teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,776 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.14
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class VarMax:
31
-
32
- def __init__(self,
33
- data = None,
34
- response_columns = None,
35
- exogenous_columns = None,
36
- partition_columns = None,
37
- orders = None,
38
- seasonal_orders = None,
39
- period = None,
40
- exogenous_order = None,
41
- lag = 0,
42
- include_mean = False,
43
- max_iter_num = 100,
44
- step_ahead = None,
45
- method = "SSE",
46
- data_orders = None,
47
- include_drift = False,
48
- order_p = None,
49
- order_d = None,
50
- order_q = None,
51
- seasonal_order_p = None,
52
- seasonal_order_d = None,
53
- seasonal_order_q = None,
54
- data_sequence_column = None,
55
- data_orders_sequence_column = None,
56
- data_partition_column = "1",
57
- data_orders_partition_column = "1",
58
- data_order_column = None,
59
- data_orders_order_column = None):
60
- """
61
- DESCRIPTION:
62
- VarMax (Vector Autoregressive Moving Average model with eXogenous
63
- variables) extends the ARMA/ARIMA model in two ways.
64
-
65
-
66
- PARAMETERS:
67
- data:
68
- Required Argument.
69
- The teradataml DataFrame that stores the input sequence.
70
-
71
- data_partition_column:
72
- Optional Argument.
73
- Specifies Partition By columns for data.
74
- Values to this argument can be provided as a list, if multiple columns
75
- are used for partition.
76
- Default Value: 1
77
- Types: str OR list of Strings (str)
78
-
79
- data_order_column:
80
- Required Argument.
81
- Specifies Order By columns for data.
82
- Values to this argument can be provided as a list, if multiple columns
83
- are used for ordering.
84
- Types: str OR list of Strings (str)
85
-
86
- response_columns:
87
- Required Argument.
88
- Specifies the columns containing the response data. Null values are
89
- acceptable at the end of the series. If step_ahead is specified, the
90
- function will report predicted values for the missing values, taking
91
- into account values from the predictor columns for those time periods.
92
- Types: str OR list of Strings (str)
93
-
94
- exogenous_columns:
95
- Optional Argument.
96
- Specifies the columns containing the independent (exogenous)
97
- predictors. If not specified, the model will be calculated without
98
- exogenous vectors.
99
- Types: str OR list of Strings (str)
100
-
101
- partition_columns:
102
- Optional Argument.
103
- Specifies the partition columns that will be passed to the output. If
104
- not specified, the output will not contain partition columns.
105
- Types: str OR list of Strings (str)
106
-
107
- orders:
108
- Optional Argument.
109
- Specifies the parameters p, d, q for VarMax model. This argument
110
- consists of 3 non-negative int values separated by commas. The p and q
111
- must be an integer between 0 and 10, inclusive. The d must be between
112
- 0 and 1, inclusive.
113
- Types: str
114
-
115
- seasonal_orders:
116
- Optional Argument.
117
- Specifies seasonal parameters sp, sd, sq for VarMax model. This argument
118
- consists of 3 non-negative integer values separated by commas. The sp
119
- and sq must be an integer between 0 and 10, inclusive. The sd must be
120
- between 0 and 3, inclusive. If not specified, the model will be
121
- treated as a non-seasonal model. If the seasonal_orders argument is
122
- used, the period argument should also be present.
123
- Types: str
124
-
125
- period:
126
- Optional Argument.
127
- Specifies the period of each season. Must be a positive integer
128
- value. If the period argument is used, the seasonal_orders argument
129
- must also be present. If not specified, the model will be treated as
130
- a non-seasonal model.
131
- Types: int
132
-
133
- exogenous_order:
134
- Optional Argument.
135
- Specifies the order of exogenous variables. If the current time is t
136
- and exogenous_order isb, the following values of the exogenous time
137
- series will be used in calculating the response: Xt Xt-1 ... Xt-b+1.
138
- If not specified, the model will be calculated without exogenous
139
- vectors.
140
- Types: int
141
-
142
- lag:
143
- Optional Argument.
144
- Specifies the lag in the effect of the exogenous variables on the
145
- response variables. For example, if lag = 3, and exogenous_order is
146
- b, Yi will be predicted based on Xi-3 to Xi-b-2.
