teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,573 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2020 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Gouri Patwardhan (gouri.patwardhan@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.2
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class Correlation2:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
target_column_pairs = None,
|
|
35
|
-
target_columns = None,
|
|
36
|
-
partition_columns = None,
|
|
37
|
-
exception_attribute = None,
|
|
38
|
-
vif = False,
|
|
39
|
-
vif_summary = None,
|
|
40
|
-
vif_threshold = 10.0,
|
|
41
|
-
data_sequence_column = None):
|
|
42
|
-
"""
|
|
43
|
-
DESCRIPTION:
|
|
44
|
-
The Correlation2 function computes correlations between specified
|
|
45
|
-
pairs of teradataml DataFrame columns. Measuring correlation lets you
|
|
46
|
-
determine if the value of one variable is useful in predicting the
|
|
47
|
-
value of another. You can also use Correlation2 to detect and remove
|
|
48
|
-
collinearity in input data by computing variance inflation factor
|
|
49
|
-
(VIF).
|
|
50
|
-
Note:
|
|
51
|
-
1. This function is supported only on Vantage 1.3 or later.
|
|
52
|
-
2. Teradata recommends to use Correlation2 on Vantage 1.3 instead of Correlation.
|
|
53
|
-
|
|
54
|
-
PARAMETERS:
|
|
55
|
-
data:
|
|
56
|
-
Required Argument.
|
|
57
|
-
Specifies the input teradataml DataFrame that contains the Xi and Yi pairs.
|
|
58
|
-
|
|
59
|
-
target_column_pairs:
|
|
60
|
-
Required when the argument "vif" is set to 'False', disallowed otherwise.
|
|
61
|
-
Specifies pairs of columns for which correlations are to be calculated.
|
|
62
|
-
For each column pair, "col_name1:col_name2", the function calculates
|
|
63
|
-
the correlation between col_name1 and col_name2.
|
|
64
|
-
For each column range, "[col_index1:col_index2]", the function calculates
|
|
65
|
-
the correlation between every pair of columns in the range.
|
|
66
|
-
For example, if you specify "[1:3]", the function calculates the correlation
|
|
67
|
-
between the pairs (1,2), (1,3), (2,3),(1,1),(3,3). The mininum value of
|
|
68
|
-
col_index1 is 0 and col_index1 must be less than col_index2.
|
|
69
|
-
Types: str OR list of Strings (str)
|
|
70
|
-
|
|
71
|
-
target_columns:
|
|
72
|
-
Required when the argument "vif" is set to 'True', disallowed otherwise.
|
|
73
|
-
Specifies the names of the target columns for which to compare the VIF
|
|
74
|
-
with the specified vif_threshold.
|
|
75
|
-
Types: str OR list of Strings (str)
|
|
76
|
-
|
|
77
|
-
partition_columns:
|
|
78
|
-
Optional Argument.
|
|
79
|
-
Specifies the names of the input columns that define the group for
|
|
80
|
-
calculating correlation. By default, all input columns belong to a
|
|
81
|
-
single group, for which the function is calculating correlation.
|
|
82
|
-
Types: str OR list of Strings (str)
|
|
83
|
-
|
|
84
|
-
exception_attribute:
|
|
85
|
-
Optional when argument "vif" is set to 'True', disallowed otherwise.
|
|
86
|
-
Specifies the name of the column that will not be eliminated even if
|
|
87
|
-
VIF score is larger than the value in "vif_threshold" argument.
|
|
88
|
-
Types: str
|
|
89
|
-
Note:
|
|
90
|
-
Values in "exception_attribute" must also be specified in the
|
|
91
|
-
argument "target_columns".
|
|
92
|
-
|
|
93
|
-
vif:
|
|
94
|
-
Optional Argument.
|
|
95
|
-
Specifies whether the function computes the VIF score or not.
|
|
96
|
-
Default Value: False
|
|
97
|
-
Types: bool
|
|
98
|
-
|
|
99
|
-
vif_threshold:
|
|
100
|
-
Optional when the argument "vif" is set to 'True', disallowed otherwise.
