teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -58,7 +58,11 @@ class _ProgressBar:
58
58
  self._lock = threading.Lock()
59
59
 
60
60
 
61
- def update(self, msg=None):
61
+ def update(self,
62
+ msg='',
63
+ data=None,
64
+ progress=True,
65
+ ipython=False):
62
66
  """
63
67
  DESCRIPTION:
64
68
  Method to update the progress bar and live logs. Whenever, update()
@@ -78,6 +82,27 @@ class _ProgressBar:
78
82
  * Don't pass msg when verbos is set to 1.
79
83
  Default value: None
80
84
  Types: str
85
+
86
+ data:
87
+ Optional Argument.
88
+ Specifies the data needs to be displayed.
89
+ Types: DataFrame/list/tuple/dict
90
+
91
+ progress:
92
+ Optional Argument.
93
+ Specifies the progress of progress bar.
94
+ When set True, increases the completed_jobs. Otherwise,
95
+ completed_jobs remains constant.
96
+ Default value: True
97
+ Types: bool
98
+
99
+ ipython:
100
+ Optional Argument.
101
+ Specifies the ipython enviornment.
102
+ When set True, ipython libaray is used to display DataFrame. Otherwise,
103
+ print is used to display dataframe
104
+ default value: False
105
+ Types: bool
81
106
 
82
107
  RETURNS:
83
108
  None
@@ -122,28 +147,50 @@ class _ProgressBar:
122
147
  # both sequential (single thread) and parallel (multi-thread) executions.
123
148
  # Note: Queue is a thread-safe but other parts are not resistance
124
149
  # to race condition. Hence, locking is performed.
150
+
125
151
  with self._lock:
126
152
  # Append log message into queue.
127
153
  self.queue.append(msg)
128
- # Updated completed jobs count.
129
- self.completed_jobs = len(self.queue)
130
-
154
+
155
+ # Updated completed jobs count.
156
+ self.completed_jobs += int(progress)
157
+
131
158
  # Update log only when it is valid.
132
159
  if self.completed_jobs <= self.total_jobs:
133
160
  # Once all jobs are completed change the prefix of progress.
134
- if self.completed_jobs == self.total_jobs:
135
- self.prefix = "Completed:"
136
161
  # Display message and progress bar.
137
- self.__show()
162
+ self.__show(data, ipython, progress)
138
163
 
139
164
 
140
- def __show(self):
165
+ def __show(self,
166
+ data=None,
167
+ ipython=False,
168
+ progress=True):
141
169
  """
142
170
  DESCRIPTION:
143
- Internal method to display updated message and progress state.
171
+ Internal method to display updated message depending on its type.
144
172
 
145
173
  PARAMETERS:
146
- None
174
+ data:
175
+ Optional Argument.
176
+ Specifies the data needs to be displayed.
177
+ Types: DataFrame/list/tuple/dict
178
+
179
+ ipyhton:
180
+ Optional Argument.
181
+ Specifies the ipython enviornment.
182
+ When set True, ipython libaray is used to display DataFrame. Otherwise,
183
+ print is used to display dataframe
184
+ default value: False
185
+ Types: bool
186
+
187
+ progress:
188
+ Optional Argument.
189
+ Specifies the progress of progress bar.
190
+ When set True, increases the completed_jobs. Otherwise,
191
+ completed_jobs remains constant.
192
+ Default value: True
193
+ Types: bool
147
194
 
148
195
  RETURNS:
149
196
  None
@@ -154,34 +201,81 @@ class _ProgressBar:
154
201
  EXAMPLES:
155
202
  >> self.__show()
156
203
  """
204
+ # Check ipython library is installed or not.
205
+ if ipython:
206
+ try:
207
+ from IPython.display import display, HTML
208
+ except ImportError:
209
+ ipython = False
210
+
157
211
  # Display message when verbose is greater than 1.
158
- if self.verbose > 1 and self.completed_jobs > 0:
159
- # Format the comma separated message.
160
- _msg = self.queue[-1].replace(","," - ")
212
+ if self.verbose > 1 and len(self.queue) > 0:
161
213
  # Overwrite the previous text in stdout using blank space.
162
- _blank_space = " " * (self.blank_space_len - len(_msg))
214
+ print(" " *self.blank_space_len, end='\r', flush=True)
215
+
216
+ # Format the comma separated message.
217
+ _msg = self.queue[-1].replace(","," - ")
218
+
219
+ if _msg != '':
220
+ if ipython:
221
+ display(HTML(_msg))
222
+ else:
223
+ print(_msg)
224
+
225
+ # Removes the unnecessary msg from queue. if,
226
+ # progress not True or _msg = ''
227
+ if not progress or _msg == '':
228
+ self.queue.pop()
229
+
230
+ if data is not None:
231
+ if isinstance(data, dict):
232
+ for key, value in data.items():
233
+ print(f'{key}: {value}')
163
234
 
