teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,460 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Abhinav Sahu (abhinav.sahu@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.14
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class CFilter:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
input_columns = None,
|
|
35
|
-
join_columns = None,
|
|
36
|
-
add_columns = None,
|
|
37
|
-
partition_key = "col1_item1",
|
|
38
|
-
max_itemset = 100,
|
|
39
|
-
data_sequence_column = None,
|
|
40
|
-
null_handling = True,
|
|
41
|
-
use_basketgenerator = True):
|
|
42
|
-
|
|
43
|
-
"""
|
|
44
|
-
DESCRIPTION:
|
|
45
|
-
The CFilter function is a general-purpose collaborative filter.
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
PARAMETERS:
|
|
49
|
-
data:
|
|
50
|
-
Required Argument.
|
|
51
|
-
Specifies the name of the teradataml DataFrame that contains the data
|
|
52
|
-
to filter.
|
|
53
|
-
|
|
54
|
-
input_columns:
|
|
55
|
-
Required Argument.
|
|
56
|
-
Specifies the names of the input teradataml DataFrame columns that
|
|
57
|
-
contain the data to filter.
|
|
58
|
-
Types: str OR list of Strings (str)
|
|
59
|
-
|
|
60
|
-
join_columns:
|
|
61
|
-
Required Argument.
|
|
62
|
-
Specifies the names of the input teradataml DataFrame columns to join.
|
|
63
|
-
Types: str OR list of Strings (str)
|
|
64
|
-
|
|
65
|
-
add_columns:
|
|
66
|
-
Optional Argument.
|
|
67
|
-
Specifies the names of the input columns to copy to the output table.
|
|
68
|
-
The function partitions the input data and the output teradataml
|
|
69
|
-
DataFrame on these columns. By default, the function treats the input
|
|
70
|
-
data as belonging to one partition.
|
|
71
|
-
Note: Specifying a column as both an add_column and a join_column causes
|
|
72
|
-
incorrect counts in partitions.
|
|
73
|
-
Types: str OR list of Strings (str)
|
|
74
|
-
|
|
75
|
-
partition_key:
|
|
76
|
-
Optional Argument.
|
|
77
|
-
Specifies the names of the output column to use as the partition key.
|
|
78
|
-
Default Value: "col1_item1"
|
|
79
|
-
Types: str
|
|
80
|
-
|
|
81
|
-
max_itemset:
|
|
82
|
-
Optional Argument.
|
|
83
|
-
Specifies the maximum size of the item set.
|
|
84
|
-
Default Value: 100
|
|
85
|
-
Types: int
|
|
86
|
-
|
|
87
|
-
null_handling:
|
|
88
|
-
Optional Argument.
|
|
89
|
-
Specifies whether to handle null values in the input. If the input
|
|
90
|
-
data contains null values, then this argument should be True.
|
|
91
|
-
Note: "null_handling" is only available when teradataml is connected to
|
|
92
|
-
Vantage 1.3.
|
|
93
|
-
Default Value: True
|
|
94
|
-
Types: bool
|
|
95
|
-
|
|
96
|
-
use_basketgenerator:
|
|
97
|
-
Optional Argument.
|
|
98
|
-
Specifies whether to use BasketGenerator function to generate baskets.
|
|
99
|
-
Note: "use_basketgenerator" is only available when teradataml is connected to
|
|
100
|
-
Vantage 1.3.
|
|
101
|
-
Default Value: True
|
|
102
|
-
Types: bool
|
|
103
|
-
|
|
104
|
-
data_sequence_column:
|
|
105
|
-
Optional Argument.
|
|
106
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
107
|
-
the input argument "data". The argument is used to ensure
|
|
108
|
-
deterministic results for functions which produce results that vary
|
|
109
|
-
from run to run.
|
|
110
|
-
Types: str OR list of Strings (str)
|
|
111
|
-
|
|
112
|
-
RETURNS:
|
|
113
|
-
Instance of CFilter.