|
|
101
|
-
Specifies the threshold for calculated VIF score.
|
|
102
|
-
If the VIF score for a predictor is above this threshold,
|
|
103
|
-
we can eliminate it in the modeling process.
|
|
104
|
-
To detect significant collinearity, specify a vif_threshold in [5.0, 20.0].
|
|
105
|
-
Default Value: 10.0
|
|
106
|
-
Types: float
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
vif_summary:
|
|
110
|
-
Optional when the argument "vif" is set to 'True', disallowed otherwise.
|
|
111
|
-
Specifies whether to output the final VIF scores or VIF scores from
|
|
112
|
-
each iteration of the algorithm.
|
|
113
|
-
When set to 'True', final VIF score is displayed.
|
|
114
|
-
When set to 'False', VIF score at the end of each iteration is displayed.
|
|
115
|
-
Default Value: True
|
|
116
|
-
Types: bool
|
|
117
|
-
|
|
118
|
-
data_sequence_column:
|
|
119
|
-
Optional Argument.
|
|
120
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
121
|
-
the input argument "data". The argument is used to ensure
|
|
122
|
-
deterministic results for functions which produce results that vary
|
|
123
|
-
from run to run.
|
|
124
|
-
Types: str OR list of Strings (str)
|
|
125
|
-
|
|
126
|
-
RETURNS:
|
|
127
|
-
Instance of Correlation2.
|
|
128
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
129
|
-
references, such as Correlation2Obj.<attribute_name>.
|
|
130
|
-
Output teradataml DataFrame attribute names are:
|
|
131
|
-
1. correlation_data
|
|
132
|
-
2. output
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
RAISES:
|
|
136
|
-
TeradataMlException
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
EXAMPLES:
|
|
140
|
-
# Load example data.
|
|
141
|
-
load_example_data("correlation", "corr_input")
|
|
142
|
-
|
|
143
|
-
# Create teradataml DataFrame objects.
|
|
144
|
-
corr_input = DataFrame.from_table("corr_input")
|
|
145
|
-
|
|
146
|
-
# Example 1: The function calculates the correlation between each pair of columns
|
|
147
|
-
# in the "target_column_pairs" argument. This example compares GDP to GDPdeflator,
|
|
148
|
-
# the employed population to GDP, the number of people unemployed, and the number
|
|
149
|
-
# of people in the armed forces.
|
|
150
|
-
Correlation_out1 = Correlation2(data = corr_input,
|
|
151
|
-
target_column_pairs = ["[2:3]", "employed:gdp",
|
|
152
|
-
"employed:unemployed", "employed:armedforces"],
|
|
153
|
-
partition_columns = ["state"]
|
|
154
|
-
)
|
|
155
|
-
|
|
156
|
-
# Print the correlation_data DataFrame.
|
|
157
|
-
print(Correlation_out1.correlation_data)
|
|
158
|
-
|
|
159
|
-
# Example 2: This example does not use "vif" and omits the "partition_columns"
|
|
160
|
-
# argument, so the function determines the correlation values for the overall
|
|
161
|
-
# population and does not group the data by state.
|
|
162
|
-
Correlation_out2 = Correlation2(data = corr_input,
|
|
163
|
-
target_column_pairs = ["[2:3]", "employed:gdp",
|
|
164
|
-
"employed:unemployed", "employed:armedforces"]
|
|
165
|
-
)
|
|
166
|
-
|
|
167
|
-
# Print the correlation_data DataFrame.
|
|
168
|
-
print(Correlation_out2.correlation_data)
