teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,513 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Rohit Khurd (rohit.khurd@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.15
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.common.formula import Formula
|
|
30
|
-
from teradataml.analytics.mle.NaiveBayes import NaiveBayes
|
|
31
|
-
|
|
32
|
-
class NaiveBayesPredict:
|
|
33
|
-
|
|
34
|
-
def __init__(self,
|
|
35
|
-
formula = None,
|
|
36
|
-
modeldata = None,
|
|
37
|
-
newdata = None,
|
|
38
|
-
id_col = None,
|
|
39
|
-
output_prob = False,
|
|
40
|
-
responses = None,
|
|
41
|
-
terms = None,
|
|
42
|
-
newdata_sequence_column = None,
|
|
43
|
-
modeldata_sequence_column = None,
|
|
44
|
-
newdata_order_column = None,
|
|
45
|
-
modeldata_order_column = None):
|
|
46
|
-
"""
|
|
47
|
-
DESCRIPTION:
|
|
48
|
-
The NaiveBayesPredict function uses the model output by the
|
|
49
|
-
NaiveBayes function to predict the outcomes for a test set
|
|
50
|
-
of data.
|
|
51
|
-
|
|
52
|
-
Note: This function is available only when teradataml is connected to
|
|
53
|
-
Vantage 1.1 or later versions.
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
PARAMETERS:
|
|
57
|
-
formula:
|
|
58
|
-
Optional Argument.
|
|
59
|
-
Required when the argument "modeldata" is teradataml DataFrame.
|
|
60
|
-
Specifies a string consisting of "formula" which was used to fit in model data.
|
|
61
|
-
Only basic formula of the "col1 ~ col2 + col3 +..." form is supported and
|
|
62
|
-
all variables must be from the same virtual DataFrame object. The
|
|
63
|
-
response should be column of type real, numeric, integer or boolean.
|
|
64
|
-
Types: str
|
|
65
|
-
|
|
66
|
-
modeldata:
|
|
67
|
-
Required Argument.
|
|
68
|
-
Specifies the teradataml DataFrame containing the model data.
|
|
69
|
-
This argument can accept teradataml DataFrame or
|
|
70
|
-
instance of NaiveBayes class.
|
|
71
|
-
|
|
72
|
-
modeldata_order_column:
|
|
73
|
-
Optional Argument.
|
|
74
|
-
Specifies Order By columns for modeldata.
|
|
75
|
-
Values to this argument can be provided as a list, if multiple
|
|
76
|
-
columns are used for ordering.
|
|
77
|
-
Types: str OR list of Strings (str)
|
|
78
|
-
|
|
79
|
-
newdata:
|
|
80
|
-
Required Argument.
|
|
81
|
-
Specifies the teradataml DataFrame that defines the input test data.
|
|
82
|
-
|
|
83
|
-
newdata_order_column:
|
|
84
|
-
Optional Argument.
|
|
85
|
-
Specifies Order By columns for newdata.
|
|
86
|
-
Values to this argument can be provided as a list, if multiple
|
|
87
|
-
columns are used for ordering.
|
|
88
|
-
Types: str OR list of Strings (str)
|
|
89
|
-
|
|
90
|
-
id_col:
|
|
91
|
-
Required Argument.
|
|
92
|
-
Specifies the name of the column that contains the ID that uniquely
|
|
93
|
-
identifies the test input data.
|
|
94
|
-
Types: str
|
|
95
|
-
|
|
96
|
-
output_prob:
|
|
97
|
-
Optional Argument.
|
|
98
|
-
Specifies whether to output probabilities.
|
|
99
|
-
Default Value: False
|
|
100
|
-
Types: bool
|
|
101
|
-
|
|
102
|
-
responses:
|
|
103
|
-
Optional Argument.
|
|
104
|
-
Specifies a list of responses to output.
|
|
105
|
-
Note: This argument is required when connected to Vantage prior to Vantage 1.1.1.
|
|
106
|
-
Types: str OR list of Strings (str)
|
|
107
|
-
|
|
108
|
-
terms:
|
|
109
|
-
Optional Argument.
