teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,426 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.10
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class PathAnalyzer:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
seq_column = None,
|
|
35
|
-
count_column = None,
|
|
36
|
-
hash = False,
|
|
37
|
-
delimiter = ",",
|
|
38
|
-
data_sequence_column = None):
|
|
39
|
-
"""
|
|
40
|
-
DESCRIPTION:
|
|
41
|
-
This function generates the children, parent for a particular node and
|
|
42
|
-
calculates its depth and number of visits.
|
|
43
|
-
The PathAnalyzer function:
|
|
44
|
-
- Inputs a set of paths to the PathGenerator function.
|
|
45
|
-
- Inputs the output to the PathSummarizer function.
|
|
46
|
-
- Inputs the output to the PathStart function, which outputs, for each
|
|
47
|
-
parent, all children and the number of times that the user traveled
|
|
48
|
-
each child.
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
PARAMETERS:
|
|
52
|
-
data:
|
|
53
|
-
Required Argument.
|
|
54
|
-
Specifies either the name of the input teradataml DataFrame
|
|
55
|
-
or processed NPath output. The input teradataml DataFrame contains
|
|
56
|
-
the paths to analyze. Each path is a string of alphanumeric symbols
|
|
57
|
-
that represents an ordered sequence of page views (or actions).
|
|
58
|
-
Typically, each symbol is a code that represents a unique page
|
|
59
|
-
view.
|
|
60
|
-
If you would like to use output of NPath, then it must be processed
|
|
61
|
-
to select two columns; the column that contains the paths
|
|
62
|
-
(seq_column) and the column that contains the number of times
|
|
63
|
-
a path was traveled (count_column), which should be grouped by
|
|
64
|
-
seq_column, so that the input teradataml DataFrame has
|
|
65
|
-
one row for each unique path traveled on a web site.
|
|
66
|
-
|
|
67
|
-
seq_column:
|
|
68
|
-
Required Argument.
|
|
69
|
-
Specifies the name of the input teradataml DataFrame column that
|
|
70
|
-
contains the paths.
|
|
71
|
-
Types: str
|
|
72
|
-
|
|
73
|
-
count_column:
|
|
74
|
-
Optional Argument.
|
|
75
|
-
Specifies the name of the input teradataml DataFrame column that
|
|
76
|
-
contains the number of times a path was traveled.
|
|
77
|
-
Note:
|
|
78
|
-
'count_column' is required when teradataml is connected to
|
|
79
|
-
Vantage version prior to 1.1.1.
|
|
80
|
-
Default Value: 1
|
|
81
|
-
Types: str
|
|
82
|
-
|
|
83
|
-
hash:
|
|
84
|
-
Optional Argument.
|
|
85
|
-
Specifies whether to include the hash code of the output column node.
|
|
86
|
-
Default Value: False
|
|
87
|
-
Types: bool
|
|
88
|
-
|
|
89
|
-
delimiter:
|
|
90
|
-
Optional Argument.
|
|
91
|
-
Specifies the single-character delimiter that separates symbols in
|
|
92
|
-
the path string.
|
|
93
|
-
Note:
|
|
94
|
-
Do not use any of the following characters as delimiter
|
|
95
|
-
(they cause the function to fail):
|
|
96
|
-
Asterisk (*), Plus (+), Left parenthesis ((), Right parenthesis ()),
|
|
97
|
-
Single quotation mark ('), Escaped single quotation mark (\\'),
|
|
98
|
-
Backslash (\\)
|
|
99
|
-
Default Value: ","
|
|
100
|
-
Types: str
|
|
101
|
-
|
|
102
|
-
data_sequence_column:
|
|
103
|
-
Optional Argument.
|
|
104
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
105
|
-
the input argument "data". The argument is used to ensure
|
|
106
|
-
deterministic results for functions which produce results that vary
|
|
107
|
-
from run to run.
|
|
108
|
-
Types: str OR list of Strings (str)
|
|
109
|
-
|
|
110
|
-
RETURNS:
|
|
111
|
-
Instance of PathAnalyzer.
|
|
112
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
113
|
-
references, such as PathAnalyzerObj.<attribute_name>.