|
|
169
|
-
|
|
170
|
-
# Example 3: This example sets "vif" argument to 'True' but does not specify
|
|
171
|
-
# the "exception_attribute" argument.
|
|
172
|
-
Correlation_out3 = Correlation2(data = corr_input,
|
|
173
|
-
target_columns = ["gdp", "unemployed", "armedforces", "employed"],
|
|
174
|
-
partition_columns = ["state"],
|
|
175
|
-
vif = True,
|
|
176
|
-
vif_threshold = 10.0
|
|
177
|
-
)
|
|
178
|
-
|
|
179
|
-
# Print the correlation_data DataFrame.
|
|
180
|
-
print(Correlation_out3.correlation_data)
|
|
181
|
-
|
|
182
|
-
# Example 4: This example uses "vif" argument and specifies the
|
|
183
|
-
# "exception_attribute" argument.
|
|
184
|
-
Correlation_out4 = Correlation2(data = corr_input,
|
|
185
|
-
target_columns = ["gdp", "unemployed", "armedforces", "employed"],
|
|
186
|
-
partition_columns = ["state"],
|
|
187
|
-
exception_attribute = "gdp",
|
|
188
|
-
vif = True,
|
|
189
|
-
vif_threshold = 10.0
|
|
190
|
-
)
|
|
191
|
-
|
|
192
|
-
# Print the correlation_data DataFrame.
|
|
193
|
-
print(Correlation_out4.correlation_data)
|
|
194
|
-
|
|
195
|
-
# Example 5: This example sets "vif" argument to 'True', specifies the
|
|
196
|
-
# "exception_attribute" argument and sets "vif_summary" argument to 'False'
|
|
197
|
-
# to display only final VIF scores.
|
|
198
|
-
Correlation_out5 = Correlation2(data = corr_input,
|
|
199
|
-
target_columns = ["gdp", "unemployed", "armedforces", "employed"],
|
|
200
|
-
partition_columns = ["state"],
|
|
201
|
-
exception_attribute = "gdp",
|
|
202
|
-
vif = True,
|
|
203
|
-
vif_summary = False,
|
|
204
|
-
vif_threshold = 10.0
|
|
205
|
-
)
|
|
206
|
-
|
|
207
|
-
# Print the correlation_data DataFrame.
|
|
208
|
-
print(Correlation_out5.correlation_data)
|
|
209
|
-
|
|
210
|
-
# Example 6: This example uses "target_columns" and "partition_columns"
|
|
211
|
-
# as column ranges to display only final VIF scores.
|
|
212
|
-
Correlation_out6 = Correlation2(data = corr_input,
|
|
213
|
-
target_columns = ["gdp:employed"],
|
|
214
|
-
partition_columns = ["state:armedforces"],
|
|
215
|
-
exception_attribute = "gdp",
|
|
216
|
-
vif = True,
|
|
217
|
-
vif_summary = False,
|
|
218
|
-
vif_threshold = 10.0
|
|
219
|
-
)
|
|
220
|
-
|
|
221
|
-
# Print the correlation_data DataFrame.
|
|
222
|
-
print(Correlation_out6.correlation_data)
|
|
223
|
-
|
|
224
|
-
"""
|
|
225
|
-
# Start the timer to get the build time
|
|
226
|
-
_start_time = time.time()
|
|
227
|
-
|
|
228
|
-
self.data = data
|
|
229
|
-
self.target_column_pairs = target_column_pairs
|
|
230
|
-
self.target_columns = target_columns
|
|
231
|
-
self.partition_columns = partition_columns
|
|
232
|
-
self.exception_attribute = exception_attribute
|
|
233
|
-
self.vif = vif
|
|
234
|
-
self.vif_summary = vif_summary
|
|
235
|
-
self.vif_threshold = vif_threshold
|
|
236
|
-
self.data_sequence_column = data_sequence_column
|
|
237
|
-
|
|
238
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
239
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
240
|
-
self.__aed_utils = AedUtils()
|
|
241
|
-
|
|
242
|
-
# Create argument information matrix to do parameter checking
|
|
243
|
-
self.__arg_info_matrix = []
|
|
244
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
245
|
-
self.__arg_info_matrix.append(["target_column_pairs", self.target_column_pairs, True, (str,list)])
|
|
246
|
-
self.__arg_info_matrix.append(["target_columns", self.target_columns, True, (str,list)])
|
|
247
|
-
self.__arg_info_matrix.append(["partition_columns", self.partition_columns, True, (str,list)])
|
|
248
|
-
self.__arg_info_matrix.append(["exception_attribute", self.exception_attribute, True, (str)])
|
|
249
|
-
self.__arg_info_matrix.append(["vif", self.vif, True, (bool)])
|
|
250
|
-
self.__arg_info_matrix.append(["vif_summary", self.vif_summary, True, (bool)])
|
|
251
|
-
self.__arg_info_matrix.append(["vif_threshold", self.vif_threshold, True, (float)])