|
|
110
|
-
Specifies the names of input teradataml DataFrame columns to copy to
|
|
111
|
-
the output teradataml DataFrame.
|
|
112
|
-
Types: str OR list of Strings (str)
|
|
113
|
-
|
|
114
|
-
newdata_sequence_column:
|
|
115
|
-
Optional Argument.
|
|
116
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
117
|
-
the input argument "newdata". The argument is used to ensure
|
|
118
|
-
deterministic results for functions which produce results that vary
|
|
119
|
-
from run to run.
|
|
120
|
-
Types: str OR list of Strings (str)
|
|
121
|
-
|
|
122
|
-
modeldata_sequence_column:
|
|
123
|
-
Optional Argument.
|
|
124
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
125
|
-
the input argument "modeldata". The argument is used to ensure
|
|
126
|
-
deterministic results for functions which produce results that vary
|
|
127
|
-
from run to run.
|
|
128
|
-
Types: str OR list of Strings (str)
|
|
129
|
-
|
|
130
|
-
RETURNS:
|
|
131
|
-
Instance of NaiveBayesPredict.
|
|
132
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
133
|
-
references, such as NaiveBayesPredictObj.<attribute_name>.
|
|
134
|
-
Output teradataml DataFrame attribute name is:
|
|
135
|
-
result
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
RAISES:
|
|
139
|
-
TeradataMlException
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
EXAMPLES:
|
|
143
|
-
# Load the data to run the example
|
|
144
|
-
load_example_data("NaiveBayesPredict",["nb_iris_input_test","nb_iris_input_train"])
|
|
145
|
-
|
|
146
|
-
# Create teradataml DataFrame objects.
|
|
147
|
-
nb_iris_input_train = DataFrame.from_table("nb_iris_input_train")
|
|
148
|
-
nb_iris_input_test = DataFrame.from_table("nb_iris_input_test")
|
|
149
|
-
|
|
150
|
-
# Example 1 -
|
|
151
|
-
# We will try to predict the 'species' for the flowers represented
|
|
152
|
-
# by the data points in the train data (nb_iris_input_train).
|
|
153
|
-
naivebayes_train = NaiveBayes(formula="species ~ petal_length + sepal_width + petal_width + sepal_length",
|
|
154
|
-
data=nb_iris_input_train)
|
|
155
|
-
|
|
156
|
-
# Use the generated model to predict the 'species' on the test data
|
|
157
|
-
# nb_iris_input_test by using naivebayes_train which is already
|
|
158
|
-
# in the sparse format.
|
|
159
|
-
naivebayes_predict_result = NaiveBayesPredict(newdata=nb_iris_input_test,
|
|
160
|
-
modeldata=naivebayes_train,
|
|
161
|
-
newdata_sequence_column=['sepal_width','petal_width'],
|
|
162
|
-
id_col='id',
|
|
163
|
-
responses=['virginica','setosa','versicolor'],
|
|
164
|
-
output_prob=False
|
|
165
|
-
)
|
|
166
|
-
|
|
167
|
-
# Print the result DataFrame
|
|
168
|
-
print(naivebayes_predict_result)
|
|
169
|
-
|
|
170
|
-
"""
|
|
171
|
-
|
|
172
|
-
# Start the timer to get the build time
|
|
173
|
-
_start_time = time.time()
|
|
174
|
-
|
|
175
|
-
self.formula = formula
|
|
176
|
-
self.modeldata = modeldata
|
|
177
|
-
self.newdata = newdata
|
|
178
|
-
self.id_col = id_col
|
|
179
|
-
self.output_prob = output_prob
|
|
180
|
-
self.responses = responses
|
|
181
|
-
self.terms = terms
|
|
182
|
-
self.newdata_sequence_column = newdata_sequence_column
|
|
183
|
-
self.modeldata_sequence_column = modeldata_sequence_column
|
|
184
|
-
self.newdata_order_column = newdata_order_column
|
|
185
|
-
self.modeldata_order_column = modeldata_order_column
|
|
186
|
-
|
|
187
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
188
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
189
|
-
self.__aed_utils = AedUtils()
|
|
190
|
-
|
|
191
|
-
# Create argument information matrix to do parameter checking
|
|
192
|
-
self.__arg_info_matrix = []
|
|
193
|
-
self.__arg_info_matrix.append(["formula", self.formula, True, "formula"])
|
|
194
|
-
self.__arg_info_matrix.append(["modeldata", self.modeldata, False, (DataFrame)])
|
|
195
|
-
self.__arg_info_matrix.append(["modeldata_order_column", self.modeldata_order_column, True, (str,list)])
|
|
196
|
-
self.__arg_info_matrix.append(["newdata", self.newdata, False, (DataFrame)])
|
|
197
|
-
self.__arg_info_matrix.append(["newdata_order_column", self.newdata_order_column, True, (str,list)])
