teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -37,13 +37,18 @@ import warnings
37
37
  import webbrowser
38
38
  from urllib.parse import parse_qs, urlparse
39
39
  from teradataml.utils.utils import _async_run_id_info
40
+ from teradatasqlalchemy.telemetry.queryband import collect_queryband
40
41
 
41
42
 
43
+ @collect_queryband(queryband="LstBsEnv")
42
44
  def list_base_envs():
43
45
  """
44
46
  DESCRIPTION:
45
- Lists the available Python OR R base environments versions configured in the
47
+ Lists the available Python and R base environments versions configured in the
46
48
  Open Analytics Framework.
49
+ Note:
50
+ Function is not applicable for conda environments.
51
+ User can use any Python version while creating conda environment as long as Anaconda supports it.
47
52
 
48
53
  PARAMETERS:
49
54
  None.
@@ -90,6 +95,7 @@ def list_base_envs():
90
95
  raise TeradataMlException(error_msg, msg_code)
91
96
 
92
97
 
98
+ @collect_queryband(queryband="LstUsrEnv")
93
99
  def list_user_envs(env_name=None, **kwargs):
94
100
  """
95
101
  DESCRIPTION:
@@ -118,7 +124,15 @@ def list_user_envs(env_name=None, **kwargs):
118
124
  Specifies whether filtering operation should be case sensitive or not.
119
125
  Default Value: False
120
126
  Types: boolean
121
-
127
+
128
+ conda_env:
129
+ Optional Argument.
130
+ Specifies the boolean value to filter the conda environment(s).
131
+ When set to True, all conda environments are listed.
132
+ When set to False, all non-conda environments are listed.
133
+ If not specified, all user environments are listed.
134
+ Types: bool
135
+
122
136
  regex:
123
137
  Optional Argument.
124
138
  Specifies whether string passed to "env_name", "base_env", and "desc"
@@ -172,64 +186,74 @@ def list_user_envs(env_name=None, **kwargs):
172
186
  ... 'r_3.6.3',
173
187
  ... 'Prediction of carbon credits consumption.')
174
188
  User environment 'Carbon_Credits' created.
175
-
189
+ >>> create_env('Sales_cond_env',
190
+ ... 'python_3.9',
191
+ ... 'Sales team environment.',
192
+ ... conda_env=True)
193
+ Conda environment creation initiated
194
+ User environment 'Sales_cond_env' created.
195
+
176
196
  # Example 1: List all available user environments.
177
197
  >>> list_user_envs()
178
- env_name env_description base_env_name language
179
- 0 Carbon_Credits Prediction of carbon credits consumption r_3.6.3 R
180
- 1 Customer_Trends Analyse customer trends r_4.1.3 R
181
- 2 Fraud_Detection Fraud detection through time matching python_3.7.13 Python
182
- 3 Lie_Detection Lie detection through time matching python_3.7.13 Python
183
- 4 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python
184
- 5 Sales_env Sales team environment. python_3.9.13 Python
185
- >>>
198
+ env_name env_description base_env_name language conda
199
+ 0 Carbon_Credits Prediction of carbon credits consumption r_3.6.3 R False
200
+ 1 Customer_Trends Analyse customer trends r_4.1.3 R False
201
+ 2 Fraud_Detection Fraud detection through time matching python_3.7.13 Python False
202
+ 3 Lie_Detection Lie detection through time matching python_3.7.13 Python False
203
+ 4 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python False
204
+ 5 Sales_env Sales team environment. python_3.9.13 Python False
205
+ 6 Sales_cond_env Sales team environment. python_3.9 Python True
206
+
186
207
 
187
208
  # Example 2: List all user environments with environment name containing string
188
209
  # "Detection" and description that contains string "."(period).
189
210
  >>> list_user_envs(env_name="Detection", desc=".", regex=False)
190
- env_name env_description base_env_name language
191
- 4 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python
211
+ env_name env_description base_env_name language conda
212
+ 2 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python False
192
213
  >>>
193
214
 
194
215
  # Example 3: List all user environments with description that contains string "lie"
195
216
  # and is case sensitive.
196
217
  >>> list_user_envs(desc="lie", case=True)
197
- env_name env_description base_env_name language
198
- 4 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python
218
+ env_name env_description base_env_name language conda
219
+ 4 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python False
199
220
  >>>
200
221
 
