teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,776 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.14
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class VarMax:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
response_columns = None,
|
|
35
|
-
exogenous_columns = None,
|
|
36
|
-
partition_columns = None,
|
|
37
|
-
orders = None,
|
|
38
|
-
seasonal_orders = None,
|
|
39
|
-
period = None,
|
|
40
|
-
exogenous_order = None,
|
|
41
|
-
lag = 0,
|
|
42
|
-
include_mean = False,
|
|
43
|
-
max_iter_num = 100,
|
|
44
|
-
step_ahead = None,
|
|
45
|
-
method = "SSE",
|
|
46
|
-
data_orders = None,
|
|
47
|
-
include_drift = False,
|
|
48
|
-
order_p = None,
|
|
49
|
-
order_d = None,
|
|
50
|
-
order_q = None,
|
|
51
|
-
seasonal_order_p = None,
|
|
52
|
-
seasonal_order_d = None,
|
|
53
|
-
seasonal_order_q = None,
|
|
54
|
-
data_sequence_column = None,
|
|
55
|
-
data_orders_sequence_column = None,
|
|
56
|
-
data_partition_column = "1",
|
|
57
|
-
data_orders_partition_column = "1",
|
|
58
|
-
data_order_column = None,
|
|
59
|
-
data_orders_order_column = None):
|
|
60
|
-
"""
|
|
61
|
-
DESCRIPTION:
|
|
62
|
-
VarMax (Vector Autoregressive Moving Average model with eXogenous
|
|
63
|
-
variables) extends the ARMA/ARIMA model in two ways.
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
PARAMETERS:
|
|
67
|
-
data:
|
|
68
|
-
Required Argument.
|
|
69
|
-
The teradataml DataFrame that stores the input sequence.
|
|
70
|
-
|
|
71
|
-
data_partition_column:
|
|
72
|
-
Optional Argument.
|
|
73
|
-
Specifies Partition By columns for data.
|
|
74
|
-
Values to this argument can be provided as a list, if multiple columns
|
|
75
|
-
are used for partition.
|
|
76
|
-
Default Value: 1
|
|
77
|
-
Types: str OR list of Strings (str)
|
|
78
|
-
|
|
79
|
-
data_order_column:
|
|
80
|
-
Required Argument.
|
|
81
|
-
Specifies Order By columns for data.
|
|
82
|
-
Values to this argument can be provided as a list, if multiple columns
|
|
83
|
-
are used for ordering.
|
|
84
|
-
Types: str OR list of Strings (str)
|
|
85
|
-
|
|
86
|
-
response_columns:
|
|
87
|
-
Required Argument.
|
|
88
|
-
Specifies the columns containing the response data. Null values are
|
|
89
|
-
acceptable at the end of the series. If step_ahead is specified, the
|
|
90
|
-
function will report predicted values for the missing values, taking
|
|
91
|
-
into account values from the predictor columns for those time periods.
|
|
92
|
-
Types: str OR list of Strings (str)
|
|
93
|
-
|
|
94
|
-
exogenous_columns:
|
|
95
|
-
Optional Argument.
|
|
96
|
-
Specifies the columns containing the independent (exogenous)
|
|
97
|
-
predictors. If not specified, the model will be calculated without
|
|
98
|
-
exogenous vectors.
|
|
99
|
-
Types: str OR list of Strings (str)
|
|
100
|
-
|
|
101
|
-
partition_columns:
|
|
102
|
-
Optional Argument.
|
|
103
|
-
Specifies the partition columns that will be passed to the output. If
|
|
104
|
-
not specified, the output will not contain partition columns.
|
|
105
|
-
Types: str OR list of Strings (str)
|
|
106
|
-
|
|
107
|
-
orders:
|
|
108
|
-
Optional Argument.
|
|
109
|
-
Specifies the parameters p, d, q for VarMax model. This argument
|
|
110
|
-
consists of 3 non-negative int values separated by commas. The p and q
|
|
111
|
-
must be an integer between 0 and 10, inclusive. The d must be between
|
|
112
|
-
0 and 1, inclusive.
|
|
113
|
-
Types: str
|
|
114
|
-
|
|
115
|
-
seasonal_orders:
|
|
116
|
-
Optional Argument.
|
|
117
|
-
Specifies seasonal parameters sp, sd, sq for VarMax model. This argument
|
|
118
|
-
consists of 3 non-negative integer values separated by commas. The sp
|
|
119
|
-
and sq must be an integer between 0 and 10, inclusive. The sd must be
|
|
120
|
-
between 0 and 3, inclusive. If not specified, the model will be
|
|
121
|
-
treated as a non-seasonal model. If the seasonal_orders argument is
|
|
122
|
-
used, the period argument should also be present.