147
- Default Value: 0
148
- Types: int
149
-
150
- include_mean:
151
- Optional Argument.
152
- Specifies whether mean vector of the response data series (constant c
153
- in the formula) is added in the VarMax model.
154
- Note: If this argument is True, the difference parameters d (in the orders
155
- argument) and sd (in the seasonal_orders argument) should be 0.
156
- Default Value: False
157
- Types: bool
158
-
159
- max_iter_num:
160
- Optional Argument.
161
- A positive integer value. The maximum number of iterations performed.
162
- Default Value: 100
163
- Types: int
164
-
165
- step_ahead:
166
- Optional Argument.
167
- A positive integer value. The number of steps to forecast after the
168
- end of the time series. If not provided, no forecast values are
169
- calculated.
170
- Types: int
171
-
172
- method:
173
- Optional Argument.
174
- Specifies the method for fitting the model parameters: SSE (Default):
175
- Sum of squared error. ML: Maximum likelihood
176
- Default Value: "SSE"
177
- Permitted Values: SSE, ML
178
- Types: str
179
-
180
- data_orders:
181
- Optional Argument.
182
- It is the output teradataml DataFrame from TimeSeriesParameters.
183
-
184
- data_orders_partition_column:
185
- Optional Argument.
186
- Specifies Partition By columns for data_orders.
187
- Values to this argument can be provided as a list, if multiple columns
188
- are used for partition.
189
- Default Value: 1
190
- Types: str OR list of Strings (str)
191
-
192
- data_orders_order_column:
193
- Optional Argument.
194
- Specifies Order By columns for data_orders.
195
- Values to this argument can be provided as a list, if multiple
196
- columns are used for ordering.
197
- Types: str OR list of Strings (str)
198
-
199
- include_drift:
200
- Optional Argument.
201
- Specifies whether drift term is included in the VarMax model.
202
- Note: This argument can only be True when d is non-zero and less than 2.
203
- Default Value: False
204
- Types: bool
205
-
206
- order_p:
207
- Optional Argument.
208
- The p value of the non-seasonal order parameter. The p value must be
209
- an integer between 0 and 10, inclusive.
210
- Note: "order_p" argument support is only available
211
- when teradataml is connected to Vantage 1.1 or later.
212
- Types: int
213
-
214
- order_d:
215
- Optional Argument.
216
- The d value of the non-seasonal order parameter. The d value must be
217
- an integer between 0 and 1, inclusive.
218
- Note: "order_d" argument support is only available
219
- when teradataml is connected to Vantage 1.1 or later.
220
- Types: int
221
-
222
- order_q:
223
- Optional Argument.
224
- The q value of the non-seasonal order parameter. The q value must be
225
- an integer between 0 and 10, inclusive.
226
- Note: "order_q" argument support is only available
227
- when teradataml is connected to Vantage 1.1 or later.
228
- Types: int
229
-
230
- seasonal_order_p:
231
- Optional Argument.
232
- The sp value of the seasonal order parameter. The sp value must be an
233
- integer between 0 and 10, inclusive.
234
- Note: "seasonal_order_p" argument support is only available
235
- when teradataml is connected to Vantage 1.1 or later.
236
- Types: int
237
-
238
- seasonal_order_d:
239
- Optional Argument.
240
- The sd value of the seasonal order parameter. The sd value must be an
241
- integer between 0 and 3, inclusive.
242
- Note: "seasonal_order_d" argument support is only available
243
- when teradataml is connected to Vantage 1.1 or later.
244
- Types: int
245
-
246
- seasonal_order_q:
247
- Optional Argument.
248
- The sq value of the seasonal order parameter. The sq value must be an
249
- integer between 0 and 10, inclusive.
250
- Note: "seasonal_order_q" argument support is only available
251
- when teradataml is connected to Vantage 1.1 or later.
252
- Types: int
253
-
254
- data_sequence_column:
255
- Optional Argument.
256
- Specifies the list of column(s) that uniquely identifies each row of
257
- the input argument "data". The argument is used to ensure
258
- deterministic results for functions which produce results that vary
259
- from run to run.
260
- Types: str OR list of Strings (str)
261
-
262
- data_orders_sequence_column:
263
- Optional Argument.