201
222
  # Example 4: List all user environments with base environment version containing string
202
223
  # "3.".
203
224
  >>> list_user_envs(base_env="3.")
204
- env_name env_description base_env_name language
205
- 0 Carbon_Credits Prediction of carbon credits consumption r_3.6.3 R
206
- 2 Fraud_Detection Fraud detection through time matching python_3.7.13 Python
207
- 3 Lie_Detection Lie detection through time matching python_3.7.13 Python
208
- 4 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python
209
- 5 Sales_env Sales team environment. python_3.9.13 Python
225
+ env_name env_description base_env_name language conda
226
+ 0 Carbon_Credits Prediction of carbon credits consumption r_3.6.3 R False
227
+ 2 Fraud_Detection Fraud detection through time matching python_3.7.13 Python False
228
+ 3 Lie_Detection Lie detection through time matching python_3.7.13 Python False
229
+ 4 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python False
230
+ 5 Sales_env Sales team environment. python_3.9.13 Python False
231
+ 6 Sales_conda_env Sales team environment. python_3.9 Python True
232
+
210
233
  >>>
211
234
 
212
235
  # Example 5: List all user environments with environment name contains string "detection",
213
236
  # description containing string "fraud" and base environment containing string "3.7".
214
237
  >>> list_user_envs("detection", desc="fraud", base_env="3.7")
215
- env_name env_description base_env_name language
216
- 2 Fraud_Detection Fraud detection through time matching python_3.7.13 Python
238
+ env_name env_description base_env_name language conda
239
+ 2 Fraud_Detection Fraud detection through time matching python_3.7.13 Python False
217
240
  >>>
218
241
 
219
242
  # Example 6: List all user environments with environment name that ends with "detection".
220
243
  >>> list_user_envs("detection$")
221
- env_name env_description base_env_name language
222
- 2 Fraud_Detection Fraud detection through time matching python_3.7.13 Python
223
- 3 Lie_Detection Lie detection through time matching python_3.7.13 Python
244
+ env_name env_description base_env_name language conda
245
+ 2 Fraud_Detection Fraud detection through time matching python_3.7.13 Python False
246
+ 3 Lie_Detection Lie detection through time matching python_3.7.13 Python False
224
247
  >>>
225
248
 
226
249
  # Example 7: List all user environments with description that has either "lie" or "sale".
227
250
  # Use re.VERBOSE flag to add inline comment.
228
251
  >>> list_user_envs(desc="lie|sale # Search for lie or sale.", flags=re.VERBOSE)
229
- env_name env_description base_env_name language
230
- 3 Lie_Detection Lie detection through time matching python_3.7.13 Python
231
- 4 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python
232
- 5 Sales_env Sales team environment. python_3.9.13 Python
252
+ env_name env_description base_env_name language conda
253
+ 3 Lie_Detection Lie detection through time matching python_3.7.13 Python False
254
+ 4 Lie_Detection_ML Detect lie through machine learning. python_3.8.13 Python False
255
+ 5 Sales_env Sales team environment. python_3.9.13 Python False
256
+ 6 Sales_conda_env Sales team environment. python_3.9 Python True
233
257
  >>>
234
258
 
235
259
  # Example 8: List all user environments where python 3 environment release version has
@@ -242,6 +266,11 @@ def list_user_envs(env_name=None, **kwargs):
242
266
  5 Sales_env Sales team environment. python_3.9.13 Python
243
267
  >>>
244
268
 