|
|
198
|
-
self.__arg_info_matrix.append(["id_col", self.id_col, False, (str)])
|
|
199
|
-
self.__arg_info_matrix.append(["output_prob", self.output_prob, True, (bool)])
|
|
200
|
-
self.__arg_info_matrix.append(["responses", self.responses, True, (str,list)])
|
|
201
|
-
self.__arg_info_matrix.append(["terms", self.terms, True, (str,list)])
|
|
202
|
-
self.__arg_info_matrix.append(["newdata_sequence_column", self.newdata_sequence_column, True, (str,list)])
|
|
203
|
-
self.__arg_info_matrix.append(["modeldata_sequence_column", self.modeldata_sequence_column, True, (str,list)])
|
|
204
|
-
|
|
205
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
206
|
-
# Perform the function validations
|
|
207
|
-
self.__validate()
|
|
208
|
-
# Generate the ML query
|
|
209
|
-
self.__form_tdml_query()
|
|
210
|
-
# Execute ML query
|
|
211
|
-
self.__execute()
|
|
212
|
-
# Get the prediction type
|
|
213
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
214
|
-
|
|
215
|
-
# End the timer to get the build time
|
|
216
|
-
_end_time = time.time()
|
|
217
|
-
|
|
218
|
-
# Calculate the build time
|
|
219
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
220
|
-
|
|
221
|
-
def __validate(self):
|
|
222
|
-
"""
|
|
223
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
224
|
-
arguments, input argument and table types. Also processes the
|
|
225
|
-
argument values.
|
|
226
|
-
"""
|
|
227
|
-
if isinstance(self.modeldata, NaiveBayes):
|
|
228
|
-
self.formula = self.modeldata.formula
|
|
229
|
-
self.modeldata = self.modeldata._mlresults[0]
|
|
230
|
-
elif self.formula is None:
|
|
231
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.MISSING_ARGS, "formula"),
|
|
232
|
-
MessageCodes.MISSING_ARGS)
|
|
233
|
-
|
|
234
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
235
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
236
|
-
|
|
237
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
238
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
239
|
-
|
|
240
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
241
|
-
self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
|
|
242
|
-
self.__awu._validate_input_table_datatype(self.modeldata, "modeldata", NaiveBayes)
|
|
243
|
-
|
|
244
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
245
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
246
|
-
self.__awu._validate_input_columns_not_empty(self.id_col, "id_col")
|
|
247
|
-
self.__awu._validate_dataframe_has_argument_columns(self.id_col, "id_col", self.newdata, "newdata", False)
|
|
248
|
-
|
|
249
|
-
self.__awu._validate_input_columns_not_empty(self.terms, "terms")
|
|
250
|
-
self.__awu._validate_dataframe_has_argument_columns(self.terms, "terms", self.newdata, "newdata", False)
|
|
251
|
-
|
|
252
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_sequence_column, "newdata_sequence_column")
|
|
253
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_sequence_column, "newdata_sequence_column", self.newdata, "newdata", False)
|
|
254
|
-
|
|
255
|
-
self.__awu._validate_input_columns_not_empty(self.modeldata_sequence_column, "modeldata_sequence_column")
|
|
256
|
-
self.__awu._validate_dataframe_has_argument_columns(self.modeldata_sequence_column, "modeldata_sequence_column", self.modeldata, "modeldata", False)
|
|
257
|
-
|
|
258
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_order_column, "newdata_order_column")
|
|
259
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_order_column, "newdata_order_column", self.newdata, "newdata", False)
|
|
260
|
-
|
|
261
|
-
self.__awu._validate_input_columns_not_empty(self.modeldata_order_column, "modeldata_order_column")
|
|
262
|
-
self.__awu._validate_dataframe_has_argument_columns(self.modeldata_order_column, "modeldata_order_column", self.modeldata, "modeldata", False)
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
def __form_tdml_query(self):
|
|
266
|
-
"""
|
|
267
|
-
Function to generate the analytical function queries. The function defines
|
|
268
|
-
variables and list of arguments required to form the query.