164
- # Display message.
165
- print(_msg, _blank_space)
235
+ elif isinstance(data, (list,tuple)):
236
+ print(data)
237
+
238
+ else:
239
+ if ipython:
240
+ display(data)
241
+ else:
242
+ print(data)
243
+
166
244
  if self.verbose > 0:
167
- # Compute the number of completed bars to be displayed.
168
- _fill_bar = int(self.BAR_SIZE*(self.completed_jobs/self.total_jobs))
169
- # Compute progress precentage.
170
- _progress_percent = int((self.completed_jobs/self.total_jobs)*100)
171
- # Format the progress bar.
172
- _msg = "{prefix} {start_boundary}{fill_bar}{balance_bar}{close_boundary} "\
173
- "{progress_precent}% - {completed_jobs}/{total_jobs}".format(
174
- prefix=self.prefix,
175
- start_boundary=self.BOUNDARY_BAR,
176
- fill_bar=self.BAR*_fill_bar,
177
- balance_bar=self.UNFILL_BAR*(self.BAR_SIZE-_fill_bar),
178
- close_boundary=self.BOUNDARY_BAR,
179
- progress_precent=_progress_percent,
180
- completed_jobs=self.completed_jobs,
181
- total_jobs=self.total_jobs)
182
- # Display the formatted bar.
183
- print(_msg, end='\r', file=self.STDOUT, flush=True)
184
-
185
- if self.blank_space_len == 0:
186
- # Update the blank space size based on last displayed message.
187
- self.blank_space_len = len(_msg)
245
+ self._update_progress_bar()
246
+
247
+ def _update_progress_bar(self):
248
+ """
249
+ DESCRIPTION:
250
+ Internal method to display updated progress state.
251
+
252
+ PARAMETERS:
253
+ None.
254
+
255
+ RETURNS:
256
+ None.
257
+
258
+ RAISES:
259
+ None.
260
+ """
261
+ if self.completed_jobs == self.total_jobs:
262
+ self.prefix = "Completed:"
263
+
264
+ # Compute the number of completed bars to be displayed.
265
+ _fill_bar = int(self.BAR_SIZE*(self.completed_jobs/self.total_jobs))
266
+ # Compute progress precentage.
267
+ _progress_percent = int((self.completed_jobs/self.total_jobs)*100)
268
+ # Format the progress bar.
269
+ _msg = "{prefix} {start_boundary}{fill_bar}{balance_bar}{close_boundary} "\
270
+ "{progress_precent}% - {completed_jobs}/{total_jobs}".format(
271
+ prefix=self.prefix,
272
+ start_boundary=self.BOUNDARY_BAR,
273
+ fill_bar=self.BAR*_fill_bar,
274
+ balance_bar=self.UNFILL_BAR*(self.BAR_SIZE-_fill_bar),
275
+ close_boundary=self.BOUNDARY_BAR,
276
+ progress_precent=_progress_percent,
277
+ completed_jobs=self.completed_jobs,
278
+ total_jobs=self.total_jobs)
279
+ # Display the formatted bar.
280
+ print(_msg, end='\r', file=self.STDOUT, flush=True)
281
+ self.blank_space_len = len(_msg)
Binary file
Binary file
Binary file
Binary file
teradataml/libaed_0_1.so CHANGED
Binary file
@@ -0,0 +1 @@
1
+ from teradataml.opensource.sklearn import td_sklearn
@@ -0,0 +1 @@
1
+ from ._class import td_sklearn
@@ -0,0 +1,255 @@
1
+ # ##################################################################
2
+ #
3
+ # Copyright 2023 Teradata. All rights reserved.
4
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
5
+ #
6
+ # Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
7
+ # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
+ #
9
+ # Version: 1.0
10
+ # Function Version: 1.0
11
+ #
12
+ # This file contains classes for Opensource packages like sklearn,
13
+ # lightgbm etc and their corresponding objects.
14
+ #
15
+ # ##################################################################
16
+
17
+ from importlib import import_module
18
+ from teradataml.opensource.sklearn._sklearn_wrapper import _SkLearnObjectWrapper, _SKLearnFunctionWrapper
19
+ from teradataml.opensource.sklearn.constants import _MODULES
20
+ from teradataml.options.configure import configure
21
+
22
+ sklearn_functions = ["k_means"]
23
+
24
+
25
+ class _OpenSource:
26
+ """
27