269
+ # Example 9: List all conda environments.
270
+ >>> list_user_envs(conda_env=True)
271
+ env_name env_description base_env_name language conda
272
+ 6 Sales_conda_env Sales team environment. python_3.9 Python True
273
+ >>>
245
274
  # Remove example environments.
246
275
  remove_env("Fraud_Detection")
247
276
  remove_env("Lie_Detection")
@@ -249,14 +278,18 @@ def list_user_envs(env_name=None, **kwargs):
249
278
  remove_env("Sales_env")
250
279
  remove_env("Carbon_Credits")
251
280
  remove_env("Customer_Trends")
281
+ remove_env("Sales_conda_env")
252
282
  """
253
283
  base_env = kwargs.pop("base_env", None)
254
284
  desc = kwargs.pop("desc", None)
255
285
  case = kwargs.pop("case", False)
286
+ conda_env = kwargs.pop("conda_env", None)
287
+
256
288
  __arg_info_matrix = []
257
289
  __arg_info_matrix.append(["env_name", env_name, True, (str), True])
258
290
  __arg_info_matrix.append(["base_env", base_env, True, (str), True])
259
291
  __arg_info_matrix.append(["desc", desc, True, (str), True])
292
+ __arg_info_matrix.append(["conda_env", conda_env, True, (bool)])
260
293
 
261
294
  # Validate arguments
262
295
  _Validators._validate_function_arguments(__arg_info_matrix)
@@ -283,7 +316,6 @@ def list_user_envs(env_name=None, **kwargs):
283
316
 
284
317
  # Return result as Pandas dataframe.
285
318
  pandas_df = pd.DataFrame.from_records(data)
286
-
287
319
  # Filter based on arguments passed by user.
288
320
  exprs = []
289
321
  if env_name is not None:
@@ -292,6 +324,8 @@ def list_user_envs(env_name=None, **kwargs):
292
324
  exprs.append(pandas_df.base_env_name.str.contains(pat=base_env, case=case, **kwargs))
293
325
  if desc is not None:
294
326
  exprs.append(pandas_df.env_description.str.contains(pat=desc, case=case, **kwargs))
327
+ if conda_env is not None:
328
+ exprs.append(pandas_df.conda == conda_env)
295
329
 
296
330
  pandas_df = pandas_df[functools.reduce(operator.and_, exprs)] if exprs else pandas_df
297
331
 
@@ -361,6 +395,8 @@ def __create_envs(template):
361
395
  for env_request in requested_envs:
362
396
  # Create env.
363
397
  env_name = env_request.get('env_name', None)
398
+ conda_env = env_request.get('conda_env', False)
399
+
364
400
  if env_name:
365
401
  try:
366
402
  # Remove from dictionary and store the specifications
@@ -371,7 +407,9 @@ def __create_envs(template):
371
407
 
372
408
  print("Creating environment '{}'...".format(env_name))
373
409
  create_env(**env_request)
410
+
374
411
  print("An empty environment '{}' is created.".format(env_name))
412
+
375
413
  env_handle = get_env(env_name)
376
414
 
377
415
  errored = False
@@ -450,7 +488,8 @@ def __install_files(env, directory):
450
488
  env.install_file(os.path.join(dir_path, file_name))
451
489
 
452
490
 
453
- def create_env(env_name=None, base_env=None, desc=None, template=None):
491
+ @collect_queryband(queryband="CrtEnv")
492
+ def create_env(env_name=None, base_env=None, desc=None, template=None, conda_env=False):
454
493
  """
455
494
  DESCRIPTION:
456
495
  Creates isolated remote user environment(s) in the Open Analytics
@@ -474,10 +513,12 @@ def create_env(env_name=None, base_env=None, desc=None, template=None):
474
513
  Specifies the name of the base Python or R environment
475
514
  to be used to create remote user environment when "env_name"
476
515
  is provided. This argument is ignored when "template" is provided.
477
- Note:
478
- * When "base_env" is not provided, latest available Python
479
- base environment is used. To check available base
480
- environments use list_base_envs().
516
+ Notes:
517
+ * When "base_env" is not provided, highest Python
518
+ base environment listed by list_base_envs() is used.
519
+ * When creating a conda environment, user can pass any Python version
520
+ supported by Anaconda to "base_env", irrespective of base environments
521
+ listed with list_base_envs().
481
522
  Types: str
482
523
 
483
524
  desc:
@@ -533,6 +574,16 @@ def create_env(env_name=None, base_env=None, desc=None, template=None):
533
574
  above. Check example for more details.
534
575
  Types: str
535
576
 
577
+ conda_env:
578
+ Optional Argument.
579
+ Specifies whether the environment to be created is a conda environment or not.
580
+ When set to True, conda environment is created.
581
+ Otherwise, non conda environment is created.
582
+ Note:
583
+ * Currently, only Python conda environment is supported.
584
+ Default value: False
585
+ Types: bool
586
+
536
587
 
