teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -58,7 +58,11 @@ class _ProgressBar:
|
|
|
58
58
|
self._lock = threading.Lock()
|
|
59
59
|
|
|
60
60
|
|
|
61
|
-
def update(self,
|
|
61
|
+
def update(self,
|
|
62
|
+
msg='',
|
|
63
|
+
data=None,
|
|
64
|
+
progress=True,
|
|
65
|
+
ipython=False):
|
|
62
66
|
"""
|
|
63
67
|
DESCRIPTION:
|
|
64
68
|
Method to update the progress bar and live logs. Whenever, update()
|
|
@@ -78,6 +82,27 @@ class _ProgressBar:
|
|
|
78
82
|
* Don't pass msg when verbos is set to 1.
|
|
79
83
|
Default value: None
|
|
80
84
|
Types: str
|
|
85
|
+
|
|
86
|
+
data:
|
|
87
|
+
Optional Argument.
|
|
88
|
+
Specifies the data needs to be displayed.
|
|
89
|
+
Types: DataFrame/list/tuple/dict
|
|
90
|
+
|
|
91
|
+
progress:
|
|
92
|
+
Optional Argument.
|
|
93
|
+
Specifies the progress of progress bar.
|
|
94
|
+
When set True, increases the completed_jobs. Otherwise,
|
|
95
|
+
completed_jobs remains constant.
|
|
96
|
+
Default value: True
|
|
97
|
+
Types: bool
|
|
98
|
+
|
|
99
|
+
ipython:
|
|
100
|
+
Optional Argument.
|
|
101
|
+
Specifies the ipython enviornment.
|
|
102
|
+
When set True, ipython libaray is used to display DataFrame. Otherwise,
|
|
103
|
+
print is used to display dataframe
|
|
104
|
+
default value: False
|
|
105
|
+
Types: bool
|
|
81
106
|
|
|
82
107
|
RETURNS:
|
|
83
108
|
None
|
|
@@ -122,28 +147,50 @@ class _ProgressBar:
|
|
|
122
147
|
# both sequential (single thread) and parallel (multi-thread) executions.
|
|
123
148
|
# Note: Queue is a thread-safe but other parts are not resistance
|
|
124
149
|
# to race condition. Hence, locking is performed.
|
|
150
|
+
|
|
125
151
|
with self._lock:
|
|
126
152
|
# Append log message into queue.
|
|
127
153
|
self.queue.append(msg)
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
154
|
+
|
|
155
|
+
# Updated completed jobs count.
|
|
156
|
+
self.completed_jobs += int(progress)
|
|
157
|
+
|
|
131
158
|
# Update log only when it is valid.
|
|
132
159
|
if self.completed_jobs <= self.total_jobs:
|
|
133
160
|
# Once all jobs are completed change the prefix of progress.
|
|
134
|
-
if self.completed_jobs == self.total_jobs:
|
|
135
|
-
self.prefix = "Completed:"
|
|
136
161
|
# Display message and progress bar.
|
|
137
|
-
self.__show()
|
|
162
|
+
self.__show(data, ipython, progress)
|
|
138
163
|
|
|
139
164
|
|
|
140
|
-
def __show(self
|
|
165
|
+
def __show(self,
|
|
166
|
+
data=None,
|
|
167
|
+
ipython=False,
|
|
168
|
+
progress=True):
|
|
141
169
|
"""
|
|
142
170
|
DESCRIPTION:
|
|
143
|
-
Internal method to display updated message
|
|
171
|
+
Internal method to display updated message depending on its type.
|
|
144
172
|
|
|
145
173
|
PARAMETERS:
|
|
146
|
-
|
|
174
|
+
data:
|
|
175
|
+
Optional Argument.
|
|
176
|
+
Specifies the data needs to be displayed.
|
|
177
|
+
Types: DataFrame/list/tuple/dict
|
|
178
|
+
|
|
179
|
+
ipyhton:
|
|
180
|
+
Optional Argument.