264
- Specifies the list of column(s) that uniquely identifies each row of
265
- the input argument "data_orders". The argument is used to ensure
266
- deterministic results for functions which produce results that vary
267
- from run to run.
268
- Types: str OR list of Strings (str)
269
-
270
- RETURNS:
271
- Instance of VarMax.
272
- Output teradataml DataFrames can be accessed using attribute
273
- references, such as VarMaxObj.<attribute_name>.
274
- Output teradataml DataFrame attribute name is:
275
- result
276
-
277
-
278
- RAISES:
279
- TeradataMlException
280
-
281
-
282
- EXAMPLES:
283
- # Load the data to run the example.
284
- load_example_data("VarMax",["finance_data3","orders_ex"])
285
-
286
- # Create teradataml DataFrame objects.
287
- finance_data3 = DataFrame.from_table("finance_data3")
288
- orders_ex = DataFrame.from_table("orders_ex")
289
-
290
- # Example 1 -
291
- varmax_out1 = VarMax(data = finance_data3,
292
- data_partition_column = ["id"],
293
- data_order_column = ["period"],
294
- response_columns = ["expenditure","income","investment"],
295
- partition_columns = ["id"],
296
- orders = "1,1,1",
297
- include_mean = False,
298
- step_ahead = 3
299
- )
300
- # Print the results.
301
- print(varmax_out1.result)
302
-
303
- # Example 2 -
304
- varmax_out2 = VarMax(data = finance_data3,
305
- data_partition_column = ["id"],
306
- data_order_column = ["period"],
307
- response_columns = ["expenditure"],
308
- exogenous_columns = ["income","investment"],
309
- partition_columns = ["id"],
310
- orders = "1,1,1",
311
- exogenous_order = 3,
312
- lag = 3,
313
- include_mean = False,
314
- step_ahead = 3
315
- )
316
- # Print the results.
317
- print(varmax_out2.result)
318
-
319
- # Example 3 -
320
- varmax_out3 = VarMax(data = finance_data3,
321
- data_partition_column = ["id"],
322
- data_order_column = ["period"],
323
- response_columns = ["expenditure"],
324
- exogenous_columns = ["income","investment"],
325
- partition_columns = ["id"],
326
- orders = "1,1,1",
327
- seasonal_orders = "1,0,0",
328
- period = 4,
329
- exogenous_order = 3,
330
- lag = 3,
331
- include_mean = False,
332
- step_ahead = 3
333
- )
334
- # Print the results.
335
- print(varmax_out3.result)
336
-
337
- # Example 4 -
338
- varmax_out4 = VarMax(data = finance_data3,
339
- data_partition_column = ["id"],
340
- data_order_column = ["period"],
341
- response_columns = ["expenditure"],
342
- partition_columns = ["id"],
343
- max_iter_num = 1000,
344
- method = "ML",
345
- data_orders = orders_ex,
346
- data_orders_partition_column = ["id"]
347
- )
348
- # Print the results.
349
- print(varmax_out4.result)
350
-
351
- """
352
-
353
- # Start the timer to get the build time
354
- _start_time = time.time()
355
-
356
- self.data = data
357
- self.response_columns = response_columns
358
- self.exogenous_columns = exogenous_columns
359
- self.partition_columns = partition_columns
360
- self.orders = orders
361
- self.seasonal_orders = seasonal_orders
362
- self.period = period
363
- self.exogenous_order = exogenous_order
364
- self.lag = lag
365
- self.include_mean = include_mean
366
- self.max_iter_num = max_iter_num
367
- self.step_ahead = step_ahead
368
- self.method = method
369
- self.data_orders = data_orders
370
- self.include_drift = include_drift
371
- self.order_p = order_p
372
- self.order_d = order_d
373
- self.order_q = order_q
374
- self.seasonal_order_p = seasonal_order_p
375
- self.seasonal_order_d = seasonal_order_d
376
- self.seasonal_order_q = seasonal_order_q
377
- self.data_sequence_column = data_sequence_column
378
- self.data_orders_sequence_column = data_orders_sequence_column
379
- self.data_partition_column = data_partition_column
380
- self.data_orders_partition_column = data_orders_partition_column
381
- self.data_order_column = data_order_column
382
- self.data_orders_order_column = data_orders_order_column
383
-
384
- # Create TeradataPyWrapperUtils instance which contains validation functions.