|
|
114
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
115
|
-
references, such as CFilterObj.<attribute_name>.
|
|
116
|
-
Output teradataml DataFrame attribute name is:
|
|
117
|
-
1. output_table
|
|
118
|
-
2. output
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
RAISES:
|
|
122
|
-
TeradataMlException
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
EXAMPLES:
|
|
126
|
-
# Load example data.
|
|
127
|
-
load_example_data("cfilter", "sales_transaction")
|
|
128
|
-
|
|
129
|
-
# Provided example table is: sales_transaction
|
|
130
|
-
# These input table contains data of an office supply chain store. The columns are:
|
|
131
|
-
# orderid: order (transaction) identifier
|
|
132
|
-
# orderdate: order date
|
|
133
|
-
# orderqty: quantity of product ordered
|
|
134
|
-
# region: geographic region of store where order was placed
|
|
135
|
-
# customer_segment: segment of customer who ordered product
|
|
136
|
-
# prd_category: category of product ordered
|
|
137
|
-
# product: product ordered
|
|
138
|
-
|
|
139
|
-
# Create teradataml DataFrame objects.
|
|
140
|
-
sales_transaction = DataFrame.from_table("sales_transaction")
|
|
141
|
-
|
|
142
|
-
# Example 1 - Collaborative Filtering by Product.
|
|
143
|
-
CFilter_out1 = CFilter(data = sales_transaction,
|
|
144
|
-
input_columns = ["product"],
|
|
145
|
-
join_columns = ["orderid"],
|
|
146
|
-
add_columns = ["region"]
|
|
147
|
-
)
|
|
148
|
-
# Print the output data
|
|
149
|
-
print(CFilter_out1)
|
|
150
|
-
|
|
151
|
-
# Example 2 - Collaborative Filtering by Customer Segment.
|
|
152
|
-
CFilter_out2 = CFilter(data = sales_transaction,
|
|
153
|
-
input_columns = ["customer_segment"],
|
|
154
|
-
join_columns = ["product"]
|
|
155
|
-
)
|
|
156
|
-
# Print the output data
|
|
157
|
-
print(CFilter_out2)
|
|
158
|
-
|
|
159
|
-
"""
|
|
160
|
-
|
|
161
|
-
# Start the timer to get the build time
|
|
162
|
-
_start_time = time.time()
|
|
163
|
-
|
|
164
|
-
self.data = data
|
|
165
|
-
self.input_columns = input_columns
|
|
166
|
-
self.join_columns = join_columns
|
|
167
|
-
self.add_columns = add_columns
|
|
168
|
-
self.partition_key = partition_key
|
|
169
|
-
self.max_itemset = max_itemset
|
|
170
|
-
self.data_sequence_column = data_sequence_column
|
|
171
|
-
self.null_handling = null_handling
|
|
172
|
-
self.use_basketgenerator = use_basketgenerator
|
|
173
|
-
|
|
174
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
175
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
176
|
-
self.__aed_utils = AedUtils()
|
|
177
|
-
|
|
178
|
-
# Create argument information matrix to do parameter checking
|
|
179
|
-
self.__arg_info_matrix = []
|
|
180
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
181
|
-
self.__arg_info_matrix.append(["input_columns", self.input_columns, False, (str,list)])
|
|
182
|
-
self.__arg_info_matrix.append(["join_columns", self.join_columns, False, (str,list)])
|
|
183
|
-
self.__arg_info_matrix.append(["add_columns", self.add_columns, True, (str,list)])
|
|
184
|
-
self.__arg_info_matrix.append(["partition_key", self.partition_key, True, (str)])
|
|
185
|
-
self.__arg_info_matrix.append(["max_itemset", self.max_itemset, True, (int)])
|
|
186
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
187
|
-
self.__arg_info_matrix.append(["null_handling", self.null_handling, True, (bool)])
|
|
188
|
-
self.__arg_info_matrix.append(["use_basketgenerator", self.use_basketgenerator, True, (bool)])
|
|
189
|
-
|
|
190
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
191
|
-
# Perform the function validations
|
|
192
|
-
self.__validate()
|
|
193
|
-
# Generate the ML query
|
|
194
|
-
self.__form_tdml_query()
|
|
195
|
-
# Execute ML query
|
|
196
|
-
self.__execute()
|
|
197
|
-
# Get the prediction type
|
|
198
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
199
|
-
|
|
200
|
-
# End the timer to get the build time
|
|
201
|
-
_end_time = time.time()
|
|
202
|
-
|
|
203
|
-
# Calculate the build time
|
|
204
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
205
|
-
|
|
206
|
-
def __validate(self):
|
|
207
|
-
"""
|
|
208
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
209
|
-
arguments, input argument and table types. Also processes the
|
|
210
|
-
argument values.
