teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,123 +0,0 @@
|
|
|
1
|
-
from teradataml.analytics.mle.AdaBoost import AdaBoost
|
|
2
|
-
from teradataml.analytics.mle.AdaBoostPredict import AdaBoostPredict
|
|
3
|
-
from teradataml.analytics.mle.Antiselect import *
|
|
4
|
-
from teradataml.analytics.mle.Arima import Arima
|
|
5
|
-
from teradataml.analytics.mle.ArimaPredict import ArimaPredict
|
|
6
|
-
from teradataml.analytics.mle.Attribution import Attribution
|
|
7
|
-
from teradataml.analytics.mle.Betweenness import Betweenness
|
|
8
|
-
from teradataml.analytics.mle.Burst import Burst
|
|
9
|
-
from teradataml.analytics.mle.CCM import CCM
|
|
10
|
-
from teradataml.analytics.mle.CCMPrepare import CCMPrepare
|
|
11
|
-
from teradataml.analytics.mle.CFilter import CFilter
|
|
12
|
-
from teradataml.analytics.mle.ChangePointDetection import ChangePointDetection
|
|
13
|
-
from teradataml.analytics.mle.ChangePointDetectionRT import ChangePointDetectionRT
|
|
14
|
-
from teradataml.analytics.mle.ConfusionMatrix import ConfusionMatrix
|
|
15
|
-
from teradataml.analytics.mle.Closeness import Closeness
|
|
16
|
-
from teradataml.analytics.mle.Correlation import Correlation
|
|
17
|
-
from teradataml.analytics.mle.Correlation2 import Correlation2
|
|
18
|
-
from teradataml.analytics.mle.CoxHazardRatio import CoxHazardRatio
|
|
19
|
-
from teradataml.analytics.mle.CoxPH import CoxPH
|
|
20
|
-
from teradataml.analytics.mle.CoxSurvival import CoxSurvival
|
|
21
|
-
from teradataml.analytics.mle.CumulativeMovAvg import CumulativeMovAvg
|
|
22
|
-
from teradataml.analytics.mle.DecisionForest import DecisionForest
|
|
23
|
-
from teradataml.analytics.mle.DecisionForestEvaluator import DecisionForestEvaluator
|
|
24
|
-
from teradataml.analytics.mle.DecisionForestPredict import *
|
|
25
|
-
from teradataml.analytics.mle.DecisionTree import DecisionTree
|
|
26
|
-
from teradataml.analytics.mle.DecisionTreePredict import DecisionTreePredict
|
|
27
|
-
from teradataml.analytics.mle.DTW import DTW
|
|
28
|
-
from teradataml.analytics.mle.DWT import DWT
|
|
29
|
-
from teradataml.analytics.mle.DWT2D import DWT2D
|
|
30
|
-
from teradataml.analytics.mle.ExponentialMovAvg import ExponentialMovAvg
|
|
31
|
-
from teradataml.analytics.mle.FMeasure import FMeasure
|
|
32
|
-
from teradataml.analytics.mle.FPGrowth import FPGrowth
|
|
33
|
-
from teradataml.analytics.mle.FrequentPaths import FrequentPaths
|
|
34
|
-
from teradataml.analytics.mle.GLM import GLM
|
|
35
|
-
from teradataml.analytics.mle.GLML1L2Predict import GLML1L2Predict
|
|
36
|
-
from teradataml.analytics.mle.GLML1L2 import GLML1L2