385
- self.__awu = AnalyticsWrapperUtils()
386
- self.__aed_utils = AedUtils()
387
-
388
- # Create argument information matrix to do parameter checking
389
- self.__arg_info_matrix = []
390
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
391
- self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, True, (str,list)])
392
- self.__arg_info_matrix.append(["data_order_column", self.data_order_column, False, (str,list)])
393
- self.__arg_info_matrix.append(["response_columns", self.response_columns, False, (str,list)])
394
- self.__arg_info_matrix.append(["exogenous_columns", self.exogenous_columns, True, (str,list)])
395
- self.__arg_info_matrix.append(["partition_columns", self.partition_columns, True, (str,list)])
396
- self.__arg_info_matrix.append(["orders", self.orders, True, (str)])
397
- self.__arg_info_matrix.append(["seasonal_orders", self.seasonal_orders, True, (str)])
398
- self.__arg_info_matrix.append(["period", self.period, True, (int)])
399
- self.__arg_info_matrix.append(["exogenous_order", self.exogenous_order, True, (int)])
400
- self.__arg_info_matrix.append(["lag", self.lag, True, (int)])
401
- self.__arg_info_matrix.append(["include_mean", self.include_mean, True, (bool)])
402
- self.__arg_info_matrix.append(["max_iter_num", self.max_iter_num, True, (int)])
403
- self.__arg_info_matrix.append(["step_ahead", self.step_ahead, True, (int)])
404
- self.__arg_info_matrix.append(["method", self.method, True, (str)])
405
- self.__arg_info_matrix.append(["data_orders", self.data_orders, True, (DataFrame)])
406
- self.__arg_info_matrix.append(["data_orders_partition_column", self.data_orders_partition_column, True, (str,list)])
407
- self.__arg_info_matrix.append(["data_orders_order_column", self.data_orders_order_column, True, (str,list)])
408
- self.__arg_info_matrix.append(["include_drift", self.include_drift, True, (bool)])
409
- self.__arg_info_matrix.append(["order_p", self.order_p, True, (int)])
410
- self.__arg_info_matrix.append(["order_d", self.order_d, True, (int)])
411
- self.__arg_info_matrix.append(["order_q", self.order_q, True, (int)])
412
- self.__arg_info_matrix.append(["seasonal_order_p", self.seasonal_order_p, True, (int)])
413
- self.__arg_info_matrix.append(["seasonal_order_d", self.seasonal_order_d, True, (int)])
414
- self.__arg_info_matrix.append(["seasonal_order_q", self.seasonal_order_q, True, (int)])
415
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
416
- self.__arg_info_matrix.append(["data_orders_sequence_column", self.data_orders_sequence_column, True, (str,list)])
417
-
418
- if inspect.stack()[1][3] != '_from_model_catalog':
419
- # Perform the function validations
420
- self.__validate()
421
- # Generate the ML query
422
- self.__form_tdml_query()
423
- # Execute ML query
424
- self.__execute()
425
- # Get the prediction type
426
- self._prediction_type = self.__awu._get_function_prediction_type(self)
427
-
428
- # End the timer to get the build time
429
- _end_time = time.time()
430
-
431
- # Calculate the build time
432
- self._build_time = (int)(_end_time - _start_time)
433
-
434
- def __validate(self):
435
- """
436
- Function to validate sqlmr function arguments, which verifies missing
437
- arguments, input argument and table types. Also processes the
438
- argument values.
439
- """
440
-
441
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
442
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
443
-
444
- # Make sure that a non-NULL value has been supplied correct type of argument
445
- self.__awu._validate_argument_types(self.__arg_info_matrix)
446
-
447
- # Check to make sure input table types are strings or data frame objects or of valid type.
448
- self.__awu._validate_input_table_datatype(self.data, "data", None)
449
- self.__awu._validate_input_table_datatype(self.data_orders, "data_orders", None)
450
-
451
- # Check for permitted values
452
- method_permitted_values = ["SSE", "ML"]
453
- self.__awu._validate_permitted_values(self.method, method_permitted_values, "method")
454
-
455
- # Check whether the input columns passed to the argument are not empty.
456
- # Also check whether the input columns passed to the argument valid or not.