|
|
123
|
-
Types: str
|
|
124
|
-
|
|
125
|
-
period:
|
|
126
|
-
Optional Argument.
|
|
127
|
-
Specifies the period of each season. Must be a positive integer
|
|
128
|
-
value. If the period argument is used, the seasonal_orders argument
|
|
129
|
-
must also be present. If not specified, the model will be treated as
|
|
130
|
-
a non-seasonal model.
|
|
131
|
-
Types: int
|
|
132
|
-
|
|
133
|
-
exogenous_order:
|
|
134
|
-
Optional Argument.
|
|
135
|
-
Specifies the order of exogenous variables. If the current time is t
|
|
136
|
-
and exogenous_order isb, the following values of the exogenous time
|
|
137
|
-
series will be used in calculating the response: Xt Xt-1 ... Xt-b+1.
|
|
138
|
-
If not specified, the model will be calculated without exogenous
|
|
139
|
-
vectors.
|
|
140
|
-
Types: int
|
|
141
|
-
|
|
142
|
-
lag:
|
|
143
|
-
Optional Argument.
|
|
144
|
-
Specifies the lag in the effect of the exogenous variables on the
|
|
145
|
-
response variables. For example, if lag = 3, and exogenous_order is
|
|
146
|
-
b, Yi will be predicted based on Xi-3 to Xi-b-2.
|
|
147
|
-
Default Value: 0
|
|
148
|
-
Types: int
|
|
149
|
-
|
|
150
|
-
include_mean:
|
|
151
|
-
Optional Argument.
|
|
152
|
-
Specifies whether mean vector of the response data series (constant c
|
|
153
|
-
in the formula) is added in the VarMax model.
|
|
154
|
-
Note: If this argument is True, the difference parameters d (in the orders
|
|
155
|
-
argument) and sd (in the seasonal_orders argument) should be 0.
|
|
156
|
-
Default Value: False
|
|
157
|
-
Types: bool
|
|
158
|
-
|
|
159
|
-
max_iter_num:
|
|
160
|
-
Optional Argument.
|
|
161
|
-
A positive integer value. The maximum number of iterations performed.
|
|
162
|
-
Default Value: 100
|
|
163
|
-
Types: int
|
|
164
|
-
|
|
165
|
-
step_ahead:
|
|
166
|
-
Optional Argument.
|
|
167
|
-
A positive integer value. The number of steps to forecast after the
|
|
168
|
-
end of the time series. If not provided, no forecast values are
|
|
169
|
-
calculated.
|
|
170
|
-
Types: int
|
|
171
|
-
|
|
172
|
-
method:
|
|
173
|
-
Optional Argument.
|
|
174
|
-
Specifies the method for fitting the model parameters: SSE (Default):
|
|
175
|
-
Sum of squared error. ML: Maximum likelihood
|
|
176
|
-
Default Value: "SSE"
|
|
177
|
-
Permitted Values: SSE, ML
|
|
178
|
-
Types: str
|
|
179
|
-
|
|
180
|
-
data_orders:
|
|
181
|
-
Optional Argument.
|
|
182
|
-
It is the output teradataml DataFrame from TimeSeriesParameters.
|
|
183
|
-
|
|
184
|
-
data_orders_partition_column:
|
|
185
|
-
Optional Argument.
|
|
186
|
-
Specifies Partition By columns for data_orders.
|
|
187
|
-
Values to this argument can be provided as a list, if multiple columns
|
|
188
|
-
are used for partition.
|
|
189
|
-
Default Value: 1
|
|
190
|
-
Types: str OR list of Strings (str)
|
|
191
|
-
|
|
192
|
-
data_orders_order_column:
|
|
193
|
-
Optional Argument.
|
|
194
|
-
Specifies Order By columns for data_orders.
|
|
195
|
-
Values to this argument can be provided as a list, if multiple
|
|
196
|
-
columns are used for ordering.
|
|
197
|
-
Types: str OR list of Strings (str)
|
|
198
|
-
|
|
199
|
-
include_drift:
|
|
200
|
-
Optional Argument.
|
|
201
|
-
Specifies whether drift term is included in the VarMax model.
|
|
202
|
-
Note: This argument can only be True when d is non-zero and less than 2.
|
|
203
|
-
Default Value: False
|
|
204
|
-
Types: bool
|
|
205
|
-
|
|
206
|
-
order_p:
|
|
207
|
-
Optional Argument.
|
|
208
|
-
The p value of the non-seasonal order parameter. The p value must be
|
|
209
|
-
an integer between 0 and 10, inclusive.
|
|
210
|
-
Note: "order_p" argument support is only available
|
|
211
|
-
when teradataml is connected to Vantage 1.1 or later.
|
|
212
|
-
Types: int
|
|
213
|
-
|
|
214
|
-
order_d:
|
|
215
|
-
Optional Argument.