|
|
37
|
-
from teradataml.analytics.mle.GLMPredict import GLMPredict
|
|
38
|
-
from teradataml.analytics.mle.HMMDecoder import HMMDecoder
|
|
39
|
-
from teradataml.analytics.mle.HMMEvaluator import HMMEvaluator
|
|
40
|
-
from teradataml.analytics.mle.HMMSupervised import HMMSupervised
|
|
41
|
-
from teradataml.analytics.mle.HMMUnsupervised import HMMUnsupervised
|
|
42
|
-
from teradataml.analytics.mle.Histogram import Histogram
|
|
43
|
-
from teradataml.analytics.mle.IdentityMatch import IdentityMatch
|
|
44
|
-
from teradataml.analytics.mle.IDWT import IDWT
|
|
45
|
-
from teradataml.analytics.mle.IDWT2D import IDWT2D
|
|
46
|
-
from teradataml.analytics.mle.Interpolator import Interpolator
|
|
47
|
-
from teradataml.analytics.mle.KMeans import KMeans
|
|
48
|
-
from teradataml.analytics.mle.KNN import KNN
|
|
49
|
-
from teradataml.analytics.mle.KNNRecommender import KNNRecommender
|
|
50
|
-
from teradataml.analytics.mle.KNNRecommenderPredict import KNNRecommenderPredict
|
|
51
|
-
from teradataml.analytics.mle.LAR import LAR
|
|
52
|
-
from teradataml.analytics.mle.LARPredict import LARPredict
|
|
53
|
-
from teradataml.analytics.mle.LDA import LDA
|
|
54
|
-
from teradataml.analytics.mle.LDAInference import LDAInference
|
|
55
|
-
from teradataml.analytics.mle.LDATopicSummary import LDATopicSummary
|
|
56
|
-
from teradataml.analytics.mle.LevenshteinDistance import LevenshteinDistance
|
|
57
|
-
from teradataml.analytics.mle.LinReg import LinReg
|
|
58
|
-
from teradataml.analytics.mle.LinRegPredict import LinRegPredict
|
|
59
|
-
from teradataml.analytics.mle.MinHash import MinHash
|
|
60
|
-
from teradataml.analytics.mle.Modularity import Modularity
|
|
61
|
-
from teradataml.analytics.mle.NEREvaluator import NEREvaluator
|
|
62
|
-
from teradataml.analytics.mle.NERExtractor import NERExtractor
|
|
63
|
-
from teradataml.analytics.mle.NGrams import NGrams
|
|
64
|
-
from teradataml.analytics.mle.NTree import NTree
|
|
65
|
-
from teradataml.analytics.mle.NPath import NPath
|
|
66
|
-
from teradataml.analytics.mle.NaiveBayes import NaiveBayes
|
|
67
|
-
from teradataml.analytics.mle.NaiveBayesPredict import NaiveBayesPredict
|
|
68
|
-
from teradataml.analytics.mle.NaiveBayesTextClassifier import NaiveBayesTextClassifier
|
|
69
|
-
from teradataml.analytics.mle.NaiveBayesTextClassifierPredict import NaiveBayesTextClassifierPredict
|
|
70
|
-
from teradataml.analytics.mle.NaiveBayesTextClassifier2 import NaiveBayesTextClassifier2
|
|
71
|
-
from teradataml.analytics.mle.NamedEntityFinder import NamedEntityFinder
|
|
72
|
-