|
|
269
|
-
"""
|
|
270
|
-
|
|
271
|
-
# Output table arguments list
|
|
272
|
-
self.__func_output_args_sql_names = []
|
|
273
|
-
self.__func_output_args = []
|
|
274
|
-
|
|
275
|
-
# Model Cataloging related attributes.
|
|
276
|
-
self._sql_specific_attributes = {}
|
|
277
|
-
self._sql_formula_attribute_mapper = {}
|
|
278
|
-
self._target_column = None
|
|
279
|
-
self._algorithm_name = None
|
|
280
|
-
|
|
281
|
-
# Generate lists for rest of the function arguments
|
|
282
|
-
self.__func_other_arg_sql_names = []
|
|
283
|
-
self.__func_other_args = []
|
|
284
|
-
self.__func_other_arg_json_datatypes = []
|
|
285
|
-
|
|
286
|
-
self.__func_other_arg_sql_names.append("IDColumn")
|
|
287
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.id_col, "\""), "'"))
|
|
288
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
289
|
-
|
|
290
|
-
if self.terms is not None:
|
|
291
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
292
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.terms, "\""), "'"))
|
|
293
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
294
|
-
|
|
295
|
-
if self.responses is not None:
|
|
296
|
-
self.__func_other_arg_sql_names.append("Responses")
|
|
297
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.responses, "'"))
|
|
298
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
299
|
-
|
|
300
|
-
if self.output_prob is not None and self.output_prob != False:
|
|
301
|
-
self.__func_other_arg_sql_names.append("OutputProb")
|
|
302
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_prob, "'"))
|
|
303
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
304
|
-
|
|
305
|
-
# Generate lists for rest of the function arguments
|
|
306
|
-
sequence_input_by_list = []
|
|
307
|
-
if self.newdata_sequence_column is not None:
|
|
308
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.newdata_sequence_column, ""))
|
|
309
|
-
|
|
310
|
-
if self.modeldata_sequence_column is not None:
|
|
311
|
-
sequence_input_by_list.append("model:" + UtilFuncs._teradata_collapse_arglist(self.modeldata_sequence_column, ""))
|
|
312
|
-
|
|
313
|
-
if len(sequence_input_by_list) > 0:
|
|
314
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
315
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
316
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
317
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
318
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
319
|
-
|
|
320
|
-
# Let's process formula argument
|
|
321
|
-
self.formula = self.__awu._validate_formula_notation(self.formula, self.newdata, "formula")
|
|
322
|
-
# Target Column
|
|
323
|
-
self._target_column = self.formula._get_dependent_vars()
|
|
324
|
-
# numerical input columns
|
|
325
|
-
__numeric_columns = self.__awu._get_columns_by_type(self.formula, self.newdata, "numerical")
|
|
326
|
-
if len(__numeric_columns) > 0:
|
|
327
|
-
self.__func_other_arg_sql_names.append("NumericInputs")
|
|
328
|
-
numerical_columns_list = UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(__numeric_columns, "\""), "'")
|
|
329
|
-
self.__func_other_args.append(numerical_columns_list)
|
|
330
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
331
|
-
self._sql_specific_attributes["NumericInputs"] = numerical_columns_list
|
|
332
|
-
self._sql_formula_attribute_mapper["NumericInputs"] = "__numeric_columns"
|
|
333
|
-
|
|
334
|
-
# categorical input columns
|
|
335
|
-
__categorical_columns = self.__awu._get_columns_by_type(self.formula, self.newdata, "categorical")
|
|
336
|
-
if len(__categorical_columns) > 0:
|
|
337
|
-
self.__func_other_arg_sql_names.append("CategoricalInputs")
|
|
338
|
-
categorical_columns_list = UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(__categorical_columns, "\""), "'")
|
|
339
|
-
self.__func_other_args.append(categorical_columns_list)
|
|
340
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
341
|
-
self._sql_specific_attributes["CategoricalInputs"] = categorical_columns_list
|
|
342
|
-
self._sql_formula_attribute_mapper["CategoricalInputs"] = "__categorical_columns"