|
|
252
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
253
|
-
|
|
254
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
255
|
-
# Perform the function validations
|
|
256
|
-
self.__validate()
|
|
257
|
-
# Generate the ML query
|
|
258
|
-
self.__form_tdml_query()
|
|
259
|
-
# Execute ML query
|
|
260
|
-
self.__execute()
|
|
261
|
-
# Get the prediction type
|
|
262
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
263
|
-
|
|
264
|
-
# End the timer to get the build time
|
|
265
|
-
_end_time = time.time()
|
|
266
|
-
|
|
267
|
-
# Calculate the build time
|
|
268
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
269
|
-
|
|
270
|
-
def __validate(self):
|
|
271
|
-
"""
|
|
272
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
273
|
-
arguments, input argument and table types. Also processes the
|
|
274
|
-
argument values.
|
|
275
|
-
"""
|
|
276
|
-
|
|
277
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
278
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
279
|
-
|
|
280
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
281
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
282
|
-
|
|
283
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
284
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
285
|
-
|
|
286
|
-
if self.vif:
|
|
287
|
-
if self.target_columns is None:
|
|
288
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
|
|
289
|
-
'target_columns',
|
|
290
|
-
'vif=True'
|
|
291
|
-
),
|
|
292
|
-
MessageCodes.DEPENDENT_ARG_MISSING)
|
|
293
|
-
if self.target_column_pairs is not None:
|
|
294
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARGUMENT,
|
|
295
|
-
'target_column_pairs',
|
|
296
|
-
'vif=False'
|
|
297
|
-
),
|
|
298
|
-
MessageCodes.DEPENDENT_ARGUMENT)
|
|
299
|
-
|
|
300
|
-
if not self.vif:
|
|
301
|
-
if self.target_columns is not None:
|
|
302
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARGUMENT,
|
|
303
|
-
'target_columns',
|
|
304
|
-
'vif=True'
|
|
305
|
-
),
|
|
306
|
-
MessageCodes.DEPENDENT_ARGUMENT)
|
|
307
|
-
|
|
308
|
-
if self.target_column_pairs is None:
|
|
309
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
|
|
310
|
-
'target_column_pairs',
|
|
311
|
-
'vif=False'
|
|
312
|
-
),
|
|
313
|
-
MessageCodes.DEPENDENT_ARG_MISSING)
|
|
314
|
-
|
|
315
|
-
if self.exception_attribute is not None:
|
|
316
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARGUMENT,
|
|
317
|
-
'exception_attribute',
|
|
318
|
-
'vif=True'
|
|
319
|
-
),
|
|
320
|
-
MessageCodes.DEPENDENT_ARGUMENT)
|
|
321
|
-
|
|
322
|
-
if self.vif_summary is not None and self.vif_summary != True:
|
|
323
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARGUMENT,
|
|
324
|
-
'vif_summary',
|
|
325
|
-
'vif=True'
|
|
326
|
-
),
|
|
327
|
-
MessageCodes.DEPENDENT_ARGUMENT)
|
|
328
|
-
|
|
329
|
-
if self.vif_threshold is not None and self.vif_threshold != 10.0:
|
|
330
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARGUMENT,
|
|
331
|
-
'vif_threshold',
|
|
332
|
-
'vif=True'
|
|
333
|
-
),
|
|
334
|
-
MessageCodes.DEPENDENT_ARGUMENT)
|
|
335
|
-
|
|
336
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
337
|
-
self.__awu._validate_input_columns_not_empty(self.target_column_pairs, "target_column_pairs")
|
|
338
|
-
|
|
339
|
-
self.__awu._validate_input_columns_not_empty(self.target_columns, "target_columns")
|
|
340
|
-
self.__awu._validate_dataframe_has_argument_columns(self.target_columns, "target_columns", self.data,"data", False)
|
|
341
|
-
|
|
342
|
-
self.__awu._validate_input_columns_not_empty(self.partition_columns, "partition_columns")
|
|
343
|
-
self.__awu._validate_dataframe_has_argument_columns(self.partition_columns, "partition_columns", self.data, "data",False)
|
|
344
|
-
|
|
345
|
-
self.__awu._validate_input_columns_not_empty(self.exception_attribute, "exception_attribute")
|
|
346
|
-
