teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,573 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2020 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Gouri Patwardhan (gouri.patwardhan@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.2
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class Correlation2:
31
-
32
- def __init__(self,
33
- data = None,
34
- target_column_pairs = None,
35
- target_columns = None,
36
- partition_columns = None,
37
- exception_attribute = None,
38
- vif = False,
39
- vif_summary = None,
40
- vif_threshold = 10.0,
41
- data_sequence_column = None):
42
- """
43
- DESCRIPTION:
44
- The Correlation2 function computes correlations between specified
45
- pairs of teradataml DataFrame columns. Measuring correlation lets you
46
- determine if the value of one variable is useful in predicting the
47
- value of another. You can also use Correlation2 to detect and remove
48
- collinearity in input data by computing variance inflation factor
49
- (VIF).
50
- Note:
51
- 1. This function is supported only on Vantage 1.3 or later.
52
- 2. Teradata recommends to use Correlation2 on Vantage 1.3 instead of Correlation.
53
-
54
- PARAMETERS:
55
- data:
56
- Required Argument.
57
- Specifies the input teradataml DataFrame that contains the Xi and Yi pairs.
58
-
59
- target_column_pairs:
60
- Required when the argument "vif" is set to 'False', disallowed otherwise.
61
- Specifies pairs of columns for which correlations are to be calculated.
62
- For each column pair, "col_name1:col_name2", the function calculates
63
- the correlation between col_name1 and col_name2.
64
- For each column range, "[col_index1:col_index2]", the function calculates
65
- the correlation between every pair of columns in the range.
66
- For example, if you specify "[1:3]", the function calculates the correlation
67
- between the pairs (1,2), (1,3), (2,3),(1,1),(3,3). The mininum value of
68
- col_index1 is 0 and col_index1 must be less than col_index2.
69
- Types: str OR list of Strings (str)
70
-
71
- target_columns:
72
- Required when the argument "vif" is set to 'True', disallowed otherwise.
73
- Specifies the names of the target columns for which to compare the VIF
74
- with the specified vif_threshold.
75
- Types: str OR list of Strings (str)
76
-
77
- partition_columns:
78
- Optional Argument.
79
- Specifies the names of the input columns that define the group for
80
- calculating correlation. By default, all input columns belong to a
81
- single group, for which the function is calculating correlation.
82
- Types: str OR list of Strings (str)
83
-
84
- exception_attribute:
85
- Optional when argument "vif" is set to 'True', disallowed otherwise.
86
- Specifies the name of the column that will not be eliminated even if
87
- VIF score is larger than the value in "vif_threshold" argument.
88
- Types: str
89
- Note:
90
- Values in "exception_attribute" must also be specified in the
91
- argument "target_columns".
92
-
93
- vif:
94
- Optional Argument.
95
- Specifies whether the function computes the VIF score or not.
96
- Default Value: False
97
- Types: bool
98
-
99
- vif_threshold:
100
- Optional when the argument "vif" is set to 'True', disallowed otherwise.
101
- Specifies the threshold for calculated VIF score.
102
- If the VIF score for a predictor is above this threshold,
103
- we can eliminate it in the modeling process.
104
- To detect significant collinearity, specify a vif_threshold in [5.0, 20.0].
105
- Default Value: 10.0
106
- Types: float
107
-
108
-
109
- vif_summary:
110
- Optional when the argument "vif" is set to 'True', disallowed otherwise.
111
- Specifies whether to output the final VIF scores or VIF scores from
112
- each iteration of the algorithm.
113
- When set to 'True', final VIF score is displayed.
114
- When set to 'False', VIF score at the end of each iteration is displayed.
115
- Default Value: True
116
- Types: bool
117
-
118
- data_sequence_column:
119
- Optional Argument.
120
- Specifies the list of column(s) that uniquely identifies each row of
121
- the input argument "data". The argument is used to ensure
122
- deterministic results for functions which produce results that vary
123
- from run to run.
124
- Types: str OR list of Strings (str)
125
-
126
- RETURNS:
127
- Instance of Correlation2.
128
- Output teradataml DataFrames can be accessed using attribute
129
- references, such as Correlation2Obj.<attribute_name>.
130
- Output teradataml DataFrame attribute names are:
131
- 1. correlation_data
132
- 2. output
133
-
134
-
135
- RAISES:
136
- TeradataMlException
137
-
138
-
139
- EXAMPLES:
140
- # Load example data.