|
|
216
|
-
The d value of the non-seasonal order parameter. The d value must be
|
|
217
|
-
an integer between 0 and 1, inclusive.
|
|
218
|
-
Note: "order_d" argument support is only available
|
|
219
|
-
when teradataml is connected to Vantage 1.1 or later.
|
|
220
|
-
Types: int
|
|
221
|
-
|
|
222
|
-
order_q:
|
|
223
|
-
Optional Argument.
|
|
224
|
-
The q value of the non-seasonal order parameter. The q value must be
|
|
225
|
-
an integer between 0 and 10, inclusive.
|
|
226
|
-
Note: "order_q" argument support is only available
|
|
227
|
-
when teradataml is connected to Vantage 1.1 or later.
|
|
228
|
-
Types: int
|
|
229
|
-
|
|
230
|
-
seasonal_order_p:
|
|
231
|
-
Optional Argument.
|
|
232
|
-
The sp value of the seasonal order parameter. The sp value must be an
|
|
233
|
-
integer between 0 and 10, inclusive.
|
|
234
|
-
Note: "seasonal_order_p" argument support is only available
|
|
235
|
-
when teradataml is connected to Vantage 1.1 or later.
|
|
236
|
-
Types: int
|
|
237
|
-
|
|
238
|
-
seasonal_order_d:
|
|
239
|
-
Optional Argument.
|
|
240
|
-
The sd value of the seasonal order parameter. The sd value must be an
|
|
241
|
-
integer between 0 and 3, inclusive.
|
|
242
|
-
Note: "seasonal_order_d" argument support is only available
|
|
243
|
-
when teradataml is connected to Vantage 1.1 or later.
|
|
244
|
-
Types: int
|
|
245
|
-
|
|
246
|
-
seasonal_order_q:
|
|
247
|
-
Optional Argument.
|
|
248
|
-
The sq value of the seasonal order parameter. The sq value must be an
|
|
249
|
-
integer between 0 and 10, inclusive.
|
|
250
|
-
Note: "seasonal_order_q" argument support is only available
|
|
251
|
-
when teradataml is connected to Vantage 1.1 or later.
|
|
252
|
-
Types: int
|
|
253
|
-
|
|
254
|
-
data_sequence_column:
|
|
255
|
-
Optional Argument.
|
|
256
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
257
|
-
the input argument "data". The argument is used to ensure
|
|
258
|
-
deterministic results for functions which produce results that vary
|
|
259
|
-
from run to run.
|
|
260
|
-
Types: str OR list of Strings (str)
|
|
261
|
-
|
|
262
|
-
data_orders_sequence_column:
|
|
263
|
-
Optional Argument.
|
|
264
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
265
|
-
the input argument "data_orders". The argument is used to ensure
|
|
266
|
-
deterministic results for functions which produce results that vary
|
|
267
|
-
from run to run.
|
|
268
|
-
Types: str OR list of Strings (str)
|
|
269
|
-
|
|
270
|
-
RETURNS:
|
|
271
|
-
Instance of VarMax.
|
|
272
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
273
|
-
references, such as VarMaxObj.<attribute_name>.
|
|
274
|
-
Output teradataml DataFrame attribute name is:
|
|
275
|
-
result
|
|
276
|
-
|
|
277
|
-
|
|
278
|
-
RAISES:
|
|
279
|
-
TeradataMlException
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
EXAMPLES:
|
|
283
|
-
# Load the data to run the example.
|
|
284
|
-
load_example_data("VarMax",["finance_data3","orders_ex"])
|
|
285
|
-
|
|
286
|
-
# Create teradataml DataFrame objects.
|
|
287
|
-
finance_data3 = DataFrame.from_table("finance_data3")
|
|
288
|
-
orders_ex = DataFrame.from_table("orders_ex")
|
|
289
|
-
|
|
290
|
-
# Example 1 -
|
|
291
|
-
varmax_out1 = VarMax(data = finance_data3,
|
|
292
|
-
data_partition_column = ["id"],
|
|
293
|
-
data_order_column = ["period"],
|
|
294
|
-
response_columns = ["expenditure","income","investment"],
|
|
295
|
-
partition_columns = ["id"],
|
|
296
|
-
orders = "1,1,1",
|
|
297
|
-
include_mean = False,
|
|
298
|
-
step_ahead = 3
|
|
299
|
-
)