457
- self.__awu._validate_input_columns_not_empty(self.response_columns, "response_columns")
458
- self.__awu._validate_dataframe_has_argument_columns(self.response_columns, "response_columns", self.data, "data", False)
459
-
460
- self.__awu._validate_input_columns_not_empty(self.exogenous_columns, "exogenous_columns")
461
- self.__awu._validate_dataframe_has_argument_columns(self.exogenous_columns, "exogenous_columns", self.data, "data", False)
462
-
463
- self.__awu._validate_input_columns_not_empty(self.partition_columns, "partition_columns")
464
- self.__awu._validate_dataframe_has_argument_columns(self.partition_columns, "partition_columns", self.data, "data", False)
465
-
466
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
467
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
468
-
469
- self.__awu._validate_input_columns_not_empty(self.data_orders_sequence_column, "data_orders_sequence_column")
470
- self.__awu._validate_dataframe_has_argument_columns(self.data_orders_sequence_column, "data_orders_sequence_column", self.data_orders, "data_orders", False)
471
-
472
- self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
473
- if self.__awu._is_default_or_not(self.data_partition_column, "1"):
474
- self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
475
-
476
- self.__awu._validate_input_columns_not_empty(self.data_orders_partition_column, "data_orders_partition_column")
477
- if self.__awu._is_default_or_not(self.data_orders_partition_column, "1"):
478
- self.__awu._validate_dataframe_has_argument_columns(self.data_orders_partition_column, "data_orders_partition_column", self.data_orders, "data_orders", True)
479
-
480
- self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
481
- self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
482
-
483
- self.__awu._validate_input_columns_not_empty(self.data_orders_order_column, "data_orders_order_column")
484
- self.__awu._validate_dataframe_has_argument_columns(self.data_orders_order_column, "data_orders_order_column", self.data_orders, "data_orders", False)
485
-
486
-
487
- def __form_tdml_query(self):
488
- """
489
- Function to generate the analytical function queries. The function defines
490
- variables and list of arguments required to form the query.
491
- """
492
-
493
- # Output table arguments list
494
- self.__func_output_args_sql_names = []
495
- self.__func_output_args = []
496
-
497
- # Model Cataloging related attributes.
498
- self._sql_specific_attributes = {}
499
- self._sql_formula_attribute_mapper = {}
500
- self._target_column = None
501
- self._algorithm_name = None
502
-
503
- # Generate lists for rest of the function arguments
504
- self.__func_other_arg_sql_names = []
505
- self.__func_other_args = []
506
- self.__func_other_arg_json_datatypes = []
507
-
508
- self.__func_other_arg_sql_names.append("ResponseColumns")
509
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.response_columns, "\""), "'"))
510
- self.__func_other_arg_json_datatypes.append("COLUMNS")
511
-
512
- if self.exogenous_columns is not None:
513
- self.__func_other_arg_sql_names.append("ExogenousColumns")
514
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.exogenous_columns, "\""), "'"))
515
- self.__func_other_arg_json_datatypes.append("COLUMNS")
516
-
517
- if self.partition_columns is not None:
518
- self.__func_other_arg_sql_names.append("PartitionColumns")
519
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.partition_columns, "\""), "'"))
520
- self.__func_other_arg_json_datatypes.append("COLUMNS")
521
-
522
- if self.orders is not None:
523
- self.__func_other_arg_sql_names.append("PDQ")
524
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.orders, "'"))
525
- self.__func_other_arg_json_datatypes.append("STRING")
526
-
527
- if self.method is not None and self.method != "SSE":
528
- self.__func_other_arg_sql_names.append("Method")
529
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.method, "'"))
530
- self.__func_other_arg_json_datatypes.append("STRING")
531
-
532
- if self.seasonal_orders is not None:
533
- self.__func_other_arg_sql_names.append("SeasonalPDQ")
534
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seasonal_orders, "'"))
535
- self.__func_other_arg_json_datatypes.append("STRING")
536
-
537
- if self.period is not None:
538
- self.__func_other_arg_sql_names.append("Period")
539
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.period, "'"))
540
- self.__func_other_arg_json_datatypes.append("INTEGER")
541
-
542
- if self.exogenous_order is not None:
543
- self.__func_other_arg_sql_names.append("ExogenousOrder")
544
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.exogenous_order, "'"))
545
- self.__func_other_arg_json_datatypes.append("INTEGER")
546
-
547
- if self.include_mean is not None and self.include_mean != False:
548
- self.__func_other_arg_sql_names.append("IncludeMean")
549
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.include_mean, "'"))
550
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