141
- load_example_data("correlation", "corr_input")
142
-
143
- # Create teradataml DataFrame objects.
144
- corr_input = DataFrame.from_table("corr_input")
145
-
146
- # Example 1: The function calculates the correlation between each pair of columns
147
- # in the "target_column_pairs" argument. This example compares GDP to GDPdeflator,
148
- # the employed population to GDP, the number of people unemployed, and the number
149
- # of people in the armed forces.
150
- Correlation_out1 = Correlation2(data = corr_input,
151
- target_column_pairs = ["[2:3]", "employed:gdp",
152
- "employed:unemployed", "employed:armedforces"],
153
- partition_columns = ["state"]
154
- )
155
-
156
- # Print the correlation_data DataFrame.
157
- print(Correlation_out1.correlation_data)
158
-
159
- # Example 2: This example does not use "vif" and omits the "partition_columns"
160
- # argument, so the function determines the correlation values for the overall
161
- # population and does not group the data by state.
162
- Correlation_out2 = Correlation2(data = corr_input,
163
- target_column_pairs = ["[2:3]", "employed:gdp",
164
- "employed:unemployed", "employed:armedforces"]
165
- )
166
-
167
- # Print the correlation_data DataFrame.
168
- print(Correlation_out2.correlation_data)
169
-
170
- # Example 3: This example sets "vif" argument to 'True' but does not specify
171
- # the "exception_attribute" argument.
172
- Correlation_out3 = Correlation2(data = corr_input,
173
- target_columns = ["gdp", "unemployed", "armedforces", "employed"],
174
- partition_columns = ["state"],
175
- vif = True,
176
- vif_threshold = 10.0
177
- )
178
-
179
- # Print the correlation_data DataFrame.
180
- print(Correlation_out3.correlation_data)
181
-
182
- # Example 4: This example uses "vif" argument and specifies the
183
- # "exception_attribute" argument.
184
- Correlation_out4 = Correlation2(data = corr_input,
185
- target_columns = ["gdp", "unemployed", "armedforces", "employed"],
186
- partition_columns = ["state"],
187
- exception_attribute = "gdp",
188
- vif = True,
189
- vif_threshold = 10.0
190
- )
191
-
192
- # Print the correlation_data DataFrame.
193
- print(Correlation_out4.correlation_data)
194
-
195
- # Example 5: This example sets "vif" argument to 'True', specifies the
196
- # "exception_attribute" argument and sets "vif_summary" argument to 'False'
197
- # to display only final VIF scores.
198
- Correlation_out5 = Correlation2(data = corr_input,
199
- target_columns = ["gdp", "unemployed", "armedforces", "employed"],
200
- partition_columns = ["state"],
201
- exception_attribute = "gdp",
202
- vif = True,
203
- vif_summary = False,
204
- vif_threshold = 10.0
205
- )
206
-
207
- # Print the correlation_data DataFrame.
208
- print(Correlation_out5.correlation_data)
209
-
210
- # Example 6: This example uses "target_columns" and "partition_columns"
211
- # as column ranges to display only final VIF scores.
212
- Correlation_out6 = Correlation2(data = corr_input,
213
- target_columns = ["gdp:employed"],
214
- partition_columns = ["state:armedforces"],
215
- exception_attribute = "gdp",
216
- vif = True,
217
- vif_summary = False,
218
- vif_threshold = 10.0
219
- )
220
-
221
- # Print the correlation_data DataFrame.
222
- print(Correlation_out6.correlation_data)
223
-
224
- """
225
- # Start the timer to get the build time
226
- _start_time = time.time()
227
-
228
- self.data = data
229
- self.target_column_pairs = target_column_pairs
230
- self.target_columns = target_columns
231
- self.partition_columns = partition_columns
232
- self.exception_attribute = exception_attribute
233
- self.vif = vif
234
- self.vif_summary = vif_summary
235
- self.vif_threshold = vif_threshold
236
- self.data_sequence_column = data_sequence_column
237
-
238
- # Create TeradataPyWrapperUtils instance which contains validation functions.