|
|
300
|
-
# Print the results.
|
|
301
|
-
print(varmax_out1.result)
|
|
302
|
-
|
|
303
|
-
# Example 2 -
|
|
304
|
-
varmax_out2 = VarMax(data = finance_data3,
|
|
305
|
-
data_partition_column = ["id"],
|
|
306
|
-
data_order_column = ["period"],
|
|
307
|
-
response_columns = ["expenditure"],
|
|
308
|
-
exogenous_columns = ["income","investment"],
|
|
309
|
-
partition_columns = ["id"],
|
|
310
|
-
orders = "1,1,1",
|
|
311
|
-
exogenous_order = 3,
|
|
312
|
-
lag = 3,
|
|
313
|
-
include_mean = False,
|
|
314
|
-
step_ahead = 3
|
|
315
|
-
)
|
|
316
|
-
# Print the results.
|
|
317
|
-
print(varmax_out2.result)
|
|
318
|
-
|
|
319
|
-
# Example 3 -
|
|
320
|
-
varmax_out3 = VarMax(data = finance_data3,
|
|
321
|
-
data_partition_column = ["id"],
|
|
322
|
-
data_order_column = ["period"],
|
|
323
|
-
response_columns = ["expenditure"],
|
|
324
|
-
exogenous_columns = ["income","investment"],
|
|
325
|
-
partition_columns = ["id"],
|
|
326
|
-
orders = "1,1,1",
|
|
327
|
-
seasonal_orders = "1,0,0",
|
|
328
|
-
period = 4,
|
|
329
|
-
exogenous_order = 3,
|
|
330
|
-
lag = 3,
|
|
331
|
-
include_mean = False,
|
|
332
|
-
step_ahead = 3
|
|
333
|
-
)
|
|
334
|
-
# Print the results.
|
|
335
|
-
print(varmax_out3.result)
|
|
336
|
-
|
|
337
|
-
# Example 4 -
|
|
338
|
-
varmax_out4 = VarMax(data = finance_data3,
|
|
339
|
-
data_partition_column = ["id"],
|
|
340
|
-
data_order_column = ["period"],
|
|
341
|
-
response_columns = ["expenditure"],
|
|
342
|
-
partition_columns = ["id"],
|
|
343
|
-
max_iter_num = 1000,
|
|
344
|
-
method = "ML",
|
|
345
|
-
data_orders = orders_ex,
|
|
346
|
-
data_orders_partition_column = ["id"]
|
|
347
|
-
)
|
|
348
|
-
# Print the results.
|
|
349
|
-
print(varmax_out4.result)
|
|
350
|
-
|
|
351
|
-
"""
|
|
352
|
-
|
|
353
|
-
# Start the timer to get the build time
|
|
354
|
-
_start_time = time.time()
|
|
355
|
-
|
|
356
|
-
self.data = data
|
|
357
|
-
self.response_columns = response_columns
|
|
358
|
-
self.exogenous_columns = exogenous_columns
|
|
359
|
-
self.partition_columns = partition_columns
|
|
360
|
-
self.orders = orders
|
|
361
|
-
self.seasonal_orders = seasonal_orders
|
|
362
|
-
self.period = period
|
|
363
|
-
self.exogenous_order = exogenous_order
|
|
364
|
-
self.lag = lag
|
|
365
|
-
self.include_mean = include_mean
|
|
366
|
-
self.max_iter_num = max_iter_num
|
|
367
|
-
self.step_ahead = step_ahead
|
|
368
|
-
self.method = method
|
|
369
|
-
self.data_orders = data_orders
|
|
370
|
-
self.include_drift = include_drift
|
|
371
|
-
self.order_p = order_p
|
|
372
|
-
self.order_d = order_d
|
|
373
|
-
self.order_q = order_q
|
|
374
|
-
self.seasonal_order_p = seasonal_order_p
|
|
375
|
-
self.seasonal_order_d = seasonal_order_d
|
|
376
|
-
self.seasonal_order_q = seasonal_order_q
|
|
377
|
-
self.data_sequence_column = data_sequence_column
|
|
378
|
-
self.data_orders_sequence_column = data_orders_sequence_column
|
|
379
|
-
self.data_partition_column = data_partition_column
|
|
380
|
-
self.data_orders_partition_column = data_orders_partition_column
|
|
381
|
-
self.data_order_column = data_order_column
|
|
382
|
-
self.data_orders_order_column = data_orders_order_column
|
|
383
|
-
|
|
384
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
385
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
386
|
-
self.__aed_utils = AedUtils()
|
|
387
|
-
|
|
388
|
-
# Create argument information matrix to do parameter checking
|
|
389
|
-
self.__arg_info_matrix = []
|
|
390
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
391
|
-
self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, True, (str,list)])
|
|
392
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, False, (str,list)])
|
|
393
|
-
self.__arg_info_matrix.append(["response_columns", self.response_columns, False, (str,list)])
|
|
394
|
-
self.__arg_info_matrix.append(["exogenous_columns", self.exogenous_columns, True, (str,list)])
|
|
395
|
-
self.__arg_info_matrix.append(["partition_columns", self.partition_columns, True, (str,list)])
|
|
396
|
-
self.__arg_info_matrix.append(["orders", self.orders, True, (str)])
|
|
397
|
-
self.__arg_info_matrix.append(["seasonal_orders", self.seasonal_orders, True, (str)])
|
|
398
|
-
self.__arg_info_matrix.append(["period", self.period, True, (int)])
|
|
399
|
-
self.__arg_info_matrix.append(["exogenous_order", self.exogenous_order, True, (int)])
|
|
400
|
-
self.__arg_info_matrix.append(["lag", self.lag, True, (int)])
|
|
401
|
-
self.__arg_info_matrix.append(["include_mean", self.include_mean, True, (bool)])
|
|
402
|
-
self.__arg_info_matrix.append(["max_iter_num", self.max_iter_num, True, (int)])
|
|
403
|
-
self.__arg_info_matrix.append(["step_ahead", self.step_ahead, True, (int)])
|
|
404
|
-
self.__arg_info_matrix.append(["method", self.method, True, (str)])
|
|
405
|
-
self.__arg_info_matrix.append(["data_orders", self.data_orders, True, (DataFrame)])
|
|
406
|
-
self.__arg_info_matrix.append(["data_orders_partition_column", self.data_orders_partition_column, True, (str,list)])