|
|
181
|
+
Specifies the ipython enviornment.
|
|
182
|
+
When set True, ipython libaray is used to display DataFrame. Otherwise,
|
|
183
|
+
print is used to display dataframe
|
|
184
|
+
default value: False
|
|
185
|
+
Types: bool
|
|
186
|
+
|
|
187
|
+
progress:
|
|
188
|
+
Optional Argument.
|
|
189
|
+
Specifies the progress of progress bar.
|
|
190
|
+
When set True, increases the completed_jobs. Otherwise,
|
|
191
|
+
completed_jobs remains constant.
|
|
192
|
+
Default value: True
|
|
193
|
+
Types: bool
|
|
147
194
|
|
|
148
195
|
RETURNS:
|
|
149
196
|
None
|
|
@@ -154,34 +201,81 @@ class _ProgressBar:
|
|
|
154
201
|
EXAMPLES:
|
|
155
202
|
>> self.__show()
|
|
156
203
|
"""
|
|
204
|
+
# Check ipython library is installed or not.
|
|
205
|
+
if ipython:
|
|
206
|
+
try:
|
|
207
|
+
from IPython.display import display, HTML
|
|
208
|
+
except ImportError:
|
|
209
|
+
ipython = False
|
|
210
|
+
|
|
157
211
|
# Display message when verbose is greater than 1.
|
|
158
|
-
if self.verbose > 1 and self.
|
|
159
|
-
# Format the comma separated message.
|
|
160
|
-
_msg = self.queue[-1].replace(","," - ")
|
|
212
|
+
if self.verbose > 1 and len(self.queue) > 0:
|
|
161
213
|
# Overwrite the previous text in stdout using blank space.
|
|
162
|
-
|
|
214
|
+
print(" " *self.blank_space_len, end='\r', flush=True)
|
|
215
|
+
|
|
216
|
+
# Format the comma separated message.
|
|
217
|
+
_msg = self.queue[-1].replace(","," - ")
|
|
218
|
+
|
|
219
|
+
if _msg != '':
|
|
220
|
+
if ipython:
|
|
221
|
+
display(HTML(_msg))
|
|
222
|
+
else:
|
|
223
|
+
print(_msg)
|
|
224
|
+
|
|
225
|
+
# Removes the unnecessary msg from queue. if,
|
|
226
|
+
# progress not True or _msg = ''
|
|
227
|
+
if not progress or _msg == '':
|
|
228
|
+
self.queue.pop()
|
|
229
|
+
|
|
230
|
+
if data is not None:
|
|
231
|
+
if isinstance(data, dict):
|
|
232
|
+
for key, value in data.items():
|
|
233
|
+
print(f'{key}: {value}')
|
|
163
234
|
|
|
164
|
-
|
|
165
|
-
|
|
235
|
+
elif isinstance(data, (list,tuple)):
|
|
236
|
+
print(data)
|
|
237
|
+
|
|
238
|
+
else:
|
|
239
|
+
if ipython:
|
|
240
|
+
display(data)
|
|
241
|
+
else:
|
|
242
|
+
print(data)
|
|
243
|
+
|
|
166
244
|
if self.verbose > 0:
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
245
|
+
self._update_progress_bar()
|
|
246
|
+
|
|
247
|
+
def _update_progress_bar(self):
|
|
248
|
+
"""
|
|
249
|
+
DESCRIPTION:
|
|
250
|
+
Internal method to display updated progress state.
|
|
251
|
+
|
|
252
|
+
PARAMETERS:
|
|
253
|
+
None.
|
|
254
|
+
|
|
255
|
+
RETURNS:
|
|
256
|
+
None.
|
|
257
|
+
|
|
258
|
+
RAISES:
|
|
259
|
+
None.