537
588
  RETURNS:
538
589
  An object of class UserEnv representing the user environment.
@@ -660,6 +711,15 @@ def create_env(env_name=None, base_env=None, desc=None, template=None):
660
711
  27 tcltk 4.1.3
661
712
  28 tools 4.1.3
662
713
  29 utils 4.1.3
714
+
715
+ # Example 4: Create a Conda Python 3.8 environment with given name and
716
+ # description in the Vantage.
717
+ >>> fraud_detection_env = create_env('Fraud_detection_conda',
718
+ ... 'python_3.8',
719
+ ... 'Fraud detection through time matching',
720
+ conda_env=True)
721
+ Conda environment creation initiated
722
+ User environment 'Fraud_detection_conda' created.
663
723
  """
664
724
 
665
725
  # Either env_name or template can be used.
@@ -675,6 +735,8 @@ def create_env(env_name=None, base_env=None, desc=None, template=None):
675
735
  __arg_info_matrix.append(["env_name", env_name, False, (str), True])
676
736
  __arg_info_matrix.append(["base_env", base_env, True, (str), True])
677
737
  __arg_info_matrix.append(["desc", desc, True, (str)])
738
+ __arg_info_matrix.append(["conda_env", conda_env, True, (bool)])
739
+
678
740
  # Validate arguments
679
741
  _Validators._validate_function_arguments(__arg_info_matrix, skip_empty_check=False)
680
742
 
@@ -689,14 +751,21 @@ def create_env(env_name=None, base_env=None, desc=None, template=None):
689
751
  "env_description": desc,
690
752
  "base_env_name": base_env
691
753
  }
692
-
693
754
  response = UtilFuncs._http_request(
694
- _get_ues_url(), HTTPRequest.POST, headers=_get_auth_token(), json=data)
755
+ _get_ues_url(conda_env=conda_env), HTTPRequest.POST, headers=_get_auth_token(), json=data)
695
756
 
696
- # Validate the ues response.
697
- _process_ues_response(api_name="create_env", response=response)
757
+ # UES reponse.
758
+ resp = _process_ues_response(api_name="create_env", response=response)
698
759
 
699
- print("User environment '{0}' created.".format(env_name))
760
+ msg = "User environment '{}' created."
761
+
762
+ if conda_env:
763
+ print("Conda environment creation initiated")
764
+ # Get claim_id.
765
+ claim_id = response.json().get("claim_id", "")
766
+ # Poll the claim_id status.
767
+ __poll_claim_id_status(claim_id, "create_env")
768
+ print(msg.format(env_name))
700
769
 
701
770
  # Return an instance of class UserEnv.
702
771
  return UserEnv(env_name, base_env, desc)
@@ -709,8 +778,9 @@ def create_env(env_name=None, base_env=None, desc=None, template=None):
709
778
  error_msg = Messages.get_message(msg_code, "create_env", str(emsg))
710
779
  raise TeradataMlException(error_msg, msg_code)
711
780
 
712
- # When template is provided, proceed with recursive way.
713
- return __create_envs(template)
781
+ else:
782
+ # When template is provided, proceed with recursive way.
783
+ return __create_envs(template)
714
784
 
715
785
 
716
786
  def _async_run_status_open_af(claim_id):
@@ -782,6 +852,7 @@ def __get_status(claim_id):
782
852
  response=response).json()
783
853
 
784
854
 
855
+ @collect_queryband(queryband="RmEnv")
785
856
  def remove_env(env_name, **kwargs):
786
857
  """
787
858
  DESCRIPTION:
@@ -909,8 +980,8 @@ def __manage_envs(env_name=None, api_name="remove_env", **kwargs):
909
980
 
910
981
  try:
911
982
  # Get the ues url for corresponding API.
912
- ues_url = _get_ues_url(env_name=env_name) if api_name == "remove_env" \
913
- else _get_ues_url(remove_all_envs=True)
983
+ ues_url = _get_ues_url(env_name=env_name, api_name=api_name) if api_name == "remove_env" \
984
+ else _get_ues_url(remove_all_envs=True, api_name=api_name)
914
985
 