from teradataml.analytics.mle.NamedEntityFinderEvaluator import NamedEntityFinderEvaluator
|
|
73
|
-
from teradataml.analytics.mle.NamedEntityFinderTrainer import NamedEntityFinderTrainer
|
|
74
|
-
from teradataml.analytics.mle.NERTrainer import NERTrainer
|
|
75
|
-
from teradataml.analytics.mle.Pack import *
|
|
76
|
-
from teradataml.analytics.mle.PageRank import PageRank
|
|
77
|
-
from teradataml.analytics.mle.PathAnalyzer import PathAnalyzer
|
|
78
|
-
from teradataml.analytics.mle.PathGenerator import PathGenerator
|
|
79
|
-
from teradataml.analytics.mle.PathStart import PathStart
|
|
80
|
-
from teradataml.analytics.mle.PathSummarizer import PathSummarizer
|
|
81
|
-
from teradataml.analytics.mle.Pivot import Pivot
|
|
82
|
-
from teradataml.analytics.mle.POSTagger import POSTagger
|
|
83
|
-
from teradataml.analytics.mle.ROC import ROC
|
|
84
|
-
from teradataml.analytics.mle.RandomSample import RandomSample
|
|
85
|
-
from teradataml.analytics.mle.RandomWalkSample import RandomWalkSample
|
|
86
|
-
from teradataml.analytics.mle.SAX import SAX
|
|
87
|
-
from teradataml.analytics.mle.Sessionize import Sessionize
|
|
88
|
-
from teradataml.analytics.mle.SVMDense import SVMDense
|
|
89
|
-
from teradataml.analytics.mle.SVMDensePredict import SVMDensePredict
|
|
90
|
-
from teradataml.analytics.mle.SVMDenseSummary import SVMDenseSummary
|
|
91
|
-
from teradataml.analytics.mle.SVMSparse import SVMSparse
|
|
92
|
-
from teradataml.analytics.mle.SVMSparseSummary import SVMSparseSummary
|
|
93
|
-
from teradataml.analytics.mle.Sampling import Sampling
|
|
94
|
-
from teradataml.analytics.mle.Scale import Scale
|
|
95
|
-
from teradataml.analytics.mle.ScaleMap import ScaleMap
|
|
96
|
-
from teradataml.analytics.mle.ScaleSummary import ScaleSummary
|
|
97
|
-
from teradataml.analytics.mle.ScaleByPartition import ScaleByPartition
|
|
98
|
-
from teradataml.analytics.mle.SentenceExtractor import SentenceExtractor
|
|
99
|
-
from teradataml.analytics.mle.SentimentEvaluator import SentimentEvaluator
|
|
100
|
-
from teradataml.analytics.mle.SentimentTrainer import SentimentTrainer
|
|
101
|
-
from teradataml.analytics.mle.SentimentExtractor import SentimentExtractor
|
|
102
|
-
from teradataml.analytics.mle.SeriesSplitter import SeriesSplitter
|
|
103
|
-
from teradataml.analytics.mle.SimpleMovAvg import SimpleMovAvg
|
|
104
|
-
from teradataml.analytics.mle.StringSimilarity import StringSimilarity
|
|
105
|
-
from teradataml.analytics.mle.SVMSparsePredict import SVMSparsePredict
|
|
106
|
-
from teradataml.analytics.mle.TF import TF
|
|
107
|
-
from teradataml.analytics.mle.TFIDF import TFIDF