|
|
211
|
-
"""
|
|
212
|
-
|
|
213
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
214
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
215
|
-
|
|
216
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
217
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
218
|
-
|
|
219
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
220
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
221
|
-
|
|
222
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
223
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
224
|
-
self.__awu._validate_input_columns_not_empty(self.input_columns, "input_columns")
|
|
225
|
-
self.__awu._validate_dataframe_has_argument_columns(self.input_columns, "input_columns", self.data, "data", False)
|
|
226
|
-
|
|
227
|
-
self.__awu._validate_input_columns_not_empty(self.join_columns, "join_columns")
|
|
228
|
-
self.__awu._validate_dataframe_has_argument_columns(self.join_columns, "join_columns", self.data, "data", False)
|
|
229
|
-
|
|
230
|
-
self.__awu._validate_input_columns_not_empty(self.add_columns, "add_columns")
|
|
231
|
-
self.__awu._validate_dataframe_has_argument_columns(self.add_columns, "add_columns", self.data, "data", False)
|
|
232
|
-
|
|
233
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
234
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
def __form_tdml_query(self):
|
|
238
|
-
"""
|
|
239
|
-
Function to generate the analytical function queries. The function defines
|
|
240
|
-
variables and list of arguments required to form the query.
|
|
241
|
-
"""
|
|
242
|
-
# Generate temp table names for output table parameters if any.
|
|
243
|
-
self.__output_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_cfilter0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
244
|
-
|
|
245
|
-
# Output table arguments list
|
|
246
|
-
self.__func_output_args_sql_names = ["OutputTable"]
|
|
247
|
-
self.__func_output_args = [self.__output_table_temp_tablename]
|
|
248
|
-
|
|
249
|
-
# Model Cataloging related attributes.
|
|
250
|
-
self._sql_specific_attributes = {}
|
|
251
|
-
self._sql_formula_attribute_mapper = {}
|
|
252
|
-
self._target_column = None
|
|
253
|
-
self._algorithm_name = None
|
|
254
|
-
|
|
255
|
-
# Generate lists for rest of the function arguments
|
|
256
|
-
self.__func_other_arg_sql_names = []
|
|
257
|
-
self.__func_other_args = []
|
|
258
|
-
self.__func_other_arg_json_datatypes = []
|
|
259
|
-
|
|
260
|
-
self.__func_other_arg_sql_names.append("TargetColumns")
|
|
261
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.input_columns, "\""), "'"))
|
|
262
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
263
|
-
|
|
264
|
-
self.__func_other_arg_sql_names.append("JoinColumns")
|
|
265
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.join_columns, "\""), "'"))
|
|
266
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
267
|
-
|
|
268
|
-
if self.add_columns is not None:
|
|
269
|
-
self.__func_other_arg_sql_names.append("PartitionColumns")
|
|
270
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.add_columns, "\""), "'"))
|
|
271
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
272
|
-
|
|
273
|
-
if self.partition_key is not None and self.partition_key != "col1_item1":
|
|
274
|
-
self.__func_other_arg_sql_names.append("PartitionKey")
|
|
275
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.partition_key, "'"))
|
|
276
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
277
|
-
|
|
278
|
-
if self.max_itemset is not None and self.max_itemset != 100:
|
|
279
|
-
self.__func_other_arg_sql_names.append("MaxDistinctItems")
|
|
280
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_itemset, "'"))
|
|
281
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
282
|
-
|
|
283
|
-
if self.null_handling is not None and self.null_handling != True:
|
|
284
|
-
self.__func_other_arg_sql_names.append("NullHandling")
|
|
285
