teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,607 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.7
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class NaiveBayesTextClassifier:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
token_column = None,
|
|
35
|
-
doc_id_columns = None,
|
|
36
|
-
doc_category_column = None,
|
|
37
|
-
model_type = "MULTINOMIAL",
|
|
38
|
-
categories = None,
|
|
39
|
-
category_column = "[0:0]",
|
|
40
|
-
prediction_categories = None,
|
|
41
|
-
stopwords = None,
|
|
42
|
-
stopwords_column = None,
|
|
43
|
-
stopwords_list = None,
|
|
44
|
-
data_sequence_column = None,
|
|
45
|
-
stopwords_sequence_column = None,
|
|
46
|
-
categories_sequence_column = None,
|
|
47
|
-
data_partition_column = None,
|
|
48
|
-
data_order_column = None,
|
|
49
|
-
stopwords_order_column = None,
|
|
50
|
-
categories_order_column = None):
|
|
51
|
-
"""
|
|
52
|
-
DESCRIPTION:
|
|
53
|
-
The NaiveBayesTextClassifierTrainer function takes training data as
|
|
54
|
-
input and outputs a model table.
|
|
55
|
-
|
|
56
|
-
PARAMETERS:
|
|
57
|
-
data:
|
|
58
|
-
Required Argument.
|
|
59
|
-
The teradataml DataFrame defining the training tokens.
|
|
60
|
-
|
|
61
|
-
data_partition_column:
|
|
62
|
-
Required Argument.
|
|
63
|
-
Specifies Partition By columns for data.
|
|
64
|
-
Values to this argument can be provided as list, if multiple columns
|
|
65
|
-
are used for ordering.
|
|
66
|
-
Types: str OR list of Strings (str)
|
|
67
|
-
|
|
68
|
-
data_order_column:
|
|
69
|
-
Optional Argument.
|
|
70
|
-
Specifies Order By columns for data.
|
|
71
|
-
Values to this argument can be provided as a list, if multiple
|
|
72
|
-
columns are used for ordering.
|
|
73
|
-
Types: str OR list of Strings (str)
|
|
74
|
-
|
|
75
|
-
token_column:
|
|
76
|
-
Required Argument.
|
|
77
|
-
Specifies the name of the token_table column that contains the tokens
|
|
78
|
-
to be classified.
|
|
79
|
-
Types: str
|
|
80
|
-
|
|
81
|
-
doc_id_columns:
|
|
82
|
-
Optional Argument. Required when "model_type" argument is 'BERNOULLI'.
|
|
83
|
-
Specifies the names of the token_table columns that contain the
|
|
84
|
-
document identifier.
|
|
85
|
-
Types: str OR list of Strings (str)
|
|
86
|
-
Note:
|
|
87
|
-
This argument should not be provided when "model_type" is 'MULTINOMIAL'.
|
|
88
|
-
|
|
89
|
-
doc_category_column:
|
|
90
|
-
Required Argument.
|
|
91
|
-
Specifies the name of the token_table column that contains the
|
|
92
|
-
document category.
|
|
93
|
-
Types: str
|
|
94
|
-
|
|
95
|
-
model_type:
|
|
96
|
-
Optional Argument.
|
|
97
|
-
Specifies the model type of the text classifier. The formulas for the
|
|
98
|
-
two model types follow this table.
|
|
99
|
-
Default Value: "MULTINOMIAL"
|
|
100
|
-
Permitted Values: MULTINOMIAL, BERNOULLI
|
|
101
|
-
Types: str
|
|
102
|
-
|
|
103
|
-
categories:
|
|
104
|
-
Optional Argument.
|
|
105
|
-
The teradataml DataFrame defining allowed categories.
|
|
106
|
-
|
|
107
|
-
categories_order_column:
|
|
108
|
-
Optional Argument.
|
|
109
|
-
Specifies Order By columns for categories.
|
|
110
|
-
Values to this argument can be provided as a list, if multiple
|
|
111
|
-
columns are used for ordering.
|
|
112
|
-
Types: str OR list of Strings (str)
|
|
113
|
-
|
|
114
|
-
category_column:
|
|
115
|
-
Optional Argument.