|
|
108
|
-
from teradataml.analytics.mle.TextChunker import TextChunker
|
|
109
|
-
from teradataml.analytics.mle.TextMorph import TextMorph
|
|
110
|
-
from teradataml.analytics.mle.TextParser import TextParser
|
|
111
|
-
from teradataml.analytics.mle.TextTagger import TextTagger
|
|
112
|
-
from teradataml.analytics.mle.TextTokenizer import TextTokenizer
|
|
113
|
-
from teradataml.analytics.mle.TextClassifierTrainer import TextClassifierTrainer
|
|
114
|
-
from teradataml.analytics.mle.TextClassifier import TextClassifier
|
|
115
|
-
from teradataml.analytics.mle.TextClassifierEvaluator import TextClassifierEvaluator
|
|
116
|
-
from teradataml.analytics.mle.UnivariateStatistics import UnivariateStatistics
|
|
117
|
-
from teradataml.analytics.mle.Unpivot import Unpivot
|
|
118
|
-
from teradataml.analytics.mle.Unpack import *
|
|
119
|
-
from teradataml.analytics.mle.VarMax import VarMax
|
|
120
|
-
from teradataml.analytics.mle.VectorDistance import VectorDistance
|
|
121
|
-
from teradataml.analytics.mle.WeightedMovAvg import WeightedMovAvg
|
|
122
|
-
from teradataml.analytics.mle.XGBoost import XGBoost
|
|
123
|
-
from teradataml.analytics.mle.XGBoostPredict import XGBoostPredict
|
|
@@ -1,135 +0,0 @@
|
|
|
1
|
-
{
|
|
2
|
-
"function_tdplyr_name": "td_adaboost_mle",
|
|
3
|
-
"function_r_name": "aa.adaboost.drive",
|
|
4
|
-
"function_alias_name": "AdaBoost",
|
|
5
|
-
"input_tables": [
|
|
6
|
-
{
|
|
7
|
-
"rName": "attribute.data",
|
|
8
|
-
"name": ["AttributeTable"],
|
|
9
|
-
"useInR": true,
|
|
10
|
-
"rOrderNum": 1
|
|
11
|
-
},
|
|
12
|
-
{
|
|
13
|
-
"rName": "response.data",
|
|
14
|
-
"name": ["ResponseTable"],
|
|
15
|
-
"useInR": true,
|
|
16
|
-
"rOrderNum": 5
|
|
17
|
-
},
|
|
18
|
-
{
|
|
19
|
-
"rName": "categorical.attribute.data",
|
|
20
|
-
"name": ["CategoricalAttributeTable"],
|
|
21
|
-
"useInR": true,
|
|
22
|
-
"rOrderNum": 4
|
|
23
|
-
}
|
|
24
|
-
],
|
|
25
|
-
"function_name": "AdaBoost_Drive",
|
|
26
|
-
"function_tdml_name": "AdaBoost",
|
|
27
|
-
"output_tables": [{
|
|
28
|
-
"rName": "model.table",
|
|
29
|
-
"name": ["OutputTable"],
|
|
30
|
-
"useInR": true,
|
|
31
|
-
"rOrderNum": 100
|
|
32
|
-
}],
|
|
33
|
-
"argument_clauses": [
|
|
34
|
-
{
|
|
35
|
-
"allowsLists": true,
|
|
36
|
-
"datatype": "COLUMN_NAMES",
|
|
37
|
-
"rName": "id.columns",
|
|
38
|
-
"name": ["IdColumns"],
|
|
39
|
-
"useInR": true,
|
|
40
|
-
"rOrderNum": 6
|
|
41
|
-
},
|
|
42
|
-
{
|
|
43
|
-
"allowsLists": true,
|
|
44
|
-
"datatype": "COLUMN_NAMES",
|
|
45
|
-
"rName": "attribute.name.columns",
|
|
46
|
-
"name": ["AttributeNameColumns"],
|
|
47