915
986
  response = UtilFuncs._http_request(ues_url, HTTPRequest.DELETE,
916
987
  headers=_get_auth_token())
@@ -968,7 +1039,7 @@ def __poll_claim_id_status(claim_id, api_name="remove_env"):
968
1039
  api_name:
969
1040
  Optional Argument.
970
1041
  Specifies the name of the API.
971
- Permitted Values: remove_env, remove_all_envs
1042
+ Permitted Values: remove_env, remove_all_envs, create_env
972
1043
  Default Value: remove_env
973
1044
  Types: str
974
1045
 
@@ -990,14 +1061,15 @@ def __poll_claim_id_status(claim_id, api_name="remove_env"):
990
1061
  resp_data = __get_status(claim_id)
991
1062
 
992
1063
  # Breaking condition -
993
- # For remove_env: Check for the 'Finished' stage in the list of resp.
1064
+ # For create_env and remove_env: Check for the 'Finished' stage in the list of resp.
994
1065
  # For remove_all_envs: above cond. and No user envs condition should break it .
995
1066
  for data in resp_data:
996
1067
  if ("Finished" in data["stage"]) or \
997
- (api_name == "remove_all_envs" and "Errored" in data["stage"]):
1068
+ (api_name in ["create_env", "remove_all_envs"] and "Errored" in data["stage"]):
998
1069
  return
999
1070
 
1000
1071
 
1072
+ @collect_queryband(queryband="GtEnv")
1001
1073
  def get_env(env_name):
1002
1074
  """
1003
1075
  DESCRIPTION:
@@ -1081,6 +1153,7 @@ def get_env(env_name):
1081
1153
  raise TeradataMlException(error_msg, msg_code)
1082
1154
 
1083
1155
 
1156
+ @collect_queryband(queryband="RmAllEnvs")
1084
1157
  def remove_all_envs(env_type=None, **kwargs):
1085
1158
  """
1086
1159
  DESCRIPTION:
@@ -1317,13 +1390,19 @@ def _remove_all_envs(env_type, **kwargs):
1317
1390
  >>> remove_all_envs(env_type="R", asynchronous=True)
1318
1391
  Request to remove environment initiated successfully. Check status using async_run_status(['82cd24d6-1264-49f5-81e1-76e83e09c303'])
1319
1392
  """
1320
- env_type = "Python" if env_type.capitalize() == "Py" else "R"
1393
+ # Variable for the message on lines 1437 and 1444.
1394
+ env_type_message = "Python"
1395
+ if env_type.capitalize() == "Py":
1396
+ env_type = ["Python", "python"]
1397
+ else:
1398
+ env_type = ["R"]
1399
+ env_type_message = "R"
1321
1400
  asynchronous = kwargs.get("asynchronous", False)
1322
1401
 
1323
1402
  try:
1324
1403
  # Retrieve all user env data.
1325
1404
  user_envs_df = list_user_envs()
1326
- user_envs_lang_df = user_envs_df[user_envs_df.language == env_type] if \
1405
+ user_envs_lang_df = user_envs_df[user_envs_df.language.isin(env_type)] if \
1327
1406
  user_envs_df is not None else pd.DataFrame(index=[])
1328
1407
 
1329
1408
  claim_id_list = []
@@ -1364,14 +1443,14 @@ def _remove_all_envs(env_type, **kwargs):
1364
1443
  # Positive case - Envs removed without any failure print msg
1365
1444
  # as per sync or async removal.
1366
1445
  if not asynchronous:
1367
- msg = "All {} environment(s) removed.".format(env_type)
1446
+ msg = "All {} environment(s) removed.".format(env_type_message)
1368
1447
  else:
1369
1448
  msg = "Request to remove environment initiated successfully. Check " \
1370
1449
  "the status using " \
1371
1450
  "async_run_status(['" + "', '".join(claim_id_list) + "'])"
1372
1451
  print(msg)
1373
1452
  elif user_envs_lang_df.empty and user_envs_df is not None:
1374
- print("No {} user environment(s) found.".format(env_type))
1453
+ print("No {} user environment(s) found.".format(env_type_message))
1375
1454
  return True
1376
1455
  except (TeradataMlException, RuntimeError) as tdemsg:
1377
1456
  # TeradataMlException and RuntimeError are raised by list_user_envs.
@@ -1385,6 +1464,7 @@ def _remove_all_envs(env_type, **kwargs):
1385
1464
  raise TeradataMlException(error_msg, msg_code)
1386
1465
 