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
# Declare empty lists to hold input table information.
|
|
346
|
-
self.__func_input_arg_sql_names = []
|
|
347
|
-
self.__func_input_table_view_query = []
|
|
348
|
-
self.__func_input_dataframe_type = []
|
|
349
|
-
self.__func_input_distribution = []
|
|
350
|
-
self.__func_input_partition_by_cols = []
|
|
351
|
-
self.__func_input_order_by_cols = []
|
|
352
|
-
|
|
353
|
-
# Process newdata
|
|
354
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.newdata, False)
|
|
355
|
-
self.__func_input_distribution.append("FACT")
|
|
356
|
-
self.__func_input_arg_sql_names.append("input")
|
|
357
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
358
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
359
|
-
self.__func_input_partition_by_cols.append("ANY")
|
|
360
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.newdata_order_column, "\""))
|
|
361
|
-
|
|
362
|
-
# Process modeldata
|
|
363
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.modeldata, False)
|
|
364
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
365
|
-
self.__func_input_arg_sql_names.append("model")
|
|
366
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
367
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
368
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
369
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.modeldata_order_column, "\""))
|
|
370
|
-
|
|
371
|
-
function_name = "NaiveBayesPredict"
|
|
372
|
-
# Create instance to generate SQLMR.
|
|
373
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
374
|
-
self.__func_input_arg_sql_names,
|
|
375
|
-
self.__func_input_table_view_query,
|
|
376
|
-
self.__func_input_dataframe_type,
|
|
377
|
-
self.__func_input_distribution,
|
|
378
|
-
self.__func_input_partition_by_cols,
|
|
379
|
-
self.__func_input_order_by_cols,
|
|
380
|
-
self.__func_other_arg_sql_names,
|
|
381
|
-
self.__func_other_args,
|
|
382
|
-
self.__func_other_arg_json_datatypes,
|
|
383
|
-
self.__func_output_args_sql_names,
|
|
384
|
-
self.__func_output_args,
|
|
385
|
-
engine="ENGINE_ML")
|
|
386
|
-
# Invoke call to SQL-MR generation.
|
|
387
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
388
|
-
|
|
389
|
-
# Print SQL-MR query if requested to do so.
|
|
390
|
-
if display.print_sqlmr_query:
|
|
391
|
-
print(self.sqlmr_query)
|
|
392
|
-
|
|
393
|
-
# Set the algorithm name for Model Cataloging.
|
|
394
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
395
|
-
|
|
396
|
-
def __execute(self):
|
|
397
|
-
"""
|
|
398
|
-
Function to execute SQL-MR queries.
|
|
399
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
400
|
-
"""
|
|
401
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
402
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
403
|
-
try:
|
|
404
|
-
# Generate the output.
|
|
405
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
406
|
-
except Exception as emsg:
|
|
407
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
408
|
-
|
|
409
|
-
# Update output table data frames.
|
|
410
|
-
self._mlresults = []
|
|
411
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
412
|
-
self._mlresults.append(self.result)
|
|
413
|
-
|
|
414
|
-
def show_query(self):
|
|
415
|
-
"""
|
|
416
|
-
Function to return the underlying SQL query.
|
|
417
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
418
|
-
"""
|
|
419
|
-
return self.sqlmr_query
|
|
420
|
-
|
|
421
|
-
def get_prediction_type(self):
|
|
422
|
-
"""
|
|
423
|
-
Function to return the Prediction type of the algorithm.