|
|
260
|
+
"""
|
|
261
|
+
if self.completed_jobs == self.total_jobs:
|
|
262
|
+
self.prefix = "Completed:"
|
|
263
|
+
|
|
264
|
+
# Compute the number of completed bars to be displayed.
|
|
265
|
+
_fill_bar = int(self.BAR_SIZE*(self.completed_jobs/self.total_jobs))
|
|
266
|
+
# Compute progress precentage.
|
|
267
|
+
_progress_percent = int((self.completed_jobs/self.total_jobs)*100)
|
|
268
|
+
# Format the progress bar.
|
|
269
|
+
_msg = "{prefix} {start_boundary}{fill_bar}{balance_bar}{close_boundary} "\
|
|
270
|
+
"{progress_precent}% - {completed_jobs}/{total_jobs}".format(
|
|
271
|
+
prefix=self.prefix,
|
|
272
|
+
start_boundary=self.BOUNDARY_BAR,
|
|
273
|
+
fill_bar=self.BAR*_fill_bar,
|
|
274
|
+
balance_bar=self.UNFILL_BAR*(self.BAR_SIZE-_fill_bar),
|
|
275
|
+
close_boundary=self.BOUNDARY_BAR,
|
|
276
|
+
progress_precent=_progress_percent,
|
|
277
|
+
completed_jobs=self.completed_jobs,
|
|
278
|
+
total_jobs=self.total_jobs)
|
|
279
|
+
# Display the formatted bar.
|
|
280
|
+
print(_msg, end='\r', file=self.STDOUT, flush=True)
|
|
281
|
+
self.blank_space_len = len(_msg)
|
teradataml/lib/aed_0_1.dll
CHANGED
|
Binary file
|
teradataml/lib/libaed_0_1.dylib
CHANGED
|
Binary file
|
teradataml/lib/libaed_0_1.so
CHANGED
|
Binary file
|
teradataml/libaed_0_1.dylib
CHANGED
|
Binary file
|
teradataml/libaed_0_1.so
CHANGED
|
Binary file
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
from teradataml.opensource.sklearn import td_sklearn
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
from ._class import td_sklearn
|
|
@@ -0,0 +1,255 @@
|
|
|
1
|
+
# ##################################################################
|
|
2
|
+
#
|
|
3
|
+
# Copyright 2023 Teradata. All rights reserved.
|
|
4
|
+
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
5
|
+
#
|
|
6
|
+
# Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
|
|
7
|
+
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
+
#
|
|
9
|
+
# Version: 1.0
|
|
10
|
+
# Function Version: 1.0
|
|
11
|
+
#
|
|
12
|
+
# This file contains classes for Opensource packages like sklearn,
|
|
13
|
+
# lightgbm etc and their corresponding objects.
|
|
14
|
+
#
|
|
15
|
+
# ##################################################################
|
|
16
|
+
|
|
17
|
+
from importlib import import_module
|
|
18
|
+
from teradataml.opensource.sklearn._sklearn_wrapper import _SkLearnObjectWrapper, _SKLearnFunctionWrapper
|
|
19
|
+
from teradataml.opensource.sklearn.constants import _MODULES
|
|
20
|
+
from teradataml.options.configure import configure
|
|
21
|
+
|
|
22
|
+
sklearn_functions = ["k_means"]
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class _OpenSource:
|
|
26
|
+
"""
|
|
27
|
+
A class to extend teradataml to other open source packages like scikit-learn,
|
|
28
|
+
spark, pytorch, snowflake etc.
|
|
29
|
+
"""
|
|
30
|
+
|
|
31
|
+
def __init__(self):
|
|
32
|
+
self._modules = None
|
|
33
|
+
self._object_wrapper = None
|
|
34
|
+
self._function_wrapper = None
|
|
35
|
+
|
|
36
|
+
def __getattr__(self, name):
|
|
37
|
+
|
|
38
|
+
def __get_module(*c, **kwargs):
|
|
39
|
+
class_instance = None
|
|
40
|
+
module = None
|
|
41
|
+
for module in self._modules:
|
|
42
|
+
lib = import_module(module)
|
|
43
|
+
try:
|
|
44
|
+
class_instance = getattr(lib, name)
|
|
45
|
+
break
|
|
46
|
+
except AttributeError as ex:
|
|
47
|
+
continue
|
|
48
|
+
|
|
49
|
+
if not class_instance:
|
|
50
|
+
raise ValueError(f"The class/function '{name}' does not exist in 'sklearn' modules.")