239
- self.__awu = AnalyticsWrapperUtils()
240
- self.__aed_utils = AedUtils()
241
-
242
- # Create argument information matrix to do parameter checking
243
- self.__arg_info_matrix = []
244
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
245
- self.__arg_info_matrix.append(["target_column_pairs", self.target_column_pairs, True, (str,list)])
246
- self.__arg_info_matrix.append(["target_columns", self.target_columns, True, (str,list)])
247
- self.__arg_info_matrix.append(["partition_columns", self.partition_columns, True, (str,list)])
248
- self.__arg_info_matrix.append(["exception_attribute", self.exception_attribute, True, (str)])
249
- self.__arg_info_matrix.append(["vif", self.vif, True, (bool)])
250
- self.__arg_info_matrix.append(["vif_summary", self.vif_summary, True, (bool)])
251
- self.__arg_info_matrix.append(["vif_threshold", self.vif_threshold, True, (float)])
252
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
253
-
254
- if inspect.stack()[1][3] != '_from_model_catalog':
255
- # Perform the function validations
256
- self.__validate()
257
- # Generate the ML query
258
- self.__form_tdml_query()
259
- # Execute ML query
260
- self.__execute()
261
- # Get the prediction type
262
- self._prediction_type = self.__awu._get_function_prediction_type(self)
263
-
264
- # End the timer to get the build time
265
- _end_time = time.time()
266
-
267
- # Calculate the build time
268
- self._build_time = (int)(_end_time - _start_time)
269
-
270
- def __validate(self):
271
- """
272
- Function to validate sqlmr function arguments, which verifies missing
273
- arguments, input argument and table types. Also processes the
274
- argument values.
275
- """
276
-
277
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
278
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
279
-
280
- # Make sure that a non-NULL value has been supplied correct type of argument
281
- self.__awu._validate_argument_types(self.__arg_info_matrix)
282
-
283
- # Check to make sure input table types are strings or data frame objects or of valid type.
284
- self.__awu._validate_input_table_datatype(self.data, "data", None)
285
-
286
- if self.vif:
287
- if self.target_columns is None:
288
- raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
289
- 'target_columns',
290
- 'vif=True'
291
- ),
292
- MessageCodes.DEPENDENT_ARG_MISSING)
293
- if self.target_column_pairs is not None:
294
- raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARGUMENT,
295
- 'target_column_pairs',
296
- 'vif=False'
297
- ),
298
- MessageCodes.DEPENDENT_ARGUMENT)
299
-
300
- if not self.vif:
301
- if self.target_columns is not None:
302
- raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARGUMENT,
303
- 'target_columns',
304
- 'vif=True'
305
- ),
306
- MessageCodes.DEPENDENT_ARGUMENT)
307
-
308
- if self.target_column_pairs is None:
309
- raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
310
- 'target_column_pairs',
311
- 'vif=False'
312
- ),
313
- MessageCodes.DEPENDENT_ARG_MISSING)
314
-
315
- if self.exception_attribute is not None:
316
- raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARGUMENT,
317
- 'exception_attribute',
318
- 'vif=True'
319
- ),
320
- MessageCodes.DEPENDENT_ARGUMENT)
321
-
322
- if self.vif_summary is not None and self.vif_summary != True:
323
- raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARGUMENT,
324
- 'vif_summary',
325
- 'vif=True'
326
- ),
327
- MessageCodes.DEPENDENT_ARGUMENT)
328
-
329
- if self.vif_threshold is not None and self.vif_threshold != 10.0:
330
- raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARGUMENT,
331
- 'vif_threshold',
332
- 'vif=True'
333
- ),
334
- MessageCodes.DEPENDENT_ARGUMENT)
335
-
336
- # Check whether the input columns passed to the argument are not empty.
337
- self.__awu._validate_input_columns_not_empty(self.target_column_pairs, "target_column_pairs")
338
-
339
- self.__awu._validate_input_columns_not_empty(self.target_columns, "target_columns")
340
- self.__awu._validate_dataframe_has_argument_columns(self.target_columns, "target_columns", self.data,"data", False)
341
-
342
- self.__awu._validate_input_columns_not_empty(self.partition_columns, "partition_columns")
343
- self.__awu._validate_dataframe_has_argument_columns(self.partition_columns, "partition_columns", self.data, "data",False)
344
-
345
- self.__awu._validate_input_columns_not_empty(self.exception_attribute, "exception_attribute")
346
- self.__awu._validate_dataframe_has_argument_columns(self.exception_attribute, "exception_attribute", self.data, "data", False)
347
-
348
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
349
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column",
350
- self.data, "data", False)
351
-
352
- def __form_tdml_query(self):
353
- """
354
- Function to generate the analytical function queries. The function defines
355
- variables and list of arguments required to form the query.