|
|
424
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
425
|
-
as saved in the Model Catalog.
|
|
426
|
-
"""
|
|
427
|
-
return self._prediction_type
|
|
428
|
-
|
|
429
|
-
def get_target_column(self):
|
|
430
|
-
"""
|
|
431
|
-
Function to return the Target Column of the algorithm.
|
|
432
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
433
|
-
as saved in the Model Catalog.
|
|
434
|
-
"""
|
|
435
|
-
return self._target_column
|
|
436
|
-
|
|
437
|
-
def get_build_time(self):
|
|
438
|
-
"""
|
|
439
|
-
Function to return the build time of the algorithm in seconds.
|
|
440
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
441
|
-
as saved in the Model Catalog.
|
|
442
|
-
"""
|
|
443
|
-
return self._build_time
|
|
444
|
-
|
|
445
|
-
def _get_algorithm_name(self):
|
|
446
|
-
"""
|
|
447
|
-
Function to return the name of the algorithm.
|
|
448
|
-
"""
|
|
449
|
-
return self._algorithm_name
|
|
450
|
-
|
|
451
|
-
def _get_sql_specific_attributes(self):
|
|
452
|
-
"""
|
|
453
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
454
|
-
"""
|
|
455
|
-
return self._sql_specific_attributes
|
|
456
|
-
|
|
457
|
-
@classmethod
|
|
458
|
-
def _from_model_catalog(cls,
|
|
459
|
-
result = None,
|
|
460
|
-
**kwargs):
|
|
461
|
-
"""
|
|
462
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
463
|
-
"""
|
|
464
|
-
kwargs.pop("result", None)
|
|
465
|
-
|
|
466
|
-
# Model Cataloging related attributes.
|
|
467
|
-
target_column = kwargs.pop("__target_column", None)
|
|
468
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
469
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
470
|
-
build_time = kwargs.pop("__build_time", None)
|
|
471
|
-
|
|
472
|
-
# Initialize the formula attributes.
|
|
473
|
-
__response_column = kwargs.pop("__response_column", None)
|
|
474
|
-
__all_columns = kwargs.pop("__all_columns", None)
|
|
475
|
-
__numeric_columns = kwargs.pop("__numeric_columns", None)
|
|
476
|
-
__categorical_columns = kwargs.pop("__categorical_columns", None)
|
|
477
|
-
|
|
478
|
-
# Let's create an object of this class.
|
|
479
|
-
obj = cls(**kwargs)
|
|
480
|
-
obj.result = result
|
|
481
|
-
|
|
482
|
-
# Initialize the sqlmr_query class attribute.
|
|
483
|
-
obj.sqlmr_query = None
|
|
484
|
-
|
|
485
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
486
|
-
obj._sql_specific_attributes = None
|
|
487
|
-
obj._target_column = target_column
|
|
488
|
-
obj._prediction_type = prediction_type
|
|
489
|
-
obj._algorithm_name = algorithm_name
|
|
490
|
-
obj._build_time = build_time
|
|
491
|
-
|
|
492
|
-
# Initialize the formula.
|
|
493
|
-
if obj.formula is not None:
|
|
494
|
-
obj.formula = Formula._from_formula_attr(obj.formula,
|
|
495
|
-
__response_column,
|
|
496
|
-
__all_columns,
|
|
497
|
-
__categorical_columns,
|
|
498
|
-
__numeric_columns)
|
|
499
|
-
|
|
500
|
-
# Update output table data frames.
|
|
501
|
-
obj._mlresults = []
|
|
502
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
503
|
-
obj._mlresults.append(obj.result)
|
|
504
|
-
return obj
|
|
505
|
-
|
|
506
|
-
def __repr__(self):
|
|
507
|
-
"""
|
|
508
|
-
Returns the string representation for a NaiveBayesPredict class instance.
|
|
509
|
-
"""
|
|
510
|
-
repr_string="############ STDOUT Output ############"
|
|
511
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
512
|
-
return repr_string
|
|
513
|
-
|