|
|
51
|
+
|
|
52
|
+
# If the attribute is a function, then return the function object.
|
|
53
|
+
if type(class_instance).__name__ == "function":
|
|
54
|
+
return self._function_wrapper(module_name=module, func_name=name)(*c, **kwargs)
|
|
55
|
+
|
|
56
|
+
return self._object_wrapper(module_name=module, class_name=name,
|
|
57
|
+
pos_args=c, kwargs=kwargs)
|
|
58
|
+
|
|
59
|
+
return __get_module
|
|
60
|
+
|
|
61
|
+
def deploy(self, model_name, model, replace_if_exists=False):
|
|
62
|
+
"""
|
|
63
|
+
DESCRIPTION:
|
|
64
|
+
Deploys the model to Vantage.
|
|
65
|
+
|
|
66
|
+
PARAMETERS:
|
|
67
|
+
model_name:
|
|
68
|
+
Required Argument.
|
|
69
|
+
Specifies the unique name of the model to be deployed.
|
|
70
|
+
Types: str
|
|
71
|
+
|
|
72
|
+
model:
|
|
73
|
+
Required Argument.
|
|
74
|
+
Specifies the teradataml supported opensource model object that is to be deployed.
|
|
75
|
+
Currently supported models are:
|
|
76
|
+
- sklearn
|
|
77
|
+
Types: object
|
|
78
|
+
|
|
79
|
+
replace_if_exists:
|
|
80
|
+
Optional Argument.
|
|
81
|
+
Specifies whether to replace the model if a model with the same name already
|
|
82
|
+
exists in Vantage. If this argument is set to False and a model with the same
|
|
83
|
+
name already exists, then the function raises an exception.
|
|
84
|
+
Default Value: False
|
|
85
|
+
Types: bool
|
|
86
|
+
|
|
87
|
+
RETURNS:
|
|
88
|
+
The opensource object wrapper.
|
|
89
|
+
|
|
90
|
+
RAISES:
|
|
91
|
+
TeradataMLException if model with "model_name" already exists and the argument
|
|
92
|
+
"replace_if_exists" is set to False.
|
|
93
|
+
|
|
94
|
+
EXAMPLES:
|
|
95
|
+
>>> from teradataml import td_sklearn
|
|
96
|
+
>>> from sklearn.linear_model import LinearRegression
|
|
97
|
+
>>> model = LinearRegression(normalize=True)
|
|
98
|
+
|
|
99
|
+
# Example 1: Deploy the model to Vantage.
|
|
100
|
+
>>> lin_reg = td_sklearn.deploy("linreg_model_ver_1", model)
|
|
101
|
+
Model is saved.
|
|
102
|
+
>>> lin_reg
|
|
103
|
+
LinearRegression(normalize=True)
|
|
104
|
+
|
|
105
|
+
# Example 2: Deploy the model to Vantage with the name same as that of model that
|
|
106
|
+
# already existed in Vantage.
|
|
107
|
+
>>> lin_reg = td_sklearn.deploy("linreg_model_ver_1", model, replace_if_exists=True)
|
|
108
|
+
Model is deleted.
|
|
109
|
+
Model is saved.
|
|
110
|
+
>>> lin_reg
|
|
111
|
+
LinearRegression(normalize=True)
|
|
112
|
+
|
|
113
|
+
|
|
114
|
+
"""
|
|
115
|
+
return self._object_wrapper._deploy(model_name=model_name,
|
|
116
|
+
model=model,
|
|
117
|
+
replace_if_exists=replace_if_exists)
|
|
118
|
+
|
|
119
|
+
def load(self, model_name):
|
|
120
|
+
"""
|
|
121
|
+
DESCRIPTION:
|
|
122
|
+
Loads the model from Vantage based on the interface object on which this function
|
|
123
|
+
is called.