356
- """
357
- # Generate temp table names for output table parameters if any.
358
- self.__output_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix = "td_Correlation20", use_default_database = True, gc_on_quit = True, quote=False, table_type = TeradataConstants.TERADATA_TABLE)
359
-
360
- # Output table arguments list
361
- self.__func_output_args_sql_names = ["OutputTable"]
362
- self.__func_output_args = [self.__output_table_temp_tablename]
363
-
364
- # Model Cataloging related attributes.
365
- self._sql_specific_attributes = {}
366
- self._sql_formula_attribute_mapper = {}
367
- self._target_column = None
368
- self._algorithm_name = None
369
-
370
- # Generate lists for rest of the function arguments
371
- self.__func_other_arg_sql_names = []
372
- self.__func_other_args = []
373
- self.__func_other_arg_json_datatypes = []
374
-
375
- if self.target_column_pairs is not None:
376
- self.__func_other_arg_sql_names.append("TargetColumnPairs")
377
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.target_column_pairs,"\""),"'"))
378
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
379
-
380
- if self.target_columns is not None:
381
- self.__func_other_arg_sql_names.append("TargetColumns")
382
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.target_columns,"\""),"'"))
383
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
384
-
385
- if self.partition_columns is not None:
386
- self.__func_other_arg_sql_names.append("PartitionColumns")
387
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.partition_columns,"\""),"'"))
388
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
389
-
390
- if self.exception_attribute is not None:
391
- self.__func_other_arg_sql_names.append("ExceptionAttribute")
392
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.exception_attribute,"\""),"'"))
393
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
394
-
395
- if self.vif is not None and self.vif != False:
396
- self.__func_other_arg_sql_names.append("VIF")
397
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.vif,"'"))
398
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
399
-
400
- if self.vif_summary is not None and self.vif_summary != True:
401
- self.__func_other_arg_sql_names.append("OutputSummary")
402
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.vif_summary,"'"))
403
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
404
-
405
- if self.vif_threshold is not None and self.vif_threshold != 10.0:
406
- self.__func_other_arg_sql_names.append("VIFThreshold")
407
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.vif_threshold,"'"))
408
- self.__func_other_arg_json_datatypes.append("DOUBLE")
409
-
410
- # Generate lists for rest of the function arguments
411
- sequence_input_by_list = []
412
- if self.data_sequence_column is not None:
413
- sequence_input_by_list.append(
414
- "InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
415
-
416
- if len(sequence_input_by_list) > 0:
417
- self.__func_other_arg_sql_names.append("SequenceInputBy")
418
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'"))
419
- self.__func_other_arg_json_datatypes.append("STRING")
420
-
421
- # Declare empty lists to hold input table information.
422
- self.__func_input_arg_sql_names = []
423
- self.__func_input_table_view_query = []
424
- self.__func_input_dataframe_type = []
425
- self.__func_input_distribution = []
426
- self.__func_input_partition_by_cols = []
427
- self.__func_input_order_by_cols = []
428
-
429
- # Process data
430
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
431
- self.__func_input_distribution.append("NONE")
432
- self.__func_input_arg_sql_names.append("InputTable")
433
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
434
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
435
- self.__func_input_partition_by_cols.append("NA_character_")
436
- self.__func_input_order_by_cols.append("NA_character_")
437
-
438
- function_name = "Correlation2"
439
- # Create instance to generate SQLMR.
440
- self.__aqg_obj = AnalyticQueryGenerator(function_name
441
- ,self.__func_input_arg_sql_names
442
- ,self.__func_input_table_view_query
443
- ,self.__func_input_dataframe_type
444
- ,self.__func_input_distribution
445
- ,self.__func_input_partition_by_cols
446
- ,self.__func_input_order_by_cols
447
- ,self.__func_other_arg_sql_names
448
- ,self.__func_other_args
449
- ,self.__func_other_arg_json_datatypes
450
- ,self.__func_output_args_sql_names
451
- ,self.__func_output_args
452
- ,engine = "ENGINE_ML")
453
- # Invoke call to SQL-MR generation.