|
|
114
|
-
Output teradataml DataFrame attribute name is:
|
|
115
|
-
output_table
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
RAISES:
|
|
119
|
-
TeradataMlException
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
EXAMPLES:
|
|
123
|
-
# Load example data.
|
|
124
|
-
load_example_data("pathanalyzer", "clickstream1")
|
|
125
|
-
|
|
126
|
-
# Create teradataml DataFrame objects.
|
|
127
|
-
# The table contains clickstream data, where the "path" column
|
|
128
|
-
# contains symbols for the pages that the customer clicked.
|
|
129
|
-
clickstream1 = DataFrame.from_table("clickstream1")
|
|
130
|
-
|
|
131
|
-
# Example 1 - Let's analyze the Paths taken for a parent, children
|
|
132
|
-
# in this clickstream data, to reach to a page.
|
|
133
|
-
PathAnalyzer_out = PathAnalyzer(data = clickstream1,
|
|
134
|
-
seq_column = "path",
|
|
135
|
-
count_column = "cnt",
|
|
136
|
-
hash = False,
|
|
137
|
-
delimiter = ","
|
|
138
|
-
)
|
|
139
|
-
|
|
140
|
-
# Print the results
|
|
141
|
-
print(PathAnalyzer_out)
|
|
142
|
-
|
|
143
|
-
"""
|
|
144
|
-
|
|
145
|
-
# Start the timer to get the build time
|
|
146
|
-
_start_time = time.time()
|
|
147
|
-
|
|
148
|
-
self.data = data
|
|
149
|
-
self.seq_column = seq_column
|
|
150
|
-
self.count_column = count_column
|
|
151
|
-
self.hash = hash
|
|
152
|
-
self.delimiter = delimiter
|
|
153
|
-
self.data_sequence_column = data_sequence_column
|
|
154
|
-
|
|
155
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
156
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
157
|
-
self.__aed_utils = AedUtils()
|
|
158
|
-
|
|
159
|
-
# Create argument information matrix to do parameter checking
|
|
160
|
-
self.__arg_info_matrix = []
|
|
161
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
162
|
-
self.__arg_info_matrix.append(["seq_column", self.seq_column, False, (str)])
|
|
163
|
-
self.__arg_info_matrix.append(["count_column", self.count_column, True, (str)])
|
|
164
|
-
self.__arg_info_matrix.append(["hash", self.hash, True, (bool)])
|
|
165
|
-
self.__arg_info_matrix.append(["delimiter", self.delimiter, True, (str)])
|
|
166
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
167
|
-
|
|
168
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
169
|
-
# Perform the function validations
|
|
170
|
-
self.__validate()
|
|
171
|
-
# Generate the ML query
|
|
172
|
-
self.__form_tdml_query()
|
|
173
|
-
# Execute ML query
|
|
174
|
-
self.__execute()
|
|
175
|
-
# Get the prediction type
|
|
176
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
177
|
-
|
|
178
|
-
# End the timer to get the build time
|
|
179
|
-
_end_time = time.time()
|
|
180
|
-
|
|
181
|
-
# Calculate the build time
|
|
182
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
183
|
-
|
|
184
|
-
def __validate(self):
|
|
185
|
-
"""
|
|
186
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
187
|
-
arguments, input argument and table types. Also processes the
|
|
188
|
-
argument values.
|
|
189
|
-
"""
|
|
190
|
-
|
|
191
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
192
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
193
|
-
|
|
194
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
195
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
196
|
-
|
|
197
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
198
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
199
|
-
|
|
200
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
201
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
202
|
-
self.__awu._validate_input_columns_not_empty(self.seq_column, "seq_column")
|
|
203
|
-
self.__awu._validate_dataframe_has_argument_columns(self.seq_column, "seq_column", self.data, "data", False)
|
|
204
|
-
|
|
205
|
-
self.__awu._validate_input_columns_not_empty(self.count_column, "count_column")
|
|
206
|
-
self.__awu._validate_dataframe_has_argument_columns(self.count_column, "count_column", self.data, "data", False)
|
|
207
|
-
|
|
208
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
209
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
def __form_tdml_query(self):
|
|
213
|
-
"""
|
|
214
|
-
Function to generate the analytical function queries. The function defines
|
|
215
|
-
variables and list of arguments required to form the query.