|
|
407
|
-
self.__arg_info_matrix.append(["data_orders_order_column", self.data_orders_order_column, True, (str,list)])
|
|
408
|
-
self.__arg_info_matrix.append(["include_drift", self.include_drift, True, (bool)])
|
|
409
|
-
self.__arg_info_matrix.append(["order_p", self.order_p, True, (int)])
|
|
410
|
-
self.__arg_info_matrix.append(["order_d", self.order_d, True, (int)])
|
|
411
|
-
self.__arg_info_matrix.append(["order_q", self.order_q, True, (int)])
|
|
412
|
-
self.__arg_info_matrix.append(["seasonal_order_p", self.seasonal_order_p, True, (int)])
|
|
413
|
-
self.__arg_info_matrix.append(["seasonal_order_d", self.seasonal_order_d, True, (int)])
|
|
414
|
-
self.__arg_info_matrix.append(["seasonal_order_q", self.seasonal_order_q, True, (int)])
|
|
415
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
416
|
-
self.__arg_info_matrix.append(["data_orders_sequence_column", self.data_orders_sequence_column, True, (str,list)])
|
|
417
|
-
|
|
418
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
419
|
-
# Perform the function validations
|
|
420
|
-
self.__validate()
|
|
421
|
-
# Generate the ML query
|
|
422
|
-
self.__form_tdml_query()
|
|
423
|
-
# Execute ML query
|
|
424
|
-
self.__execute()
|
|
425
|
-
# Get the prediction type
|
|
426
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
427
|
-
|
|
428
|
-
# End the timer to get the build time
|
|
429
|
-
_end_time = time.time()
|
|
430
|
-
|
|
431
|
-
# Calculate the build time
|
|
432
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
433
|
-
|
|
434
|
-
def __validate(self):
|
|
435
|
-
"""
|
|
436
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
437
|
-
arguments, input argument and table types. Also processes the
|
|
438
|
-
argument values.
|
|
439
|
-
"""
|
|
440
|
-
|
|
441
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
442
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
443
|
-
|
|
444
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
445
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
446
|
-
|
|
447
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
448
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
449
|
-
self.__awu._validate_input_table_datatype(self.data_orders, "data_orders", None)
|
|
450
|
-
|
|
451
|
-
# Check for permitted values
|
|
452
|
-
method_permitted_values = ["SSE", "ML"]
|
|
453
|
-
self.__awu._validate_permitted_values(self.method, method_permitted_values, "method")
|
|
454
|
-
|
|
455
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
456
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
457
|
-
self.__awu._validate_input_columns_not_empty(self.response_columns, "response_columns")
|
|
458
|
-
self.__awu._validate_dataframe_has_argument_columns(self.response_columns, "response_columns", self.data, "data", False)
|
|
459
|
-
|
|
460
|
-
self.__awu._validate_input_columns_not_empty(self.exogenous_columns, "exogenous_columns")
|
|
461
|
-
self.__awu._validate_dataframe_has_argument_columns(self.exogenous_columns, "exogenous_columns", self.data, "data", False)
|
|
462
|
-
|
|
463
|
-
self.__awu._validate_input_columns_not_empty(self.partition_columns, "partition_columns")
|
|
464
|
-
self.__awu._validate_dataframe_has_argument_columns(self.partition_columns, "partition_columns", self.data, "data", False)
|
|
465
|
-
|
|
466
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
467
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
468
|
-
|
|
469
|
-
self.__awu._validate_input_columns_not_empty(self.data_orders_sequence_column, "data_orders_sequence_column")
|
|
470
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_orders_sequence_column, "data_orders_sequence_column", self.data_orders, "data_orders", False)
|
|
471
|
-
|
|
472
|
-
self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
|
|
473
|
-
if self.__awu._is_default_or_not(self.data_partition_column, "1"):
|
|
474
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
|
|
475
|
-
|
|
476
|
-
self.__awu._validate_input_columns_not_empty(self.data_orders_partition_column, "data_orders_partition_column")
|
|
477
|
-
if self.__awu._is_default_or_not(self.data_orders_partition_column, "1"):
|
|
478
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_orders_partition_column, "data_orders_partition_column", self.data_orders, "data_orders", True)
|
|
479
|
-
|
|
480
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
481
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
482
|
-
|
|
483
|
-
self.__awu._validate_input_columns_not_empty(self.data_orders_order_column, "data_orders_order_column")
|
|
484
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_orders_order_column, "data_orders_order_column", self.data_orders, "data_orders", False)
|
|
485
|
-
|
|
486
|
-
|
|
487
|
-
def __form_tdml_query(self):
|
|
488
|
-
"""
|
|
489
|
-
Function to generate the analytical function queries. The function defines
|
|
490
|
-
variables and list of arguments required to form the query.