|
|
124
|
+
For example, if the model in "model_name" argument is statsmodel model, then this
|
|
125
|
+
function raises exception if the interface object is `td_sklearn`.
|
|
126
|
+
|
|
127
|
+
PARAMETERS:
|
|
128
|
+
model_name:
|
|
129
|
+
Required Argument.
|
|
130
|
+
Specifies the name of the model to be loaded.
|
|
131
|
+
Types: str
|
|
132
|
+
|
|
133
|
+
RETURNS:
|
|
134
|
+
The opensource object wrapper.
|
|
135
|
+
|
|
136
|
+
RAISES:
|
|
137
|
+
TeradataMlException if model with name "model_name" does not exist.
|
|
138
|
+
|
|
139
|
+
EXAMPLE:
|
|
140
|
+
>>> from teradataml import td_sklearn
|
|
141
|
+
>>> # Load the model saved in Vantage. Note that the model is saved using
|
|
142
|
+
>>> # `deploy()` of exposed interface object (like `td_sklearn`) or
|
|
143
|
+
>>> # `_OpenSourceObjectWrapper` Object.
|
|
144
|
+
>>> model = td_sklearn.load("linreg_model_ver_1")
|
|
145
|
+
>>> model
|
|
146
|
+
LinearRegression(normalize=True)
|
|
147
|
+
"""
|
|
148
|
+
return self._object_wrapper._load(model_name)
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
class Sklearn(_OpenSource):
|
|
152
|
+
"""
|
|
153
|
+
DESCRIPTION:
|
|
154
|
+
Interface object to access exposed classes and functions of scikit-learn
|
|
155
|
+
opensource package. All the classes and functions can be run and attributes
|
|
156
|
+
can be accessed using the object created by "td_sklearn" interface object.
|
|
157
|
+
Refer Teradata Python Package User Guide for more information about OpenML
|
|
158
|
+
and exposed interface objects.
|
|
159
|
+
|
|
160
|
+
PARAMETERS:
|
|
161
|
+
None
|
|
162
|
+
|
|
163
|
+
RETURNS:
|
|
164
|
+
None
|
|
165
|
+
|
|
166
|
+
EXAMPLES:
|
|
167
|
+
# Load example data.
|
|
168
|
+
>>> load_example_data("openml", ["test_classification", "test_prediction"])
|
|
169
|
+
>>> df = DataFrame("test_classification")
|
|
170
|
+
>>> df.head(3)
|
|
171
|
+
col2 col3 col4 label
|
|
172
|
+
col1
|
|
173
|
+
-2.560430 0.402232 -1.100742 -2.959588 0
|
|
174
|
+
-3.587546 0.291819 -1.850169 -4.331055 0
|
|
175
|
+
-3.697436 1.576888 -0.461220 -3.598652 0
|
|
176
|
+
|
|
177
|
+
>>> df_test = DataFrame("test_prediction")
|
|
178
|
+
>>> df_test.head(3)
|
|
179
|
+
col2 col3 col4
|
|
180
|
+
col1
|
|
181
|
+
-2.560430 0.402232 -1.100742 -2.959588
|
|
182
|
+
-3.587546 0.291819 -1.850169 -4.331055
|
|
183
|
+
-3.697436 1.576888 -0.461220 -3.598652
|
|
184
|
+
|
|
185
|
+
|
|
186
|
+
# Get the feature and label data.
|
|
187
|
+
>>> df_x_clasif = df.select(df.columns[:-1])
|
|
188
|
+
>>> df_y_clasif = df.select(df.columns[-1])
|
|
189
|
+
|
|
190
|
+
>>> from teradataml import td_sklearn
|
|
191
|
+
>>> dt_cl = td_sklearn.DecisionTreeClassifier(random_state=0)
|
|
192
|
+
>>> dt_cl
|
|
193
|
+
DecisionTreeClassifier(random_state=0)