|
|
116
|
-
Specifies the name of the categories_table column that contains the
|
|
117
|
-
prediction categories. The default value is the first column of
|
|
118
|
-
categories_table.
|
|
119
|
-
Default Value: "[0:0]"
|
|
120
|
-
Types: str
|
|
121
|
-
|
|
122
|
-
prediction_categories:
|
|
123
|
-
Optional Argument.
|
|
124
|
-
Specifies the prediction categories.
|
|
125
|
-
Note: Specify either this argument or the categories_table, but not both.
|
|
126
|
-
Types: str OR list of Strings (str)
|
|
127
|
-
|
|
128
|
-
stopwords:
|
|
129
|
-
Optional Argument.
|
|
130
|
-
The teradataml DataFrame defining stop words.
|
|
131
|
-
|
|
132
|
-
stopwords_order_column:
|
|
133
|
-
Optional Argument.
|
|
134
|
-
Specifies Order By columns for stopwords.
|
|
135
|
-
Values to this argument can be provided as a list, if multiple
|
|
136
|
-
columns are used for ordering.
|
|
137
|
-
Types: str OR list of Strings (str)
|
|
138
|
-
|
|
139
|
-
stopwords_column:
|
|
140
|
-
Optional Argument.
|
|
141
|
-
Specifies the name of the stop_words_table column that contains the
|
|
142
|
-
stop words. The default value is the first column of stop_words_table.
|
|
143
|
-
Types: str
|
|
144
|
-
|
|
145
|
-
stopwords_list:
|
|
146
|
-
Optional Argument.
|
|
147
|
-
Specifies words to ignore (such as a, an, and the).
|
|
148
|
-
Note: Specify either this argument or the stop_words_table, but not both.
|
|
149
|
-
Types: str OR list of Strings (str)
|
|
150
|
-
|
|
151
|
-
data_sequence_column:
|
|
152
|
-
Optional Argument.
|
|
153
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
154
|
-
the input argument "data". The argument is used to ensure
|
|
155
|
-
deterministic results for functions which produce results that vary
|
|
156
|
-
from run to run.
|
|
157
|
-
Types: str OR list of Strings (str)
|
|
158
|
-
|
|
159
|
-
stopwords_sequence_column:
|
|
160
|
-
Optional Argument.
|
|
161
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
162
|
-
the input argument "stopwords". The argument is used to ensure
|
|
163
|
-
deterministic results for functions which produce results that vary
|
|
164
|
-
from run to run.
|
|
165
|
-
Types: str OR list of Strings (str)
|
|
166
|
-
|
|
167
|
-
categories_sequence_column:
|
|
168
|
-
Optional Argument.
|
|
169
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
170
|
-
the input argument "categories". The argument is used to ensure
|
|
171
|
-
deterministic results for functions which produce results that vary
|
|
172
|
-
from run to run.
|
|
173
|
-
Types: str OR list of Strings (str)
|
|
174
|
-
|
|
175
|
-
RETURNS:
|
|
176
|
-
Instance of NaiveBayesTextClassifier.
|
|
177
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
178
|
-
references, such as NaiveBayesTextClassifierObj.<attribute_name>.