|
|
491
|
-
"""
|
|
492
|
-
|
|
493
|
-
# Output table arguments list
|
|
494
|
-
self.__func_output_args_sql_names = []
|
|
495
|
-
self.__func_output_args = []
|
|
496
|
-
|
|
497
|
-
# Model Cataloging related attributes.
|
|
498
|
-
self._sql_specific_attributes = {}
|
|
499
|
-
self._sql_formula_attribute_mapper = {}
|
|
500
|
-
self._target_column = None
|
|
501
|
-
self._algorithm_name = None
|
|
502
|
-
|
|
503
|
-
# Generate lists for rest of the function arguments
|
|
504
|
-
self.__func_other_arg_sql_names = []
|
|
505
|
-
self.__func_other_args = []
|
|
506
|
-
self.__func_other_arg_json_datatypes = []
|
|
507
|
-
|
|
508
|
-
self.__func_other_arg_sql_names.append("ResponseColumns")
|
|
509
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.response_columns, "\""), "'"))
|
|
510
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
511
|
-
|
|
512
|
-
if self.exogenous_columns is not None:
|
|
513
|
-
self.__func_other_arg_sql_names.append("ExogenousColumns")
|
|
514
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.exogenous_columns, "\""), "'"))
|
|
515
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
516
|
-
|
|
517
|
-
if self.partition_columns is not None:
|
|
518
|
-
self.__func_other_arg_sql_names.append("PartitionColumns")
|
|
519
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.partition_columns, "\""), "'"))
|
|
520
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
521
|
-
|
|
522
|
-
if self.orders is not None:
|
|
523
|
-
self.__func_other_arg_sql_names.append("PDQ")
|
|
524
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.orders, "'"))
|
|
525
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
526
|
-
|
|
527
|
-
if self.method is not None and self.method != "SSE":
|
|
528
|
-
self.__func_other_arg_sql_names.append("Method")
|
|
529
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.method, "'"))
|
|
530
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
531
|
-
|
|
532
|
-
if self.seasonal_orders is not None:
|
|
533
|
-
self.__func_other_arg_sql_names.append("SeasonalPDQ")
|
|
534
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seasonal_orders, "'"))
|
|
535
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
536
|
-
|
|
537
|
-
if self.period is not None:
|
|
538
|
-
self.__func_other_arg_sql_names.append("Period")
|
|
539
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.period, "'"))
|
|
540
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
541
|
-
|
|
542
|
-
if self.exogenous_order is not None:
|
|
543
|
-
self.__func_other_arg_sql_names.append("ExogenousOrder")
|
|
544
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.exogenous_order, "'"))
|
|
545
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
546
|
-
|
|
547
|
-
if self.include_mean is not None and self.include_mean != False:
|
|
548
|
-
self.__func_other_arg_sql_names.append("IncludeMean")
|
|
549
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.include_mean, "'"))
|
|
550
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
551
|
-
|
|
552
|
-
if self.include_drift is not None and self.include_drift != False:
|
|
553
|
-
self.__func_other_arg_sql_names.append("IncludeDrift")
|
|
554
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.include_drift, "'"))
|
|
555
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
556
|
-
|
|
557
|
-
if self.lag is not None and self.lag != 0:
|
|
558
|
-
self.__func_other_arg_sql_names.append("Lag")
|
|
559
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.lag, "'"))
|
|
560
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
561
|
-
|
|
562
|
-
if self.max_iter_num is not None and self.max_iter_num != 100:
|
|
563
|
-
self.__func_other_arg_sql_names.append("MaxIterNum")
|
|
564
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_iter_num, "'"))
|
|
565
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
566
|
-
|
|
567
|
-
if self.step_ahead is not None:
|
|
568
|
-
self.__func_other_arg_sql_names.append("StepAhead")
|
|
569
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.step_ahead, "'"))
|
|
570
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
571
|
-
|
|
572
|
-
if self.order_p is not None:
|
|
573
|
-
self.__func_other_arg_sql_names.append("OrderP")
|
|
574
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.order_p, "'"))
|
|
575
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
576
|
-
|
|
577
|
-
if self.order_d is not None:
|
|
578
|
-
self.__func_other_arg_sql_names.append("OrderD")
|
|
579