self.__awu._validate_dataframe_has_argument_columns(self.exception_attribute, "exception_attribute", self.data, "data", False)
|
|
347
|
-
|
|
348
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
349
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column",
|
|
350
|
-
self.data, "data", False)
|
|
351
|
-
|
|
352
|
-
def __form_tdml_query(self):
|
|
353
|
-
"""
|
|
354
|
-
Function to generate the analytical function queries. The function defines
|
|
355
|
-
variables and list of arguments required to form the query.
|
|
356
|
-
"""
|
|
357
|
-
# Generate temp table names for output table parameters if any.
|
|
358
|
-
self.__output_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix = "td_Correlation20", use_default_database = True, gc_on_quit = True, quote=False, table_type = TeradataConstants.TERADATA_TABLE)
|
|
359
|
-
|
|
360
|
-
# Output table arguments list
|
|
361
|
-
self.__func_output_args_sql_names = ["OutputTable"]
|
|
362
|
-
self.__func_output_args = [self.__output_table_temp_tablename]
|
|
363
|
-
|
|
364
|
-
# Model Cataloging related attributes.
|
|
365
|
-
self._sql_specific_attributes = {}
|
|
366
|
-
self._sql_formula_attribute_mapper = {}
|
|
367
|
-
self._target_column = None
|
|
368
|
-
self._algorithm_name = None
|
|
369
|
-
|
|
370
|
-
# Generate lists for rest of the function arguments
|
|
371
|
-
self.__func_other_arg_sql_names = []
|
|
372
|
-
self.__func_other_args = []
|
|
373
|
-
self.__func_other_arg_json_datatypes = []
|
|
374
|
-
|
|
375
|
-
if self.target_column_pairs is not None:
|
|
376
|
-
self.__func_other_arg_sql_names.append("TargetColumnPairs")
|
|
377
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.target_column_pairs,"\""),"'"))
|
|
378
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
379
|
-
|
|
380
|
-
if self.target_columns is not None:
|
|
381
|
-
self.__func_other_arg_sql_names.append("TargetColumns")
|
|
382
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.target_columns,"\""),"'"))
|
|
383
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
384
|
-
|
|
385
|
-
if self.partition_columns is not None:
|
|
386
|
-
self.__func_other_arg_sql_names.append("PartitionColumns")
|
|
387
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.partition_columns,"\""),"'"))
|
|
388
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
389
|
-
|
|
390
|
-
if self.exception_attribute is not None:
|
|
391
|
-
self.__func_other_arg_sql_names.append("ExceptionAttribute")
|
|
392
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.exception_attribute,"\""),"'"))
|
|
393
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
394
|
-
|
|
395
|
-
if self.vif is not None and self.vif != False:
|
|
396
|
-
self.__func_other_arg_sql_names.append("VIF")
|
|
397
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.vif,"'"))
|
|
398
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
399
|
-
|
|
400
|
-
if self.vif_summary is not None and self.vif_summary != True:
|
|
401
|
-
self.__func_other_arg_sql_names.append("OutputSummary")
|
|
402
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.vif_summary,"'"))
|
|
403
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
404
|
-
|
|
405
|
-
if self.vif_threshold is not None and self.vif_threshold != 10.0:
|
|
406
|
-
self.__func_other_arg_sql_names.append("VIFThreshold")
|
|
407
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.vif_threshold,"'"))
|
|
408
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
409
|
-
|
|
410
|
-
# Generate lists for rest of the function arguments
|
|
411
|
-
sequence_input_by_list = []
|
|
412
|
-
if self.data_sequence_column is not None:
|
|
413
|
-
sequence_input_by_list.append(
|
|
414
|
-
"InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
415
|
-
|
|
416
|
-
if len(sequence_input_by_list) > 0:
|
|
417
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
418
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'"))