|
-
"useInR": true,
|
|
48
|
-
"rOrderNum": 2
|
|
49
|
-
},
|
|
50
|
-
{
|
|
51
|
-
"datatype": "COLUMN_NAMES",
|
|
52
|
-
"rName": "attribute.value.column",
|
|
53
|
-
"name": ["AttributeValueColumn"],
|
|
54
|
-
"useInR": true,
|
|
55
|
-
"rOrderNum": 3
|
|
56
|
-
},
|
|
57
|
-
{
|
|
58
|
-
"datatype": "COLUMN_NAMES",
|
|
59
|
-
"rName": "response.column",
|
|
60
|
-
"name": ["ResponseColumn"],
|
|
61
|
-
"useInR": true,
|
|
62
|
-
"rOrderNum": 7
|
|
63
|
-
},
|
|
64
|
-
{
|
|
65
|
-
"datatype": "INTEGER",
|
|
66
|
-
"rName": "iter.num",
|
|
67
|
-
"name": ["IterNum"],
|
|
68
|
-
"useInR": true,
|
|
69
|
-
"rOrderNum": 8
|
|
70
|
-
},
|
|
71
|
-
{
|
|
72
|
-
"datatype": "INTEGER",
|
|
73
|
-
"rName": "num.splits",
|
|
74
|
-
"name": ["NumSplits"],
|
|
75
|
-
"useInR": true,
|
|
76
|
-
"rOrderNum": 9
|
|
77
|
-
},
|
|
78
|
-
{
|
|
79
|
-
"datatype": "BOOLEAN",
|
|
80
|
-
"rName": "approx.splits",
|
|
81
|
-
"name": ["ApproxSplits"],
|
|
82
|
-
"useInR": true,
|
|
83
|
-
"rOrderNum": 10
|
|
84
|
-
},
|
|
85
|
-
{
|
|
86
|
-
"datatype": "STRING",
|
|
87
|
-
"rName": "split.measure",
|
|
88
|
-
"name": ["SplitMeasure"],
|
|
89
|
-
"useInR": true,
|
|
90
|
-
"rOrderNum": 11
|
|
91
|
-
},
|
|
92
|
-
{
|
|
93
|
-
"datatype": "INTEGER",
|
|
94
|
-
"rName": "max.depth",
|
|
95
|
-
"name": ["maxDepth"],
|
|
96
|
-
"useInR": true,
|
|
97
|
-
"rOrderNum": 12
|
|
98
|
-
},
|
|
99
|
-
{
|
|
100
|
-
"datatype": "INTEGER",
|
|
101
|
-
"rName": "min.node.size",
|
|
102
|
-
"name": ["MinNodeSize"],
|
|
103
|
-
"useInR": true,
|
|
104
|
-
"rOrderNum": 13
|
|
105
|
-
},
|
|
106
|
-
{
|
|
107
|
-
"datatype": "BOOLEAN",
|
|
108
|
-
"rName": "output.response.probdist",
|
|
109
|
-
"name": [
|
|
110
|
-
"OutputProb",
|
|
111
|
-
"OutputResponseProbDist"
|
|
112
|
-
],
|
|
113
|
-
"useInR": true,
|
|
114
|
-
"rOrderNum": 14
|
|
115
|
-
},
|
|
116
|
-
{
|
|
117
|
-
"datatype": "STRING",
|
|
118
|
-
"rName": "categorical.encoding",
|
|
119
|
-
"name": ["CategoricalEncoding"],
|
|
120
|
-
"useInR": true,
|
|
121
|
-
"rOrderNum": 15
|
|
122
|
-
},
|
|
123
|
-
{
|
|
124
|
-
"allowsLists": true,
|
|
125
|
-
"datatype": "COLUMN_NAMES",
|
|
126
|
-
"rName": "sequence.column",
|
|
127
|
-
"name": [
|
|
128
|
-
"SequenceInputBy",
|
|
129
|
-
"UniqueId"
|
|
130
|
-
],
|
|
131
|
-
"useInR": true,
|
|
132
|
-
"rOrderNum": 50
|
|
133
|
-
}
|
|
134
|
-
]
|
|
135
|
-
}
|
|
@@ -1,85 +0,0 @@
|
|
|
1
|
-
{
|
|
2
|
-
"function_tdplyr_name": "td_adaboost_predict_mle",
|
|
3
|
-
"function_r_name": "aa.adaboost.predict",
|
|
4
|
-
"function_alias_name": "AdaBoostPredict",
|
|
5
|
-
"input_tables": [
|
|
6
|
-
{
|
|
7