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.order_d, "'"))
|
|
580
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
581
|
-
|
|
582
|
-
if self.order_q is not None:
|
|
583
|
-
self.__func_other_arg_sql_names.append("OrderQ")
|
|
584
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.order_q, "'"))
|
|
585
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
586
|
-
|
|
587
|
-
if self.seasonal_order_p is not None:
|
|
588
|
-
self.__func_other_arg_sql_names.append("SeasonalOrderP")
|
|
589
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seasonal_order_p, "'"))
|
|
590
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
591
|
-
|
|
592
|
-
if self.seasonal_order_d is not None:
|
|
593
|
-
self.__func_other_arg_sql_names.append("SeasonalOrderD")
|
|
594
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seasonal_order_d, "'"))
|
|
595
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
596
|
-
|
|
597
|
-
if self.seasonal_order_q is not None:
|
|
598
|
-
self.__func_other_arg_sql_names.append("SeasonalOrderQ")
|
|
599
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seasonal_order_q, "'"))
|
|
600
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
601
|
-
|
|
602
|
-
# Generate lists for rest of the function arguments
|
|
603
|
-
sequence_input_by_list = []
|
|
604
|
-
if self.data_sequence_column is not None:
|
|
605
|
-
sequence_input_by_list.append("data:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
606
|
-
|
|
607
|
-
if self.data_orders_sequence_column is not None:
|
|
608
|
-
sequence_input_by_list.append("orders:" + UtilFuncs._teradata_collapse_arglist(self.data_orders_sequence_column, ""))
|
|
609
|
-
|
|
610
|
-
if len(sequence_input_by_list) > 0:
|
|
611
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
612
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
613
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
614
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
615
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
616
|
-
|
|
617
|
-
|
|
618
|
-
# Declare empty lists to hold input table information.
|
|
619
|
-
self.__func_input_arg_sql_names = []
|
|
620
|
-
self.__func_input_table_view_query = []
|
|
621
|
-
self.__func_input_dataframe_type = []
|
|
622
|
-
self.__func_input_distribution = []
|
|
623
|
-
self.__func_input_partition_by_cols = []
|
|
624
|
-
self.__func_input_order_by_cols = []
|
|
625
|
-
|
|
626
|
-
# Process data
|
|
627
|
-
if self.__awu._is_default_or_not(self.data_partition_column, "1"):
|
|
628
|
-
self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
|
|
629
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
630
|
-
self.__func_input_distribution.append("FACT")
|
|
631
|
-
self.__func_input_arg_sql_names.append("data")
|
|
632
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
633
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
634
|
-
self.__func_input_partition_by_cols.append(self.data_partition_column)
|
|
635
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
636
|
-
|
|
637
|
-
# Process data_orders
|
|
638
|
-
if self.data_orders is not None:
|
|
639
|
-
if self.__awu._is_default_or_not(self.data_orders_partition_column, "1"):
|
|
640
|
-
self.data_orders_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_orders_partition_column, "\"")
|
|
641
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data_orders, False)
|
|
642
|
-
self.__func_input_distribution.append("FACT")
|
|
643
|
-
self.__func_input_arg_sql_names.append("orders")
|
|
644
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
645
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
646
|
-
self.__func_input_partition_by_cols.append(self.data_orders_partition_column)
|
|
647
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_orders_order_column, "\""))
|
|
648
|
-
|
|
649
|
-
function_name = "VARMAX"
|
|
650
|
-
# Create instance to generate SQLMR.
|
|
651
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
652
|
-
self.__func_input_arg_sql_names,
|
|
653
|
-
self.__func_input_table_view_query,
|
|
654
|
-
self.__func_input_dataframe_type,
|
|
655
|
-
self.__func_input_distribution,
|
|
656
|
-
self.__func_input_partition_by_cols,
|
|
657
|
-
self.__func_input_order_by_cols,
|
|
658
|
-
self.__func_other_arg_sql_names,
|
|
659
|
-
self.__func_other_args,
|
|
660
|
-
self.__func_other_arg_json_datatypes,
|
|
661
|
-
self.__func_output_args_sql_names,
|
|
662
|
-
self.__func_output_args,
|
|
663
|
-
engine="ENGINE_ML")