|
|
419
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
420
|
-
|
|
421
|
-
# Declare empty lists to hold input table information.
|
|
422
|
-
self.__func_input_arg_sql_names = []
|
|
423
|
-
self.__func_input_table_view_query = []
|
|
424
|
-
self.__func_input_dataframe_type = []
|
|
425
|
-
self.__func_input_distribution = []
|
|
426
|
-
self.__func_input_partition_by_cols = []
|
|
427
|
-
self.__func_input_order_by_cols = []
|
|
428
|
-
|
|
429
|
-
# Process data
|
|
430
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
431
|
-
self.__func_input_distribution.append("NONE")
|
|
432
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
433
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
434
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
435
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
436
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
437
|
-
|
|
438
|
-
function_name = "Correlation2"
|
|
439
|
-
# Create instance to generate SQLMR.
|
|
440
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name
|
|
441
|
-
,self.__func_input_arg_sql_names
|
|
442
|
-
,self.__func_input_table_view_query
|
|
443
|
-
,self.__func_input_dataframe_type
|
|
444
|
-
,self.__func_input_distribution
|
|
445
|
-
,self.__func_input_partition_by_cols
|
|
446
|
-
,self.__func_input_order_by_cols
|
|
447
|
-
,self.__func_other_arg_sql_names
|
|
448
|
-
,self.__func_other_args
|
|
449
|
-
,self.__func_other_arg_json_datatypes
|
|
450
|
-
,self.__func_output_args_sql_names
|
|
451
|
-
,self.__func_output_args
|
|
452
|
-
,engine = "ENGINE_ML")
|
|
453
|
-
# Invoke call to SQL-MR generation.
|
|
454
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
455
|
-
|
|
456
|
-
# Print SQL-MR query if requested to do so.
|
|
457
|
-
if display.print_sqlmr_query:
|
|
458
|
-
print(self.sqlmr_query)
|
|
459
|
-
|
|
460
|
-
# Set the algorithm name for Model Cataloging.
|
|
461
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
462
|
-
|
|
463
|
-
def __execute(self):
|
|
464
|
-
"""
|
|
465
|
-
Function to execute SQL-MR queries.
|
|
466
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
467
|
-
"""
|
|
468
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
469
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix = "td_sqlmr_out_", use_default_database = True, gc_on_quit = True, quote=False, table_type = TeradataConstants.TERADATA_TABLE)
|
|
470
|
-
try:
|
|
471
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
472
|
-
except Exception as emsg:
|
|
473
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
474
|
-
|
|
475
|
-
# Update output table data frames.
|
|
476
|
-
self._mlresults = []
|
|
477
|
-
self.correlation_data = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__output_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__output_table_temp_tablename))
|
|
478
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
479
|
-
self._mlresults.append(self.correlation_data)
|
|
480
|
-
self._mlresults.append(self.output)
|
|
481
|
-
|
|
482
|
-
def show_query(self):
|
|
483
|
-
"""
|
|
484
|
-
Function to return the underlying SQL query.
|
|
485
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
486
|
-
"""
|
|
487
|
-
return self.sqlmr_query
|
|
488
|
-
|
|
489
|
-
def get_prediction_type(self):
|
|
490
|
-
"""
|
|
491
|
-
Function to return the Prediction type of the algorithm.