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.null_handling, "'"))
|
|
286
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
287
|
-
|
|
288
|
-
if self.use_basketgenerator is not None and self.use_basketgenerator != True:
|
|
289
|
-
self.__func_other_arg_sql_names.append("UseBasketGenerator")
|
|
290
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.use_basketgenerator, "'"))
|
|
291
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
292
|
-
|
|
293
|
-
# Generate lists for rest of the function arguments
|
|
294
|
-
sequence_input_by_list = []
|
|
295
|
-
if self.data_sequence_column is not None:
|
|
296
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
297
|
-
|
|
298
|
-
if len(sequence_input_by_list) > 0:
|
|
299
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
300
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
301
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
302
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
303
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
# Declare empty lists to hold input table information.
|
|
307
|
-
self.__func_input_arg_sql_names = []
|
|
308
|
-
self.__func_input_table_view_query = []
|
|
309
|
-
self.__func_input_dataframe_type = []
|
|
310
|
-
self.__func_input_distribution = []
|
|
311
|
-
self.__func_input_partition_by_cols = []
|
|
312
|
-
self.__func_input_order_by_cols = []
|
|
313
|
-
|
|
314
|
-
# Process data
|
|
315
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
316
|
-
self.__func_input_distribution.append("NONE")
|
|
317
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
318
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
319
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
320
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
321
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
322
|
-
|
|
323
|
-
function_name = "CFilter"
|
|
324
|
-
# Create instance to generate SQLMR.
|
|
325
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
326
|
-
self.__func_input_arg_sql_names,
|
|
327
|
-
self.__func_input_table_view_query,
|
|
328
|
-
self.__func_input_dataframe_type,
|
|
329
|
-
self.__func_input_distribution,
|
|
330
|
-
self.__func_input_partition_by_cols,
|
|
331
|
-
self.__func_input_order_by_cols,
|
|
332
|
-
self.__func_other_arg_sql_names,
|
|
333
|
-
self.__func_other_args,
|
|
334
|
-
self.__func_other_arg_json_datatypes,
|
|
335
|
-
self.__func_output_args_sql_names,
|
|
336
|
-
self.__func_output_args,
|
|
337
|
-
engine="ENGINE_ML")
|
|
338
|
-
# Invoke call to SQL-MR generation.
|
|
339
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
340
|
-
|
|
341
|
-
# Print SQL-MR query if requested to do so.
|
|
342
|
-
if display.print_sqlmr_query:
|
|
343
|
-
print(self.sqlmr_query)
|
|
344
|
-
|
|
345
|
-
# Set the algorithm name for Model Cataloging.
|
|
346
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
347
|
-
|
|
348
|
-
def __execute(self):
|
|
349
|
-
"""
|
|
350
|
-
Function to execute SQL-MR queries.
|
|
351
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
352
|
-
"""
|
|
353
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
354
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
355
|
-
try:
|
|
356
|
-
# Generate the output.
|
|
357
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
358
|
-
except Exception as emsg:
|
|
359
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
360
|
-
|
|
361
|
-
# Update output table data frames.
|
|
362
|
-
self._mlresults = []
|
|
363
|
-
self.output_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__output_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__output_table_temp_tablename))
|
|
364
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
365
|
-
self._mlresults.append(self.output_table)
|
|
366
|
-
self._mlresults.append(self.output)
|
|
367
|
-
|
|
368
|
-
def show_query(self):
|
|
369
|
-
"""
|
|
370
|
-
Function to return the underlying SQL query.