|
|
664
|
-
# Invoke call to SQL-MR generation.
|
|
665
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
666
|
-
|
|
667
|
-
# Print SQL-MR query if requested to do so.
|
|
668
|
-
if display.print_sqlmr_query:
|
|
669
|
-
print(self.sqlmr_query)
|
|
670
|
-
|
|
671
|
-
# Set the algorithm name for Model Cataloging.
|
|
672
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
673
|
-
|
|
674
|
-
def __execute(self):
|
|
675
|
-
"""
|
|
676
|
-
Function to execute SQL-MR queries.
|
|
677
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
678
|
-
"""
|
|
679
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
680
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
681
|
-
try:
|
|
682
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
683
|
-
except Exception as emsg:
|
|
684
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
685
|
-
|
|
686
|
-
# Update output table data frames.
|
|
687
|
-
self._mlresults = []
|
|
688
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
689
|
-
self._mlresults.append(self.result)
|
|
690
|
-
|
|
691
|
-
def show_query(self):
|
|
692
|
-
"""
|
|
693
|
-
Function to return the underlying SQL query.
|
|
694
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
695
|
-
"""
|
|
696
|
-
return self.sqlmr_query
|
|
697
|
-
|
|
698
|
-
def get_prediction_type(self):
|
|
699
|
-
"""
|
|
700
|
-
Function to return the Prediction type of the algorithm.
|
|
701
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
702
|
-
as saved in the Model Catalog.
|
|
703
|
-
"""
|
|
704
|
-
return self._prediction_type
|
|
705
|
-
|
|
706
|
-
def get_target_column(self):
|
|
707
|
-
"""
|
|
708
|
-
Function to return the Target Column of the algorithm.
|
|
709
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
710
|
-
as saved in the Model Catalog.
|
|
711
|
-
"""
|
|
712
|
-
return self._target_column
|
|
713
|
-
|
|
714
|
-
def get_build_time(self):
|
|
715
|
-
"""
|
|
716
|
-
Function to return the build time of the algorithm in seconds.
|
|
717
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
718
|
-
as saved in the Model Catalog.
|
|
719
|
-
"""
|
|
720
|
-
return self._build_time
|
|
721
|
-
|
|
722
|
-
def _get_algorithm_name(self):
|
|
723
|
-
"""
|
|
724
|
-
Function to return the name of the algorithm.
|
|
725
|
-
"""
|
|
726
|
-
return self._algorithm_name
|
|
727
|
-
|
|
728
|
-
def _get_sql_specific_attributes(self):
|
|
729
|
-
"""
|
|
730
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
731
|
-
"""
|
|
732
|
-
return self._sql_specific_attributes
|
|
733
|
-
|
|
734
|
-
@classmethod
|
|
735
|
-
def _from_model_catalog(cls,
|
|
736
|
-
result = None,
|
|
737
|
-
**kwargs):
|
|
738
|
-
"""
|
|
739
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
740
|
-
"""
|
|
741
|
-
kwargs.pop("result", None)
|
|
742
|
-
|
|
743
|
-
# Model Cataloging related attributes.
|
|
744
|
-
target_column = kwargs.pop("__target_column", None)
|
|
745
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
746
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
747
|
-
build_time = kwargs.pop("__build_time", None)
|
|
748
|
-
|
|
749
|
-
# Let's create an object of this class.
|
|
750
|
-
obj = cls(**kwargs)
|
|
751
|
-
obj.result = result
|
|
752
|
-
|
|
753
|
-
# Initialize the sqlmr_query class attribute.
|
|
754
|
-
obj.sqlmr_query = None
|
|
755
|
-
|
|
756
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
757
|
-
obj._sql_specific_attributes = None
|
|
758
|
-
obj._target_column = target_column
|
|
759
|
-
obj._prediction_type = prediction_type
|
|
760
|
-
obj._algorithm_name = algorithm_name
|
|
761
|
-
obj._build_time = build_time
|
|
762
|
-
|
|
763
|
-
# Update output table data frames.
|
|
764
|
-
obj._mlresults = []
|
|
765
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
766
|
-
obj._mlresults.append(obj.result)
|
|
767
|
-
return obj
|
|
768
|
-
|
|
769
|
-
def __repr__(self):
|
|
770
|
-
"""
|
|
771
|
-
Returns the string representation for a VarMax class instance.
|
|
772
|
-
"""
|
|
773
|
-
repr_string="############ STDOUT Output ############"
|
|
774
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
775
|
-
return repr_string
|
|
776
|
-
|