|
|
492
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
493
|
-
as saved in the Model Catalog.
|
|
494
|
-
"""
|
|
495
|
-
return self._prediction_type
|
|
496
|
-
|
|
497
|
-
def get_target_column(self):
|
|
498
|
-
"""
|
|
499
|
-
Function to return the Target Column of the algorithm.
|
|
500
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
501
|
-
as saved in the Model Catalog.
|
|
502
|
-
"""
|
|
503
|
-
return self._target_column
|
|
504
|
-
|
|
505
|
-
def get_build_time(self):
|
|
506
|
-
"""
|
|
507
|
-
Function to return the build time of the algorithm in seconds.
|
|
508
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
509
|
-
as saved in the Model Catalog.
|
|
510
|
-
"""
|
|
511
|
-
return self._build_time
|
|
512
|
-
|
|
513
|
-
def _get_algorithm_name(self):
|
|
514
|
-
"""
|
|
515
|
-
Function to return the name of the algorithm.
|
|
516
|
-
"""
|
|
517
|
-
return self._algorithm_name
|
|
518
|
-
|
|
519
|
-
def _get_sql_specific_attributes(self):
|
|
520
|
-
"""
|
|
521
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
522
|
-
"""
|
|
523
|
-
return self._sql_specific_attributes
|
|
524
|
-
|
|
525
|
-
@classmethod
|
|
526
|
-
def _from_model_catalog(cls,
|
|
527
|
-
correlation_data = None,
|
|
528
|
-
output = None,
|
|
529
|
-
**kwargs):
|
|
530
|
-
"""
|
|
531
|
-
Classmethod which will be used by Model Cataloging, to instantiate this wrapper class.
|
|
532
|
-
"""
|
|
533
|
-
kwargs.pop("correlation_data", None)
|
|
534
|
-
kwargs.pop("output", None)
|
|
535
|
-
|
|
536
|
-
# Model Cataloging related attributes.
|
|
537
|
-
target_column = kwargs.pop("__target_column", None)
|
|
538
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
539
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
540
|
-
build_time = kwargs.pop("__build_time", None)
|
|
541
|
-
|
|
542
|
-
# Let's create an object of this class.
|
|
543
|
-
obj = cls(**kwargs)
|
|
544
|
-
obj.correlation_data = correlation_data
|
|
545
|
-
obj.output = output
|
|
546
|
-
|
|
547
|
-
# Initialize the sqlmr_query class attribute.
|
|
548
|
-
obj.sqlmr_query = None
|
|
549
|
-
|
|
550
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
551
|
-
obj._sql_specific_attributes = None
|
|
552
|
-
obj._target_column = target_column
|
|
553
|
-
obj._prediction_type = prediction_type
|
|
554
|
-
obj._algorithm_name = algorithm_name
|
|
555
|
-
obj._build_time = build_time
|
|
556
|
-
|
|
557
|
-
# Update output table data frames.
|
|
558
|
-
obj._mlresults = []
|
|
559
|
-
obj.correlation_data = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.correlation_data), source_type="table", database_name=UtilFuncs._extract_db_name(obj.correlation_data))
|
|
560
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
561
|
-
obj._mlresults.append(obj.correlation_data)
|
|
562
|
-
obj._mlresults.append(obj.output)
|
|
563
|
-
return obj
|
|
564
|
-
|
|
565
|
-
def __repr__(self):
|
|
566
|
-
"""
|
|
567
|
-
Returns the string representation for a Correlation2 class instance.
|
|
568
|
-
"""
|
|
569
|
-
repr_string="############ STDOUT Output ############"
|
|
570
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
571
|
-
repr_string="{}\n\n\n############ correlation_data Output ############".format(repr_string)
|
|
572
|
-
repr_string = "{}\n\n{}".format(repr_string,self.correlation_data)
|
|
573
|
-
return repr_string
|