454
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
455
-
456
- # Print SQL-MR query if requested to do so.
457
- if display.print_sqlmr_query:
458
- print(self.sqlmr_query)
459
-
460
- # Set the algorithm name for Model Cataloging.
461
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
462
-
463
- def __execute(self):
464
- """
465
- Function to execute SQL-MR queries.
466
- Create DataFrames for the required SQL-MR outputs.
467
- """
468
- # Generate STDOUT table name and add it to the output table list.
469
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix = "td_sqlmr_out_", use_default_database = True, gc_on_quit = True, quote=False, table_type = TeradataConstants.TERADATA_TABLE)
470
- try:
471
- UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
472
- except Exception as emsg:
473
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
474
-
475
- # Update output table data frames.
476
- self._mlresults = []
477
- self.correlation_data = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__output_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__output_table_temp_tablename))
478
- self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
479
- self._mlresults.append(self.correlation_data)
480
- self._mlresults.append(self.output)
481
-
482
- def show_query(self):
483
- """
484
- Function to return the underlying SQL query.
485
- When model object is created using retrieve_model(), then None is returned.
486
- """
487
- return self.sqlmr_query
488
-
489
- def get_prediction_type(self):
490
- """
491
- Function to return the Prediction type of the algorithm.
492
- When model object is created using retrieve_model(), then the value returned is
493
- as saved in the Model Catalog.
494
- """
495
- return self._prediction_type
496
-
497
- def get_target_column(self):
498
- """
499
- Function to return the Target Column of the algorithm.
500
- When model object is created using retrieve_model(), then the value returned is
501
- as saved in the Model Catalog.
502
- """
503
- return self._target_column
504
-
505
- def get_build_time(self):
506
- """
507
- Function to return the build time of the algorithm in seconds.
508
- When model object is created using retrieve_model(), then the value returned is
509
- as saved in the Model Catalog.
510
- """
511
- return self._build_time
512
-
513
- def _get_algorithm_name(self):
514
- """
515
- Function to return the name of the algorithm.
516
- """
517
- return self._algorithm_name
518
-
519
- def _get_sql_specific_attributes(self):
520
- """
521
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
522
- """
523
- return self._sql_specific_attributes
524
-
525
- @classmethod
526
- def _from_model_catalog(cls,
527
- correlation_data = None,
528
- output = None,
529
- **kwargs):
530
- """
531
- Classmethod which will be used by Model Cataloging, to instantiate this wrapper class.
532
- """
533
- kwargs.pop("correlation_data", None)
534
- kwargs.pop("output", None)
535
-
536
- # Model Cataloging related attributes.
537
- target_column = kwargs.pop("__target_column", None)
538
- prediction_type = kwargs.pop("__prediction_type", None)
539
- algorithm_name = kwargs.pop("__algorithm_name", None)
540
- build_time = kwargs.pop("__build_time", None)
541
-
542
- # Let's create an object of this class.
543
- obj = cls(**kwargs)
544
- obj.correlation_data = correlation_data
545
- obj.output = output
546
-
547
- # Initialize the sqlmr_query class attribute.
548
- obj.sqlmr_query = None
549
-
550
- # Initialize the SQL specific Model Cataloging attributes.
551
- obj._sql_specific_attributes = None
552
- obj._target_column = target_column
553
- obj._prediction_type = prediction_type
554
- obj._algorithm_name = algorithm_name
555
- obj._build_time = build_time
556
-
557
- # Update output table data frames.
558
- obj._mlresults = []
559
- obj.correlation_data = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.correlation_data), source_type="table", database_name=UtilFuncs._extract_db_name(obj.correlation_data))
560
- obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
561
- obj._mlresults.append(obj.correlation_data)
562
- obj._mlresults.append(obj.output)
563
- return obj
564
-
565
- def __repr__(self):
566
- """
567
- Returns the string representation for a Correlation2 class instance.
568
- """
569
- repr_string="############ STDOUT Output ############"
570
- repr_string = "{}\n\n{}".format(repr_string,self.output)
571
- repr_string="{}\n\n\n############ correlation_data Output ############".format(repr_string)
572
- repr_string = "{}\n\n{}".format(repr_string,self.correlation_data)
573
- return repr_string