|
|
194
|
+
|
|
195
|
+
# Set the paramaters.
|
|
196
|
+
>>> dt_cl.set_params(random_state=2, max_features="sqrt")
|
|
197
|
+
DecisionTreeClassifier(max_features='sqrt', random_state=2)
|
|
198
|
+
|
|
199
|
+
# Get the paramaters.
|
|
200
|
+
>>> dt_cl.get_params()
|
|
201
|
+
{'ccp_alpha': 0.0,
|
|
202
|
+
'class_weight': None,
|
|
203
|
+
'criterion': 'gini',
|
|
204
|
+
'max_depth': None,
|
|
205
|
+
'max_features': 'sqrt',
|
|
206
|
+
'max_leaf_nodes': None,
|
|
207
|
+
'min_impurity_decrease': 0.0,
|
|
208
|
+
'min_impurity_split': None,
|
|
209
|
+
'min_samples_leaf': 1,
|
|
210
|
+
'min_samples_split': 2,
|
|
211
|
+
'min_weight_fraction_leaf': 0.0,
|
|
212
|
+
'random_state': 2,
|
|
213
|
+
'splitter': 'best'}
|
|
214
|
+
|
|
215
|
+
# Train the model using fit().
|
|
216
|
+
>>> dt_cl.fit(df_x_clasif, df_y_clasif)
|
|
217
|
+
DecisionTreeClassifier(max_features='sqrt', random_state=2)
|
|
218
|
+
|
|
219
|
+
# Perform prediction.
|
|
220
|
+
>>> dt_cl.predict(df_test)
|
|
221
|
+
col1 col2 col3 col4 decisiontreeclassifier_predict_1
|
|
222
|
+
0 1.105026 -1.949894 -1.537164 0.073171 1
|
|
223
|
+
1 1.878349 0.577289 1.795746 2.762539 1
|
|
224
|
+
2 -1.130582 -0.020296 -0.710234 -1.440991 0
|
|
225
|
+
3 -1.243781 0.280821 -0.437933 -1.379770 0
|
|
226
|
+
4 -0.509793 0.492659 0.248207 -0.309591 1
|
|
227
|
+
5 -0.345538 -2.296723 -2.811807 -1.993113 0
|
|
228
|
+
6 0.709217 -1.481740 -1.247431 -0.109140 0
|
|
229
|
+
7 -1.621842 1.713381 0.955084 -0.885921 1
|
|
230
|
+
8 2.425481 -0.549892 0.851440 2.689135 1
|
|
231
|
+
9 1.780375 -1.749949 -0.900142 1.061262 0
|
|
232
|
+
|
|
233
|
+
# Perform scoring.
|
|
234
|
+
>>> dt_cl.score(df_x_clasif, df_y_clasif)
|
|
235
|
+
score
|
|
236
|
+
0 1.0
|
|
237
|
+
|
|
238
|
+
# Access few attributes.
|
|
239
|
+
>>> dt_cl.classes_
|
|
240
|
+
array([0., 1.])
|
|
241
|
+
|
|
242
|
+
>>> dt_cl.feature_importances_
|
|
243
|
+
array([0.06945187, 0.02 , 0.67786339, 0.23268474])
|
|
244
|
+
|
|
245
|
+
>>> dt_cl.max_features_
|
|
246
|
+
2
|
|
247
|
+
"""
|
|
248
|
+
def __init__(self):
|
|
249
|
+
super().__init__()
|
|
250
|
+
self._modules = _MODULES
|
|
251
|
+
self._object_wrapper = _SkLearnObjectWrapper
|
|
252
|
+
self._function_wrapper = _SKLearnFunctionWrapper
|
|
253
|
+
|
|
254
|
+
|
|
255
|
+
td_sklearn = Sklearn()
|