|
|
371
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
372
|
-
"""
|
|
373
|
-
return self.sqlmr_query
|
|
374
|
-
|
|
375
|
-
def get_prediction_type(self):
|
|
376
|
-
"""
|
|
377
|
-
Function to return the Prediction type of the algorithm.
|
|
378
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
379
|
-
as saved in the Model Catalog.
|
|
380
|
-
"""
|
|
381
|
-
return self._prediction_type
|
|
382
|
-
|
|
383
|
-
def get_target_column(self):
|
|
384
|
-
"""
|
|
385
|
-
Function to return the Target Column of the algorithm.
|
|
386
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
387
|
-
as saved in the Model Catalog.
|
|
388
|
-
"""
|
|
389
|
-
return self._target_column
|
|
390
|
-
|
|
391
|
-
def get_build_time(self):
|
|
392
|
-
"""
|
|
393
|
-
Function to return the build time of the algorithm in seconds.
|
|
394
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
395
|
-
as saved in the Model Catalog.
|
|
396
|
-
"""
|
|
397
|
-
return self._build_time
|
|
398
|
-
|
|
399
|
-
def _get_algorithm_name(self):
|
|
400
|
-
"""
|
|
401
|
-
Function to return the name of the algorithm.
|
|
402
|
-
"""
|
|
403
|
-
return self._algorithm_name
|
|
404
|
-
|
|
405
|
-
def _get_sql_specific_attributes(self):
|
|
406
|
-
"""
|
|
407
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
408
|
-
"""
|
|
409
|
-
return self._sql_specific_attributes
|
|
410
|
-
|
|
411
|
-
@classmethod
|
|
412
|
-
def _from_model_catalog(cls,
|
|
413
|
-
output_table = None,
|
|
414
|
-
output = None,
|
|
415
|
-
**kwargs):
|
|
416
|
-
"""
|
|
417
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
418
|
-
"""
|
|
419
|
-
kwargs.pop("output_table", None)
|
|
420
|
-
kwargs.pop("output", None)
|
|
421
|
-
|
|
422
|
-
# Model Cataloging related attributes.
|
|
423
|
-
target_column = kwargs.pop("__target_column", None)
|
|
424
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
425
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
426
|
-
build_time = kwargs.pop("__build_time", None)
|
|
427
|
-
|
|
428
|
-
# Let's create an object of this class.
|
|
429
|
-
obj = cls(**kwargs)
|
|
430
|
-
obj.output_table = output_table
|
|
431
|
-
obj.output = output
|
|
432
|
-
|
|
433
|
-
# Initialize the sqlmr_query class attribute.
|
|
434
|
-
obj.sqlmr_query = None
|
|
435
|
-
|
|
436
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
437
|
-
obj._sql_specific_attributes = None
|
|
438
|
-
obj._target_column = target_column
|
|
439
|
-
obj._prediction_type = prediction_type
|
|
440
|
-
obj._algorithm_name = algorithm_name
|
|
441
|
-
obj._build_time = build_time
|
|
442
|
-
|
|
443
|
-
# Update output table data frames.
|
|
444
|
-
obj._mlresults = []
|
|
445
|
-
obj.output_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_table))
|
|
446
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
447
|
-
obj._mlresults.append(obj.output_table)
|
|
448
|
-
obj._mlresults.append(obj.output)
|
|
449
|
-
return obj
|
|
450
|
-
|
|
451
|
-
def __repr__(self):
|
|
452
|
-
"""
|
|
453
|
-
Returns the string representation for a CFilter class instance.
|
|
454
|
-
"""
|
|
455
|
-
repr_string="############ STDOUT Output ############"
|
|
456
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
457
|
-
repr_string="{}\n\n\n############ output_table Output ############".format(repr_string)
|
|
458
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output_table)
|
|
459
|
-
return repr_string
|
|
460
|
-
|