|
|
216
|
-
"""
|
|
217
|
-
# Generate temp table names for output table parameters if any.
|
|
218
|
-
self.__output_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_pathanalyzer0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
219
|
-
|
|
220
|
-
# Output table arguments list
|
|
221
|
-
self.__func_output_args_sql_names = ["OutputTable"]
|
|
222
|
-
self.__func_output_args = [self.__output_table_temp_tablename]
|
|
223
|
-
|
|
224
|
-
# Model Cataloging related attributes.
|
|
225
|
-
self._sql_specific_attributes = {}
|
|
226
|
-
self._sql_formula_attribute_mapper = {}
|
|
227
|
-
self._target_column = None
|
|
228
|
-
self._algorithm_name = None
|
|
229
|
-
|
|
230
|
-
# Generate lists for rest of the function arguments
|
|
231
|
-
self.__func_other_arg_sql_names = []
|
|
232
|
-
self.__func_other_args = []
|
|
233
|
-
self.__func_other_arg_json_datatypes = []
|
|
234
|
-
|
|
235
|
-
self.__func_other_arg_sql_names.append("SeqColumn")
|
|
236
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.seq_column, "\""), "'"))
|
|
237
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
238
|
-
|
|
239
|
-
if self.count_column is not None:
|
|
240
|
-
self.__func_other_arg_sql_names.append("CountColumn")
|
|
241
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.count_column, "\""), "'"))
|
|
242
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
243
|
-
|
|
244
|
-
if self.hash is not None and self.hash != False:
|
|
245
|
-
self.__func_other_arg_sql_names.append("HashCode")
|
|
246
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.hash, "'"))
|
|
247
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
248
|
-
|
|
249
|
-
if self.delimiter is not None and self.delimiter != ",":
|
|
250
|
-
self.__func_other_arg_sql_names.append("Delimiter")
|
|
251
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.delimiter, "'"))
|
|
252
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
253
|
-
|
|
254
|
-
# Generate lists for rest of the function arguments
|
|
255
|
-
sequence_input_by_list = []
|
|
256
|
-
if self.data_sequence_column is not None:
|
|
257
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
258
|
-
|
|
259
|
-
if len(sequence_input_by_list) > 0:
|
|
260
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
261
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
262
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
263
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
264
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
# Declare empty lists to hold input table information.
|
|
268
|
-
self.__func_input_arg_sql_names = []
|
|
269
|
-
self.__func_input_table_view_query = []
|
|
270
|
-
self.__func_input_dataframe_type = []
|
|
271
|
-
self.__func_input_distribution = []
|
|
272
|
-
self.__func_input_partition_by_cols = []
|
|
273
|
-
self.__func_input_order_by_cols = []
|
|
274
|
-
|
|
275
|
-
# Process data
|
|
276
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
277
|
-
self.__func_input_distribution.append("NONE")
|
|
278
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
279
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
280
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
281
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
282
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
283
|
-
|
|
284
|
-
function_name = "PathAnalyzer"
|
|
285
|
-
# Create instance to generate SQLMR.
|
|
286
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
287
|
-
self.__func_input_arg_sql_names,
|
|
288
|
-
self.__func_input_table_view_query,
|
|
289
|
-
self.__func_input_dataframe_type,
|
|
290
|
-
self.__func_input_distribution,
|
|
291
|
-
self.__func_input_partition_by_cols,
|
|
292
|
-
self.__func_input_order_by_cols,
|
|
293
|
-
self.__func_other_arg_sql_names,
|
|
294
|
-
self.__func_other_args,
|
|
295
|
-
self.__func_other_arg_json_datatypes,
|
|
296
|
-
self.__func_output_args_sql_names,
|
|
297
|
-
self.__func_output_args,
|
|
298
|
-
engine="ENGINE_ML")
|
|
299
|
-
# Invoke call to SQL-MR generation.
|
|
300
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
301
|
-
|
|
302
|
-
# Print SQL-MR query if requested to do so.
|
|
303
|
-
if display.print_sqlmr_query:
|
|
304
|
-
print(self.sqlmr_query)
|
|
305
|
-
|
|
306
|
-
# Set the algorithm name for Model Cataloging.
|
|
307
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
308
|
-
|
|
309
|
-
def __execute(self):
|
|
310
|
-
"""
|
|
311
|
-
Function to execute SQL-MR queries.
|
|
312
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
313
|
-
"""
|
|
314
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
315
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
316
|
-
try:
|
|
317
|
-
# Generate the output.
|
|
318
|
-
# TODO: Table not created to maintain backward compatibility with Vantage 1.0.
|
|
319
|
-
#UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
320
|
-
UtilFuncs._execute_query(self.sqlmr_query)
|
|
321
|
-
except Exception as emsg:
|
|
322
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
323
|
-
|
|
324
|
-
# Update output table data frames.
|
|
325
|
-
self._mlresults = []
|
|
326
|
-
self.output_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__output_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__output_table_temp_tablename))
|
|
327
|
-
# TODO: Table not created to maintain backward compatibility with Vantage 1.0.
|
|
328
|
-
#self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
329
|
-
self._mlresults.append(self.output_table)
|
|
330
|
-
#self._mlresults.append(self.output)
|
|
331
|
-
|
|
332
|
-
def show_query(self):
|
|
333
|
-
"""
|
|
334
|
-
Function to return the underlying SQL query.