551
-
552
- if self.include_drift is not None and self.include_drift != False:
553
- self.__func_other_arg_sql_names.append("IncludeDrift")
554
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.include_drift, "'"))
555
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
556
-
557
- if self.lag is not None and self.lag != 0:
558
- self.__func_other_arg_sql_names.append("Lag")
559
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.lag, "'"))
560
- self.__func_other_arg_json_datatypes.append("INTEGER")
561
-
562
- if self.max_iter_num is not None and self.max_iter_num != 100:
563
- self.__func_other_arg_sql_names.append("MaxIterNum")
564
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_iter_num, "'"))
565
- self.__func_other_arg_json_datatypes.append("INTEGER")
566
-
567
- if self.step_ahead is not None:
568
- self.__func_other_arg_sql_names.append("StepAhead")
569
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.step_ahead, "'"))
570
- self.__func_other_arg_json_datatypes.append("INTEGER")
571
-
572
- if self.order_p is not None:
573
- self.__func_other_arg_sql_names.append("OrderP")
574
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.order_p, "'"))
575
- self.__func_other_arg_json_datatypes.append("INTEGER")
576
-
577
- if self.order_d is not None:
578
- self.__func_other_arg_sql_names.append("OrderD")
579
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.order_d, "'"))
580
- self.__func_other_arg_json_datatypes.append("INTEGER")
581
-
582
- if self.order_q is not None:
583
- self.__func_other_arg_sql_names.append("OrderQ")
584
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.order_q, "'"))
585
- self.__func_other_arg_json_datatypes.append("INTEGER")
586
-
587
- if self.seasonal_order_p is not None:
588
- self.__func_other_arg_sql_names.append("SeasonalOrderP")
589
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seasonal_order_p, "'"))
590
- self.__func_other_arg_json_datatypes.append("INTEGER")
591
-
592
- if self.seasonal_order_d is not None:
593
- self.__func_other_arg_sql_names.append("SeasonalOrderD")
594
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seasonal_order_d, "'"))
595
- self.__func_other_arg_json_datatypes.append("INTEGER")
596
-
597
- if self.seasonal_order_q is not None:
598
- self.__func_other_arg_sql_names.append("SeasonalOrderQ")
599
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seasonal_order_q, "'"))
600
- self.__func_other_arg_json_datatypes.append("INTEGER")
601
-
602
- # Generate lists for rest of the function arguments
603
- sequence_input_by_list = []
604
- if self.data_sequence_column is not None:
605
- sequence_input_by_list.append("data:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
606
-
607
- if self.data_orders_sequence_column is not None:
608
- sequence_input_by_list.append("orders:" + UtilFuncs._teradata_collapse_arglist(self.data_orders_sequence_column, ""))
609
-
610
- if len(sequence_input_by_list) > 0:
611
- self.__func_other_arg_sql_names.append("SequenceInputBy")
612
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
613
- self.__func_other_args.append(sequence_input_by_arg_value)
614
- self.__func_other_arg_json_datatypes.append("STRING")
615
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
616
-
617
-
618
- # Declare empty lists to hold input table information.
619
- self.__func_input_arg_sql_names = []
620
- self.__func_input_table_view_query = []
621
- self.__func_input_dataframe_type = []
622
- self.__func_input_distribution = []
623
- self.__func_input_partition_by_cols = []
624
- self.__func_input_order_by_cols = []
625
-
626
- # Process data
627
- if self.__awu._is_default_or_not(self.data_partition_column, "1"):
628
- self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
629
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
630
- self.__func_input_distribution.append("FACT")
631
- self.__func_input_arg_sql_names.append("data")
632
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
633
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
634
- self.__func_input_partition_by_cols.append(self.data_partition_column)
635
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
636
-
637
- # Process data_orders
638
- if self.data_orders is not None:
639
- if self.__awu._is_default_or_not(self.data_orders_partition_column, "1"):
640
- self.data_orders_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_orders_partition_column, "\"")
641
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data_orders, False)
642
- self.__func_input_distribution.append("FACT")
643
- self.__func_input_arg_sql_names.append("orders")
644
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
645
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
646
- self.__func_input_partition_by_cols.append(self.data_orders_partition_column)
647
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_orders_order_column, "\""))
648
-
649
- function_name = "VARMAX"
650
- # Create instance to generate SQLMR.