|
|
179
|
-
Output teradataml DataFrame attribute name is:
|
|
180
|
-
result
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
RAISES:
|
|
184
|
-
TeradataMlException
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
EXAMPLES:
|
|
188
|
-
# Load the data to run the example
|
|
189
|
-
load_example_data("NaiveBayesTextClassifier","token_table")
|
|
190
|
-
|
|
191
|
-
# Create teradataml DataFrame
|
|
192
|
-
token_table = DataFrame.from_table("token_table")
|
|
193
|
-
|
|
194
|
-
# Example 1 -
|
|
195
|
-
nbt_result = NaiveBayesTextClassifier(data = token_table,
|
|
196
|
-
token_column = 'token',
|
|
197
|
-
doc_id_columns = 'doc_id',
|
|
198
|
-
doc_category_column = 'category',
|
|
199
|
-
model_type = "BERNOULLI",
|
|
200
|
-
data_partition_column = 'category')
|
|
201
|
-
|
|
202
|
-
# Print the result DataFrame
|
|
203
|
-
print(nbt_result.result)
|
|
204
|
-
|
|
205
|
-
"""
|
|
206
|
-
|
|
207
|
-
# Start the timer to get the build time
|
|
208
|
-
_start_time = time.time()
|
|
209
|
-
|
|
210
|
-
self.data = data
|
|
211
|
-
self.token_column = token_column
|
|
212
|
-
self.doc_id_columns = doc_id_columns
|
|
213
|
-
self.doc_category_column = doc_category_column
|
|
214
|
-
self.model_type = model_type
|
|
215
|
-
self.categories = categories
|
|
216
|
-
self.category_column = category_column
|
|
217
|
-
self.prediction_categories = prediction_categories
|
|
218
|
-
self.stopwords = stopwords
|
|
219
|
-
self.stopwords_column = stopwords_column
|
|
220
|
-
self.stopwords_list = stopwords_list
|
|
221
|
-
self.data_sequence_column = data_sequence_column
|
|
222
|
-
self.stopwords_sequence_column = stopwords_sequence_column
|
|
223
|
-
self.categories_sequence_column = categories_sequence_column
|
|
224
|
-
self.data_partition_column = data_partition_column
|
|
225
|
-
self.data_order_column = data_order_column
|
|
226
|
-
self.stopwords_order_column = stopwords_order_column
|
|
227
|
-
self.categories_order_column = categories_order_column
|
|
228
|
-
|
|
229
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
230
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
231
|
-
self.__aed_utils = AedUtils()
|
|
232
|
-
|
|
233
|
-
# Create argument information matrix to do parameter checking
|
|
234
|
-
self.__arg_info_matrix = []
|
|
235
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
236
|
-
self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, False, (str,list)])
|
|
237
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
|
|
238
|
-
self.__arg_info_matrix.append(["token_column", self.token_column, False, (str)])
|
|
239
|
-
self.__arg_info_matrix.append(["doc_id_columns", self.doc_id_columns, True, (str,list)])
|
|
240
|
-
self.__arg_info_matrix.append(["doc_category_column", self.doc_category_column, False, (str)])
|
|
241
|
-
self.__arg_info_matrix.append(["model_type", self.model_type, True, (str)])
|
|
242
|
-
self.__arg_info_matrix.append(["categories", self.categories, True, (DataFrame)])
|
|
243
|
-
self.__arg_info_matrix.append(["categories_order_column", self.categories_order_column, True, (str,list)])
|
|
244
|
-
self.__arg_info_matrix.append(["category_column", self.category_column, True, (str)])
|
|
245
|
-
self.__arg_info_matrix.append(["prediction_categories", self.prediction_categories, True, (str,list)])
|
|
246
|
-
self.__arg_info_matrix.append(["stopwords", self.stopwords, True, (DataFrame)])
|
|
247
|
-
self.__arg_info_matrix.append(["stopwords_order_column", self.stopwords_order_column, True, (str,list)])
|
|
248
|
-
self.__arg_info_matrix.append(["stopwords_column", self.stopwords_column, True, (str)])
|
|
249
|
-
self.__arg_info_matrix.append(["stopwords_list", self.stopwords_list, True, (str,list)])
|
|
250
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
251
|
-
self.__arg_info_matrix.append(["stopwords_sequence_column", self.stopwords_sequence_column, True, (str,list)])
|
|
252
|
-
self.__arg_info_matrix.append(["categories_sequence_column", self.categories_sequence_column, True, (str,list)])
|
|
253
|
-
|
|
254
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
255
|
-
# Perform the function validations
|
|
256
|
-
self.__validate()
|
|
257
|
-
# Generate the ML query
|
|
258
|
-
self.__form_tdml_query()
|
|
259
|
-
# Execute ML query
|
|
260
|
-
self.__execute()
|
|
261
|
-
# Get the prediction type
|
|
262
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
263
|
-
|
|
264
|
-
# End the timer to get the build time
|
|
265
|
-
_end_time = time.time()
|
|
266
|
-
|
|
267
|
-
# Calculate the build time
|
|
268
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
269
|
-
|
|
270
|
-
def __validate(self):
|
|
271
|
-
"""
|
|
272
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
273
|
-
arguments, input argument and table types. Also processes the
|
|
274
|
-
argument values.