1387
1466
 
1467
+ @collect_queryband(queryband="StUsrEnv")
1388
1468
  def set_user_env(env):
1389
1469
  """
1390
1470
  DESCRIPTION:
@@ -1434,6 +1514,7 @@ def set_user_env(env):
1434
1514
  return True
1435
1515
 
1436
1516
 
1517
+ @collect_queryband(queryband="GtUsrEnv")
1437
1518
  def get_user_env():
1438
1519
  """
1439
1520
  DESCRIPTION:
@@ -1466,6 +1547,7 @@ def get_user_env():
1466
1547
  return configure._default_user_env
1467
1548
 
1468
1549
 
1550
+ @collect_queryband(queryband="StAthTkn")
1469
1551
  def set_auth_token(ues_url, client_id=None):
1470
1552
  """
1471
1553
  DESCRIPTION:
@@ -1518,7 +1600,7 @@ def set_auth_token(ues_url, client_id=None):
1518
1600
 
1519
1601
  if client_id is None:
1520
1602
  netloc = url_parser.netloc
1521
- client_id = "tdpub-" + netloc.split('.')[0]
1603
+ client_id = "{}-oaf-device".format(netloc.split('.')[0])
1522
1604
 
1523
1605
  da_wf = _DAWorkflow(base_url, client_id)
1524
1606
  token_data = da_wf._get_token_data()
@@ -230,14 +230,9 @@ class Apply(TableOperator):
230
230
  env_name=testenv,
231
231
  delimiter='\t')
232
232
 
233
- # Run user script locally within docker container and using data from csv.
233
+ # Run user script locally using data from csv.
234
234
  # This helps the user to fix script level issues outside Open Analytics
235
235
  # Framework.
236
- # Setup the environment by providing local path to docker image file.
237
- >>> apply_obj.setup_sto_env(docker_image_location='/tmp/sto_sandbox_docker_image.tar'))
238
- Loading image from /tmp/sto_sandbox_docker_image.tar. It may take few minutes.
239
- Image loaded successfully.
240
-
241
236
  >>> apply_obj.test_script(input_data_file=os.path.join(teradataml_dir, 'data', 'barrier.csv'))
242
237
  ############ STDOUT Output ############
243
238
 
@@ -327,6 +322,7 @@ class Apply(TableOperator):
327
322
  self.env_name = env_name if env_name is not None else get_user_env()
328
323
  self.style = style
329
324
  self.returns = returns
325
+ self._skip_argument_validation = False
330
326
 
331
327
  # Create AnalyticsWrapperUtils instance which contains validation functions.
332
328
  # This is required for is_default_or_not check.
@@ -351,8 +347,44 @@ class Apply(TableOperator):
351
347
  if isinstance(self.env_name, UserEnv):
352
348
  self.env_name = self.env_name.env_name
353
349
 
350
+ @property
351
+ def skip_argument_validation(self):
352
+ """
353
+ DESCRIPTION:
354
+ Getter for self._skip_argument_validation.
355
+
356
+ RETURNS:
357
+ bool
358
+
359
+ RAISES:
360
+ None
361
+ """
362
+ return self._skip_argument_validation
363
+
364
+ @skip_argument_validation.setter
365
+ def skip_argument_validation(self, flag):
366
+ """
367
+ DESCRIPTION:
368
+ Setter for self._skip_argument_validation
369
+
370
+ PARAMETERS:
371
+ flag:
372
+ Required Argument.
373
+ Specifies whether the argument validation should be skipped or not.
374
+ Types: bool
375
+
376
+ RETURNS:
377
+ None
378
+
379
+ RAISES:
380
+ None
381
+ """
382
+ self._skip_argument_validation = flag
383
+
354
384
  def __apply__validate(self):
355
385
 
386
+ if self._skip_argument_validation:
387
+ return
356
388
  # Make sure that a non-NULL value has been supplied for all mandatory arguments.
357
389
  _Validators._validate_missing_required_arguments(self.__arg_info_matrix)
358
390