+ A class to extend teradataml to other open source packages like scikit-learn,
28
+ spark, pytorch, snowflake etc.
29
+ """
30
+
31
+ def __init__(self):
32
+ self._modules = None
33
+ self._object_wrapper = None
34
+ self._function_wrapper = None
35
+
36
+ def __getattr__(self, name):
37
+
38
+ def __get_module(*c, **kwargs):
39
+ class_instance = None
40
+ module = None
41
+ for module in self._modules:
42
+ lib = import_module(module)
43
+ try:
44
+ class_instance = getattr(lib, name)
45
+ break
46
+ except AttributeError as ex:
47
+ continue
48
+
49
+ if not class_instance:
50
+ raise ValueError(f"The class/function '{name}' does not exist in 'sklearn' modules.")
51
+
52
+ # If the attribute is a function, then return the function object.
53
+ if type(class_instance).__name__ == "function":
54
+ return self._function_wrapper(module_name=module, func_name=name)(*c, **kwargs)
55
+
56
+ return self._object_wrapper(module_name=module, class_name=name,
57
+ pos_args=c, kwargs=kwargs)
58
+
59
+ return __get_module
60
+
61
+ def deploy(self, model_name, model, replace_if_exists=False):
62
+ """
63
+ DESCRIPTION:
64
+ Deploys the model to Vantage.
65
+
66
+ PARAMETERS:
67
+ model_name:
68
+ Required Argument.
69
+ Specifies the unique name of the model to be deployed.
70
+ Types: str
71
+
72
+ model:
73
+ Required Argument.
74
+ Specifies the teradataml supported opensource model object that is to be deployed.
75
+ Currently supported models are:
76
+ - sklearn
77
+ Types: object
78
+
79
+ replace_if_exists:
80
+ Optional Argument.
81
+ Specifies whether to replace the model if a model with the same name already
82
+ exists in Vantage. If this argument is set to False and a model with the same
83
+ name already exists, then the function raises an exception.
84
+ Default Value: False
85
+ Types: bool
86
+
87
+ RETURNS:
88
+ The opensource object wrapper.
89
+
90
+ RAISES:
91
+ TeradataMLException if model with "model_name" already exists and the argument
92
+ "replace_if_exists" is set to False.
93
+
94
+ EXAMPLES:
95
+ >>> from teradataml import td_sklearn
96
+ >>> from sklearn.linear_model import LinearRegression
97
+ >>> model = LinearRegression(normalize=True)
98
+
99
+ # Example 1: Deploy the model to Vantage.
100
+ >>> lin_reg = td_sklearn.deploy("linreg_model_ver_1", model)
101
+ Model is saved.
102
+ >>> lin_reg
103
+ LinearRegression(normalize=True)
104
+
105
+ # Example 2: Deploy the model to Vantage with the name same as that of model that
106
+ # already existed in Vantage.
107
+ >>> lin_reg = td_sklearn.deploy("linreg_model_ver_1", model, replace_if_exists=True)
108
+ Model is deleted.
109
+ Model is saved.
110
+ >>> lin_reg
111
+ LinearRegression(normalize=True)
112
+
113
+
114
+ """
115
+ return self._object_wrapper._deploy(model_name=model_name,
116
+ model=model,
117
+ replace_if_exists=replace_if_exists)
118
+
119
+ def load(self, model_name):
120
+ """
121
+ DESCRIPTION:
122
+ Loads the model from Vantage based on the interface object on which this function
123
+ is called.
124
+ For example, if the model in "model_name" argument is statsmodel model, then this
125
+ function raises exception if the interface object is `td_sklearn`.
126
+
127
+ PARAMETERS:
128
+ model_name:
129
+ Required Argument.
130
+ Specifies the name of the model to be loaded.
131
+ Types: str
132
+
133
+ RETURNS:
134
+ The opensource object wrapper.
135
+
136
+ RAISES:
137
+ TeradataMlException if model with name "model_name" does not exist.
138
+
139
+ EXAMPLE:
140
+ >>> from teradataml import td_sklearn
141
+ >>> # Load the model saved in Vantage. Note that the model is saved using
142