|
|
275
|
-
"""
|
|
276
|
-
|
|
277
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
278
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
279
|
-
|
|
280
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
281
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
282
|
-
|
|
283
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
284
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
285
|
-
self.__awu._validate_input_table_datatype(self.stopwords, "stopwords", None)
|
|
286
|
-
self.__awu._validate_input_table_datatype(self.categories, "categories", None)
|
|
287
|
-
|
|
288
|
-
# Check for permitted values
|
|
289
|
-
model_type_permitted_values = ["MULTINOMIAL", "BERNOULLI"]
|
|
290
|
-
self.__awu._validate_permitted_values(self.model_type, model_type_permitted_values, "model_type")
|
|
291
|
-
|
|
292
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
293
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
294
|
-
self.__awu._validate_input_columns_not_empty(self.token_column, "token_column")
|
|
295
|
-
self.__awu._validate_dataframe_has_argument_columns(self.token_column, "token_column", self.data, "data", False)
|
|
296
|
-
|
|
297
|
-
self.__awu._validate_input_columns_not_empty(self.doc_category_column, "doc_category_column")
|
|
298
|
-
self.__awu._validate_dataframe_has_argument_columns(self.doc_category_column, "doc_category_column", self.data, "data", False)
|
|
299
|
-
|
|
300
|
-
self.__awu._validate_input_columns_not_empty(self.doc_id_columns, "doc_id_columns")
|
|
301
|
-
self.__awu._validate_dataframe_has_argument_columns(self.doc_id_columns, "doc_id_columns", self.data, "data", False)
|
|
302
|
-
|
|
303
|
-
self.__awu._validate_input_columns_not_empty(self.category_column, "category_column")
|
|
304
|
-
|
|
305
|
-
self.__awu._validate_input_columns_not_empty(self.stopwords_column, "stopwords_column")
|
|
306
|
-
self.__awu._validate_dataframe_has_argument_columns(self.stopwords_column, "stopwords_column", self.stopwords, "stopwords", False)
|
|
307
|
-
|
|
308
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
309
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
310
|
-
|
|
311
|
-
self.__awu._validate_input_columns_not_empty(self.stopwords_sequence_column, "stopwords_sequence_column")
|
|
312
|
-
self.__awu._validate_dataframe_has_argument_columns(self.stopwords_sequence_column, "stopwords_sequence_column", self.stopwords, "stopwords", False)
|
|
313
|
-
|
|
314
|
-
self.__awu._validate_input_columns_not_empty(self.categories_sequence_column, "categories_sequence_column")
|
|
315
|
-
self.__awu._validate_dataframe_has_argument_columns(self.categories_sequence_column, "categories_sequence_column", self.categories, "categories", False)
|
|
316
|
-
|
|
317
|
-
self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
|
|
318
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
|
|
319
|
-
|
|
320
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
321
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
322
|
-
|
|
323
|
-
self.__awu._validate_input_columns_not_empty(self.stopwords_order_column, "stopwords_order_column")
|
|
324
|
-
self.__awu._validate_dataframe_has_argument_columns(self.stopwords_order_column, "stopwords_order_column", self.stopwords, "stopwords", False)
|
|
325
|
-
|
|
326
|
-
self.__awu._validate_input_columns_not_empty(self.categories_order_column, "categories_order_column")
|
|
327
|
-
self.__awu._validate_dataframe_has_argument_columns(self.categories_order_column, "categories_order_column", self.categories, "categories", False)
|
|
328
|
-
|
|
329
|
-
|
|
330
|
-
def __form_tdml_query(self):
|
|
331
|
-
"""
|
|
332
|
-
Function to generate the analytical function queries. The function defines
|
|
333
|
-
variables and list of arguments required to form the query.