|
|
335
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
336
|
-
"""
|
|
337
|
-
return self.sqlmr_query
|
|
338
|
-
|
|
339
|
-
def get_prediction_type(self):
|
|
340
|
-
"""
|
|
341
|
-
Function to return the Prediction type of the algorithm.
|
|
342
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
343
|
-
as saved in the Model Catalog.
|
|
344
|
-
"""
|
|
345
|
-
return self._prediction_type
|
|
346
|
-
|
|
347
|
-
def get_target_column(self):
|
|
348
|
-
"""
|
|
349
|
-
Function to return the Target Column of the algorithm.
|
|
350
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
351
|
-
as saved in the Model Catalog.
|
|
352
|
-
"""
|
|
353
|
-
return self._target_column
|
|
354
|
-
|
|
355
|
-
def get_build_time(self):
|
|
356
|
-
"""
|
|
357
|
-
Function to return the build time of the algorithm in seconds.
|
|
358
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
359
|
-
as saved in the Model Catalog.
|
|
360
|
-
"""
|
|
361
|
-
return self._build_time
|
|
362
|
-
|
|
363
|
-
def _get_algorithm_name(self):
|
|
364
|
-
"""
|
|
365
|
-
Function to return the name of the algorithm.
|
|
366
|
-
"""
|
|
367
|
-
return self._algorithm_name
|
|
368
|
-
|
|
369
|
-
def _get_sql_specific_attributes(self):
|
|
370
|
-
"""
|
|
371
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
372
|
-
"""
|
|
373
|
-
return self._sql_specific_attributes
|
|
374
|
-
|
|
375
|
-
@classmethod
|
|
376
|
-
def _from_model_catalog(cls,
|
|
377
|
-
output_table = None,
|
|
378
|
-
#output = None,
|
|
379
|
-
**kwargs):
|
|
380
|
-
"""
|
|
381
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
382
|
-
"""
|
|
383
|
-
kwargs.pop("output_table", None)
|
|
384
|
-
#kwargs.pop("output", None)
|
|
385
|
-
|
|
386
|
-
# Model Cataloging related attributes.
|
|
387
|
-
target_column = kwargs.pop("__target_column", None)
|
|
388
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
389
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
390
|
-
build_time = kwargs.pop("__build_time", None)
|
|
391
|
-
|
|
392
|
-
# Let's create an object of this class.
|
|
393
|
-
obj = cls(**kwargs)
|
|
394
|
-
obj.output_table = output_table
|
|
395
|
-
#obj.output = output
|
|
396
|
-
|
|
397
|
-
# Initialize the sqlmr_query class attribute.
|
|
398
|
-
obj.sqlmr_query = None
|
|
399
|
-
|
|
400
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
401
|
-
obj._sql_specific_attributes = None
|
|
402
|
-
obj._target_column = target_column
|
|
403
|
-
obj._prediction_type = prediction_type
|
|
404
|
-
obj._algorithm_name = algorithm_name
|
|
405
|
-
obj._build_time = build_time
|
|
406
|
-
|
|
407
|
-
# Update output table data frames.
|
|
408
|
-
obj._mlresults = []
|
|
409
|
-
obj.output_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_table))
|
|
410
|
-
#obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
411
|
-
obj._mlresults.append(obj.output_table)
|
|
412
|
-
#obj._mlresults.append(obj.output)
|
|
413
|
-
return obj
|
|
414
|
-
|
|
415
|
-
def __repr__(self):
|
|
416
|
-
"""
|
|
417
|
-
Returns the string representation for a PathAnalyzer class instance.
|
|
418
|
-
"""
|
|
419
|
-
# TODO:: Following lines of comments needs to be enabled, once support for Vantage 1.0 ends.
|
|
420
|
-
repr_string = ""
|
|
421
|
-
#repr_string="############ STDOUT Output ############"
|
|
422
|
-
#repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
423
|
-
repr_string="{}\n\n\n############ output_table Output ############".format(repr_string)
|
|
424
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output_table)
|
|
425
|
-
return repr_string
|
|
426
|
-
|