
1401
|
|
|
1323
1402
|
try:
|
|
1324
1403
|
# Retrieve all user env data.
|
|
1325
1404
|
user_envs_df = list_user_envs()
|
|
1326
|
-
user_envs_lang_df = user_envs_df[user_envs_df.language
|
|
1405
|
+
user_envs_lang_df = user_envs_df[user_envs_df.language.isin(env_type)] if \
|
|
1327
1406
|
user_envs_df is not None else pd.DataFrame(index=[])
|
|
1328
1407
|
|
|
1329
1408
|
claim_id_list = []
|
|
@@ -1364,14 +1443,14 @@ def _remove_all_envs(env_type, **kwargs):
|
|
|
1364
1443
|
# Positive case - Envs removed without any failure print msg
|
|
1365
1444
|
# as per sync or async removal.
|
|
1366
1445
|
if not asynchronous:
|
|
1367
|
-
msg = "All {} environment(s) removed.".format(
|
|
1446
|
+
msg = "All {} environment(s) removed.".format(env_type_message)
|
|
1368
1447
|
else:
|
|
1369
1448
|
msg = "Request to remove environment initiated successfully. Check " \
|
|
1370
1449
|
"the status using " \
|
|
1371
1450
|
"async_run_status(['" + "', '".join(claim_id_list) + "'])"
|
|
1372
1451
|
print(msg)
|
|
1373
1452
|
elif user_envs_lang_df.empty and user_envs_df is not None:
|
|
1374
|
-
print("No {} user environment(s) found.".format(
|
|
1453
|
+
print("No {} user environment(s) found.".format(env_type_message))
|
|
1375
1454
|
return True
|
|
1376
1455
|
except (TeradataMlException, RuntimeError) as tdemsg:
|
|
1377
1456
|
# TeradataMlException and RuntimeError are raised by list_user_envs.
|
|
@@ -1385,6 +1464,7 @@ def _remove_all_envs(env_type, **kwargs):
|
|
|
1385
1464
|
raise TeradataMlException(error_msg, msg_code)
|
|
1386
1465
|
|
|
1387
1466
|
|
|
1467
|
+
@collect_queryband(queryband="StUsrEnv")
|
|
1388
1468
|
def set_user_env(env):
|
|
1389
1469
|
"""
|
|
1390
1470
|
DESCRIPTION:
|
|
@@ -1434,6 +1514,7 @@ def set_user_env(env):
|
|
|
1434
1514
|
return True
|
|
1435
1515
|
|
|
1436
1516
|
|
|
1517
|
+
@collect_queryband(queryband="GtUsrEnv")
|
|
1437
1518
|
def get_user_env():
|
|
1438
1519
|
"""
|
|
1439
1520
|
DESCRIPTION:
|
|
@@ -1466,6 +1547,7 @@ def get_user_env():
|
|
|
1466
1547
|
return configure._default_user_env
|
|
1467
1548
|
|
|
1468
1549
|
|
|
1550
|
+
@collect_queryband(queryband="StAthTkn")
|
|
1469
1551
|
def set_auth_token(ues_url, client_id=None):
|
|
1470
1552
|
"""
|
|
1471
1553
|
DESCRIPTION:
|
|
@@ -1518,7 +1600,7 @@ def set_auth_token(ues_url, client_id=None):
|
|
|
1518
1600
|
|
|
1519
1601
|
if client_id is None:
|
|
1520
1602
|
netloc = url_parser.netloc
|
|
1521
|
-
client_id = "
|
|
1603
|
+
client_id = "{}-oaf-device".format(netloc.split('.')[0])
|
|
1522
1604
|
|
|
1523
1605
|
da_wf = _DAWorkflow(base_url, client_id)
|
|
1524
1606
|
token_data = da_wf._get_token_data()
|
|
@@ -230,14 +230,9 @@ class Apply(TableOperator):
|
|
|
230
230
|
env_name=testenv,
|
|
231
231
|
delimiter='\t')
|
|
232
232
|
|
|
233
|
-
# Run user script locally
|
|
233
|
+
# Run user script locally using data from csv.
|
|
234
234
|
# This helps the user to fix script level issues outside Open Analytics
|
|
235
235
|
# Framework.
|
|
236
|
-
# Setup the environment by providing local path to docker image file.
|
|
237
|
-
>>> apply_obj.setup_sto_env(docker_image_location='/tmp/sto_sandbox_docker_image.tar'))
|
|
238
|
-
Loading image from /tmp/sto_sandbox_docker_image.tar. It may take few minutes.
|
|
239
|
-
Image loaded successfully.
|
|
240
|
-
|
|
241
236
|
>>> apply_obj.test_script(input_data_file=os.path.join(teradataml_dir, 'data', 'barrier.csv'))
|
|
242
237
|
############ STDOUT Output ############
|
|
243
238
|
|
|
@@ -327,6 +322,7 @@ class Apply(TableOperator):
|
|
|
327
322
|
self.env_name = env_name if env_name is not None else get_user_env()
|
|
328
323
|
self.style = style
|
|
329
324
|
self.returns = returns
|
|
325
|
+
self._skip_argument_validation = False
|
|
330
326
|
|
|
331
327
|
# Create AnalyticsWrapperUtils instance which contains validation functions.
|
|
332
328
|
# This is required for is_default_or_not check.
|
|
@@ -351,8 +347,44 @@ class Apply(TableOperator):
|
|
|
351
347
|
if isinstance(self.env_name, UserEnv):
|
|
352
348
|
self.env_name = self.env_name.env_name
|
|
353
349
|
|
|
350
|
+
@property
|
|
351
|
+
def skip_argument_validation(self):
|
|
352
|
+
"""
|
|
353
|
+
DESCRIPTION:
|
|
354
|
+
Getter for self._skip_argument_validation.
|
|
355
|
+
|
|
356
|
+
RETURNS:
|
|
357
|
+
bool
|
|
358
|
+
|
|
359
|
+
RAISES:
|
|
360
|
+
None
|
|
361
|
+
"""
|
|
362
|
+
return self._skip_argument_validation
|
|
363
|
+
|
|
364
|
+
@skip_argument_validation.setter
|
|
365
|
+
def skip_argument_validation(self, flag):
|
|
366
|
+
"""
|
|
367
|
+
DESCRIPTION:
|
|
368
|
+
Setter for self._skip_argument_validation
|
|
369
|
+
|
|
370
|
+
PARAMETERS:
|
|
371
|
+
flag:
|
|
372
|
+
Required Argument.
|
|
373
|
+
Specifies whether the argument validation should be skipped or not.
|
|
374
|
+
Types: bool
|
|
375
|
+
|
|
376
|
+
RETURNS:
|
|
377
|
+
None
|
|
378
|
+
|
|
379
|
+
RAISES:
|
|
380
|
+
None
|
|
381
|
+
"""
|
|
382
|
+
self._skip_argument_validation = flag
|
|
383
|
+
|
|
354
384
|
def __apply__validate(self):
|
|
355
385
|
|
|
386
|
+
if self._skip_argument_validation:
|
|
387
|
+
return
|
|
356
388
|
# Make sure that a non-NULL value has been supplied for all mandatory arguments.
|
|
357
389
|
_Validators._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
358
390
|
|