|
|
334
|
-
"""
|
|
335
|
-
|
|
336
|
-
# Output table arguments list
|
|
337
|
-
self.__func_output_args_sql_names = []
|
|
338
|
-
self.__func_output_args = []
|
|
339
|
-
|
|
340
|
-
# Model Cataloging related attributes.
|
|
341
|
-
self._sql_specific_attributes = {}
|
|
342
|
-
self._sql_formula_attribute_mapper = {}
|
|
343
|
-
self._target_column = None
|
|
344
|
-
self._algorithm_name = None
|
|
345
|
-
|
|
346
|
-
# Generate lists for rest of the function arguments
|
|
347
|
-
self.__func_other_arg_sql_names = []
|
|
348
|
-
self.__func_other_args = []
|
|
349
|
-
self.__func_other_arg_json_datatypes = []
|
|
350
|
-
|
|
351
|
-
self.__func_other_arg_sql_names.append("TokenColumn")
|
|
352
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.token_column, "\""), "'"))
|
|
353
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
354
|
-
|
|
355
|
-
self.__func_other_arg_sql_names.append("DocCategoryColumn")
|
|
356
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.doc_category_column, "\""), "'"))
|
|
357
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
358
|
-
|
|
359
|
-
if self.doc_id_columns is not None:
|
|
360
|
-
self.__func_other_arg_sql_names.append("DocIdColumns")
|
|
361
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.doc_id_columns, "\""), "'"))
|
|
362
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
363
|
-
|
|
364
|
-
if self.category_column is not None and self.category_column != "[0:0]":
|
|
365
|
-
self.__func_other_arg_sql_names.append("CategoryColumn")
|
|
366
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.category_column, "\""), "'"))
|
|
367
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
368
|
-
|
|
369
|
-
if self.stopwords_column is not None:
|
|
370
|
-
self.__func_other_arg_sql_names.append("StopwordsColumn")
|
|
371
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.stopwords_column, "\""), "'"))
|
|
372
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
373
|
-
|
|
374
|
-
if self.model_type is not None and self.model_type != "MULTINOMIAL":
|
|
375
|
-
self.__func_other_arg_sql_names.append("ModelType")
|
|
376
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.model_type, "'"))
|
|
377
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
378
|
-
|
|
379
|
-
if self.prediction_categories is not None:
|
|
380
|
-
self.__func_other_arg_sql_names.append("PredictionCategories")
|
|
381
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.prediction_categories, "'"))
|
|
382
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
383
|
-
|
|
384
|
-
if self.stopwords_list is not None:
|
|
385
|
-
self.__func_other_arg_sql_names.append("StopwordsList")
|
|
386
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.stopwords_list, "'"))
|
|
387
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
388
|
-
|
|
389
|
-
# Generate lists for rest of the function arguments
|
|
390
|
-
sequence_input_by_list = []
|
|
391
|
-
if self.data_sequence_column is not None:
|
|
392
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
393
|
-
|
|
394
|
-
if self.stopwords_sequence_column is not None:
|
|
395
|
-
sequence_input_by_list.append("stopwords:" + UtilFuncs._teradata_collapse_arglist(self.stopwords_sequence_column, ""))
|
|
396
|
-
|
|
397
|
-
if self.categories_sequence_column is not None:
|
|
398
|
-
sequence_input_by_list.append("categories:" + UtilFuncs._teradata_collapse_arglist(self.categories_sequence_column, ""))
|
|
399
|
-
|
|
400
|
-
if len(sequence_input_by_list) > 0:
|
|
401
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
402
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
403
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
404
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
405
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
# Declare empty lists to hold input table information.
|
|
409
|
-
self.__func_input_arg_sql_names = []
|
|
410
|
-
self.__func_input_table_view_query = []
|
|
411
|
-
self.__func_input_dataframe_type = []
|
|
412
|
-
self.__func_input_distribution = []
|
|
413
|
-
self.__func_input_partition_by_cols = []
|
|
414
|
-
self.__func_input_order_by_cols = []
|
|
415
|
-
|
|
416
|
-
# Process data
|
|
417
|
-
self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
|
|
418
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
419
|
-
self.__func_input_distribution.append("FACT")
|
|
420
|
-
self.__func_input_arg_sql_names.append("input")
|
|
421
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
422
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
423
|
-
self.__func_input_partition_by_cols.append(self.data_partition_column)
|
|
424
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
425
|
-
|
|
426
|
-
# Process stopwords
|
|
427
|
-
if self.stopwords is not None:
|
|
428
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.stopwords, False)
|
|
429
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
430
|
-
self.__func_input_arg_sql_names.append("stopwords")
|
|
431
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
432
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
433
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
434
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.stopwords_order_column, "\""))
|
|
435
|
-
|
|
436
|
-
# Process categories
|
|
437
|
-
if self.categories is not None:
|
|
438
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.categories, False)
|
|
439
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
440
|
-
self.__func_input_arg_sql_names.append("categories")
|
|
441
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
442
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
443
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
444
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.categories_order_column, "\""))
|
|
445
|
-
|
|
446
|
-
function_name = "NaiveBayesTextClassifierInternal"
|
|
447
|
-
# Create instance to generate SQLMR.
|
|
448
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
449
|
-
self.__func_input_arg_sql_names,
|
|
450
|
-
self.__func_input_table_view_query,
|
|
451
|
-
self.__func_input_dataframe_type,
|
|
452
|
-
self.__func_input_distribution,
|
|
453
|
-
self.__func_input_partition_by_cols,
|
|
454
|
-
self.__func_input_order_by_cols,
|
|
455
|
-
self.__func_other_arg_sql_names,
|
|
456
|
-
self.__func_other_args,
|
|
457
|
-
self.__func_other_arg_json_datatypes,
|
|
458
|
-
self.__func_output_args_sql_names,
|
|
459
|
-
self.__func_output_args,
|
|
460
|
-
engine="ENGINE_ML")
|
|
461
|
-
|
|
462
|
-
# Declare empty lists to hold input table information.
|
|
463
|
-
self.__func_input_arg_sql_names = []
|
|
464
|
-
self.__func_input_table_view_query = []
|
|
465
|
-
self.__func_input_dataframe_type = []
|
|
466
|
-
self.__func_input_distribution = []
|
|
467
|
-
self.__func_input_partition_by_cols = []
|
|
468
|
-
self.__func_input_order_by_cols = []
|
|
469
|
-
|
|
470
|
-
# Process data
|
|
471
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
472
|
-
self.__func_input_distribution.append("FACT")
|
|
473
|
-
self.__func_input_arg_sql_names.append("input")
|
|
474
|
-
self.__func_input_table_view_query.append(self.__aqg_obj._gen_sqlmr_invocation_sql())
|
|
475
|
-
self.__func_input_dataframe_type.append("TABLE")
|
|
476
|
-
self.__func_input_partition_by_cols.append("1")
|
|
477
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
478
|
-
|
|
479
|
-
# Create instance for mapreduce SQLMR.
|
|
480
|
-
function_name = "NaiveBayesTextClassifierTrainer"
|
|
481
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
482
|
-
self.__func_input_arg_sql_names,
|
|
483
|
-
self.__func_input_table_view_query,
|
|
484
|
-
self.__func_input_dataframe_type,
|
|
485
|
-
self.__func_input_distribution,
|
|
486
|
-
self.__func_input_partition_by_cols,
|
|
487
|
-
self.__func_input_order_by_cols,
|
|
488
|
-
[],
|
|
489
|
-
[],
|
|
490
|
-
[],
|
|
491
|
-
self.__func_output_args_sql_names,
|
|
492
|
-
self.__func_output_args,
|
|
493
|
-
engine="ENGINE_ML")
|
|
494
|
-
# Invoke call to SQL-MR generation.
|
|
495
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
496
|
-
|
|
497
|
-
# Print SQL-MR query if requested to do so.
|
|
498
|
-
if display.print_sqlmr_query:
|
|
499
|
-
print(self.sqlmr_query)
|
|
500
|
-
|
|
501
|
-
# Set the algorithm name for Model Cataloging.
|
|
502
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
503
|
-
|
|
504
|
-
def __execute(self):
|
|
505
|
-
"""
|
|
506
|
-
Function to execute SQL-MR queries.