+ >>> # `deploy()` of exposed interface object (like `td_sklearn`) or
143
+ >>> # `_OpenSourceObjectWrapper` Object.
144
+ >>> model = td_sklearn.load("linreg_model_ver_1")
145
+ >>> model
146
+ LinearRegression(normalize=True)
147
+ """
148
+ return self._object_wrapper._load(model_name)
149
+
150
+
151
+ class Sklearn(_OpenSource):
152
+ """
153
+ DESCRIPTION:
154
+ Interface object to access exposed classes and functions of scikit-learn
155
+ opensource package. All the classes and functions can be run and attributes
156
+ can be accessed using the object created by "td_sklearn" interface object.
157
+ Refer Teradata Python Package User Guide for more information about OpenML
158
+ and exposed interface objects.
159
+
160
+ PARAMETERS:
161
+ None
162
+
163
+ RETURNS:
164
+ None
165
+
166
+ EXAMPLES:
167
+ # Load example data.
168
+ >>> load_example_data("openml", ["test_classification", "test_prediction"])
169
+ >>> df = DataFrame("test_classification")
170
+ >>> df.head(3)
171
+ col2 col3 col4 label
172
+ col1
173
+ -2.560430 0.402232 -1.100742 -2.959588 0
174
+ -3.587546 0.291819 -1.850169 -4.331055 0
175
+ -3.697436 1.576888 -0.461220 -3.598652 0
176
+
177
+ >>> df_test = DataFrame("test_prediction")
178
+ >>> df_test.head(3)
179
+ col2 col3 col4
180
+ col1
181
+ -2.560430 0.402232 -1.100742 -2.959588
182
+ -3.587546 0.291819 -1.850169 -4.331055
183
+ -3.697436 1.576888 -0.461220 -3.598652
184
+
185
+
186
+ # Get the feature and label data.
187
+ >>> df_x_clasif = df.select(df.columns[:-1])
188
+ >>> df_y_clasif = df.select(df.columns[-1])
189
+
190
+ >>> from teradataml import td_sklearn
191
+ >>> dt_cl = td_sklearn.DecisionTreeClassifier(random_state=0)
192
+ >>> dt_cl
193
+ DecisionTreeClassifier(random_state=0)
194
+
195
+ # Set the paramaters.
196
+ >>> dt_cl.set_params(random_state=2, max_features="sqrt")
197
+ DecisionTreeClassifier(max_features='sqrt', random_state=2)
198
+
199
+ # Get the paramaters.
200
+ >>> dt_cl.get_params()
201
+ {'ccp_alpha': 0.0,
202
+ 'class_weight': None,
203
+ 'criterion': 'gini',
204
+ 'max_depth': None,
205
+ 'max_features': 'sqrt',
206
+ 'max_leaf_nodes': None,
207
+ 'min_impurity_decrease': 0.0,
208
+ 'min_impurity_split': None,
209
+ 'min_samples_leaf': 1,
210
+ 'min_samples_split': 2,
211
+ 'min_weight_fraction_leaf': 0.0,
212
+ 'random_state': 2,
213
+ 'splitter': 'best'}
214
+
215
+ # Train the model using fit().
216
+ >>> dt_cl.fit(df_x_clasif, df_y_clasif)
217
+ DecisionTreeClassifier(max_features='sqrt', random_state=2)
218
+
219
+ # Perform prediction.
220
+ >>> dt_cl.predict(df_test)
221
+ col1 col2 col3 col4 decisiontreeclassifier_predict_1
222
+ 0 1.105026 -1.949894 -1.537164 0.073171 1
223
+ 1 1.878349 0.577289 1.795746 2.762539 1
224
+ 2 -1.130582 -0.020296 -0.710234 -1.440991 0
225
+ 3 -1.243781 0.280821 -0.437933 -1.379770 0
226
+ 4 -0.509793 0.492659 0.248207 -0.309591 1
227
+ 5 -0.345538 -2.296723 -2.811807 -1.993113 0
228
+ 6 0.709217 -1.481740 -1.247431 -0.109140 0
229
+ 7 -1.621842 1.713381 0.955084 -0.885921 1
230
+ 8 2.425481 -0.549892 0.851440 2.689135 1
231
+ 9 1.780375 -1.749949 -0.900142 1.061262 0
232
+
233
+ # Perform scoring.
234
+ >>> dt_cl.score(df_x_clasif, df_y_clasif)
235
+ score
236
+ 0 1.0
237
+
238
+ # Access few attributes.
239
+ >>> dt_cl.classes_
240
+ array([0., 1.])
241
+
242
+ >>> dt_cl.feature_importances_
243
+ array([0.06945187, 0.02 , 0.67786339, 0.23268474])
244
+
245
+ >>> dt_cl.max_features_
246
+ 2
247
+ """
248
+ def __init__(self):
249
+ super().__init__()
250
+ self._modules = _MODULES
251
+ self._object_wrapper = _SkLearnObjectWrapper
252
+ self._function_wrapper = _SKLearnFunctionWrapper
253
+
254
+
255
+ td_sklearn = Sklearn()