651
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
652
- self.__func_input_arg_sql_names,
653
- self.__func_input_table_view_query,
654
- self.__func_input_dataframe_type,
655
- self.__func_input_distribution,
656
- self.__func_input_partition_by_cols,
657
- self.__func_input_order_by_cols,
658
- self.__func_other_arg_sql_names,
659
- self.__func_other_args,
660
- self.__func_other_arg_json_datatypes,
661
- self.__func_output_args_sql_names,
662
- self.__func_output_args,
663
- engine="ENGINE_ML")
664
- # Invoke call to SQL-MR generation.
665
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
666
-
667
- # Print SQL-MR query if requested to do so.
668
- if display.print_sqlmr_query:
669
- print(self.sqlmr_query)
670
-
671
- # Set the algorithm name for Model Cataloging.
672
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
673
-
674
- def __execute(self):
675
- """
676
- Function to execute SQL-MR queries.
677
- Create DataFrames for the required SQL-MR outputs.
678
- """
679
- # Generate STDOUT table name and add it to the output table list.
680
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
681
- try:
682
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
683
- except Exception as emsg:
684
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
685
-
686
- # Update output table data frames.
687
- self._mlresults = []
688
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
689
- self._mlresults.append(self.result)
690
-
691
- def show_query(self):
692
- """
693
- Function to return the underlying SQL query.
694
- When model object is created using retrieve_model(), then None is returned.
695
- """
696
- return self.sqlmr_query
697
-
698
- def get_prediction_type(self):
699
- """
700
- Function to return the Prediction type of the algorithm.
701
- When model object is created using retrieve_model(), then the value returned is
702
- as saved in the Model Catalog.
703
- """
704
- return self._prediction_type
705
-
706
- def get_target_column(self):
707
- """
708
- Function to return the Target Column of the algorithm.
709
- When model object is created using retrieve_model(), then the value returned is
710
- as saved in the Model Catalog.
711
- """
712
- return self._target_column
713
-
714
- def get_build_time(self):
715
- """
716
- Function to return the build time of the algorithm in seconds.
717
- When model object is created using retrieve_model(), then the value returned is
718
- as saved in the Model Catalog.
719
- """
720
- return self._build_time
721
-
722
- def _get_algorithm_name(self):
723
- """
724
- Function to return the name of the algorithm.
725
- """
726
- return self._algorithm_name
727
-
728
- def _get_sql_specific_attributes(self):
729
- """
730
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
731
- """
732
- return self._sql_specific_attributes
733
-
734
- @classmethod
735
- def _from_model_catalog(cls,
736
- result = None,
737
- **kwargs):
738
- """
739
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
740
- """
741
- kwargs.pop("result", None)
742
-
743
- # Model Cataloging related attributes.
744
- target_column = kwargs.pop("__target_column", None)
745
- prediction_type = kwargs.pop("__prediction_type", None)
746
- algorithm_name = kwargs.pop("__algorithm_name", None)
747
- build_time = kwargs.pop("__build_time", None)
748
-
749
- # Let's create an object of this class.
750
- obj = cls(**kwargs)
751
- obj.result = result
752
-
753
- # Initialize the sqlmr_query class attribute.
754
- obj.sqlmr_query = None
755
-
756
- # Initialize the SQL specific Model Cataloging attributes.
757
- obj._sql_specific_attributes = None
758
- obj._target_column = target_column
759
- obj._prediction_type = prediction_type
760
- obj._algorithm_name = algorithm_name
761
- obj._build_time = build_time
762
-
763
- # Update output table data frames.
764
- obj._mlresults = []
765
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
766
- obj._mlresults.append(obj.result)
767
- return obj
768
-
769
- def __repr__(self):
770
- """
771
- Returns the string representation for a VarMax class instance.
772
- """
773
- repr_string="############ STDOUT Output ############"
774
- repr_string = "{}\n\n{}".format(repr_string,self.result)
775
- return repr_string
776
-