|
|
507
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
508
|
-
"""
|
|
509
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
510
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
511
|
-
try:
|
|
512
|
-
# Generate the output.
|
|
513
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
514
|
-
except Exception as emsg:
|
|
515
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
516
|
-
|
|
517
|
-
# Update output table data frames.
|
|
518
|
-
self._mlresults = []
|
|
519
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
520
|
-
self._mlresults.append(self.result)
|
|
521
|
-
|
|
522
|
-
def show_query(self):
|
|
523
|
-
"""
|
|
524
|
-
Function to return the underlying SQL query.
|
|
525
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
526
|
-
"""
|
|
527
|
-
return self.sqlmr_query
|
|
528
|
-
|
|
529
|
-
def get_prediction_type(self):
|
|
530
|
-
"""
|
|
531
|
-
Function to return the Prediction type of the algorithm.
|
|
532
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
533
|
-
as saved in the Model Catalog.
|
|
534
|
-
"""
|
|
535
|
-
return self._prediction_type
|
|
536
|
-
|
|
537
|
-
def get_target_column(self):
|
|
538
|
-
"""
|
|
539
|
-
Function to return the Target Column of the algorithm.
|
|
540
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
541
|
-
as saved in the Model Catalog.
|
|
542
|
-
"""
|
|
543
|
-
return self._target_column
|
|
544
|
-
|
|
545
|
-
def get_build_time(self):
|
|
546
|
-
"""
|
|
547
|
-
Function to return the build time of the algorithm in seconds.
|
|
548
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
549
|
-
as saved in the Model Catalog.
|
|
550
|
-
"""
|
|
551
|
-
return self._build_time
|
|
552
|
-
|
|
553
|
-
def _get_algorithm_name(self):
|
|
554
|
-
"""
|
|
555
|
-
Function to return the name of the algorithm.
|
|
556
|
-
"""
|
|
557
|
-
return self._algorithm_name
|
|
558
|
-
|
|
559
|
-
def _get_sql_specific_attributes(self):
|
|
560
|
-
"""
|
|
561
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
562
|
-
"""
|
|
563
|
-
return self._sql_specific_attributes
|
|
564
|
-
|
|
565
|
-
@classmethod
|
|
566
|
-
def _from_model_catalog(cls,
|
|
567
|
-
result = None,
|
|
568
|
-
**kwargs):
|
|
569
|
-
"""
|
|
570
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
571
|
-
"""
|
|
572
|
-
kwargs.pop("result", None)
|
|
573
|
-
|
|
574
|
-
# Model Cataloging related attributes.
|
|
575
|
-
target_column = kwargs.pop("__target_column", None)
|
|
576
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
577
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
578
|
-
build_time = kwargs.pop("__build_time", None)
|
|
579
|
-
|
|
580
|
-
# Let's create an object of this class.
|
|
581
|
-
obj = cls(**kwargs)
|
|
582
|
-
obj.result = result
|
|
583
|
-
|
|
584
|
-
# Initialize the sqlmr_query class attribute.
|
|
585
|
-
obj.sqlmr_query = None
|
|
586
|
-
|
|
587
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
588
|
-
obj._sql_specific_attributes = None
|
|
589
|
-
obj._target_column = target_column
|
|
590
|
-
obj._prediction_type = prediction_type
|
|
591
|
-
obj._algorithm_name = algorithm_name
|
|
592
|
-
obj._build_time = build_time
|
|
593
|
-
|
|
594
|
-
# Update output table data frames.
|
|
595
|
-
obj._mlresults = []
|
|
596
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
597
|
-
obj._mlresults.append(obj.result)
|
|
598
|
-
return obj
|
|
599
|
-
|
|
600
|
-
def __repr__(self):
|
|
601
|
-
"""
|
|
602
|
-
Returns the string representation for a NaiveBayesTextClassifier class instance.
|
|
603
|
-
"""
|
|
604
|
-
repr_string="############ STDOUT Output ############"
|
|
605
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
606
|
-
return repr_string
|
|
607
|
-
|