|
-
"rName": "newdata",
|
|
8
|
-
"name": ["AttributeTable"],
|
|
9
|
-
"useInR": true,
|
|
10
|
-
"rOrderNum": 2
|
|
11
|
-
},
|
|
12
|
-
{
|
|
13
|
-
"rName": "object",
|
|
14
|
-
"name": [
|
|
15
|
-
"Model",
|
|
16
|
-
"ModelTable"
|
|
17
|
-
],
|
|
18
|
-
"useInR": true,
|
|
19
|
-
"rOrderNum": 1
|
|
20
|
-
}
|
|
21
|
-
],
|
|
22
|
-
"function_name": "AdaBoost_Predict",
|
|
23
|
-
"function_tdml_name": "AdaBoostPredict",
|
|
24
|
-
"argument_clauses": [
|
|
25
|
-
{
|
|
26
|
-
"datatype": "COLUMNS",
|
|
27
|
-
"rName": "attr.groupby.columns",
|
|
28
|
-
"name": ["AttrTableGroupbyColumns"],
|
|
29
|
-
"useInR": true,
|
|
30
|
-
"rOrderNum": 3
|
|
31
|
-
},
|
|
32
|
-
{
|
|
33
|
-
"allowsLists": true,
|
|
34
|
-
"datatype": "COLUMNS",
|
|
35
|
-
"rName": "attr.pid.columns",
|
|
36
|
-
"name": ["AttrTablePidColumns"],
|
|
37
|
-
"useInR": true,
|
|
38
|
-
"rOrderNum": 4
|
|
39
|
-
},
|
|
40
|
-
{
|
|
41
|
-
"datatype": "COLUMNS",
|
|
42
|
-
"rName": "attr.val.column",
|
|
43
|
-
"name": ["AttrTableValColumn"],
|
|
44
|
-
"useInR": true,
|
|
45
|
-
"rOrderNum": 5
|
|
46
|
-
},
|
|
47
|
-
{
|
|
48
|
-
"allowsLists": true,
|
|
49
|
-
"datatype": "COLUMNS",
|
|
50
|
-
"rName": "accumulate",
|
|
51
|
-
"name": ["Accumulate"],
|
|
52
|
-
"useInR": true,
|
|
53
|
-
"rOrderNum": 7
|
|
54
|
-
},
|
|
55
|
-
{
|
|
56
|
-
"datatype": "BOOLEAN",
|
|
57
|
-
"rName": "output.response.probdist",
|
|
58
|
-
"name": [
|
|
59
|
-
"OutputProb",
|
|
60
|
-
"OutputResponseProbDist"
|
|
61
|
-
],
|
|
62
|
-
"useInR": true,
|
|
63
|
-
"rOrderNum": 6
|
|
64
|
-
},
|
|
65
|
-
{
|
|
66
|
-
"allowsLists": true,
|
|
67
|
-
"datatype": "STRING",
|
|
68
|
-
"rName": "output.responses",
|
|
69
|
-
"name": ["Responses"],
|
|
70
|
-
"useInR": true,
|
|
71
|
-
"rOrderNum": 8
|
|
72
|
-
},
|
|
73
|
-
{
|
|
74
|
-
"allowsLists": true,
|
|
75
|
-
"datatype": "COLUMN_NAMES",
|
|
76
|
-
"rName": "sequence.column",
|
|
77
|
-
"name": [
|
|
78
|
-
"SequenceInputBy",
|
|
79
|
-
"UniqueId"
|
|
80
|
-
],
|
|
81
|
-
"useInR": true,
|
|
82
|
-
"rOrderNum": 50
|
|
83
|
-
}
|
|
84
|
-
]
|
|
85
|
-
}
|
|
@@ -1,34 +0,0 @@
|
|
|
1
|
-
{
|
|
2
|
-
"function_tdplyr_name": "td_antiselect_mle",
|
|
3
|
-
"function_r_name": "aa.antiselect",
|
|
4
|
-
"function_alias_name": "AntiSelect",
|
|
5
|
-
"input_tables": [{
|
|
6
|
-
"rName": "data",
|
|
7
|
-
"name": ["input"],
|
|
8
|
-
"useInR": true,
|
|
9
|
-
"rOrderNum": 1
|
|
10
|
-
}],
|
|
11
|
-
"function_name": "Antiselect",
|
|
12
|
-
"function_tdml_name": "Antiselect",
|
|
13
|
-
"argument_clauses": [
|
|
14
|
-
{
|
|
15
|
-
"allowsLists": true,
|
|
16
|
-
"datatype": "COLUMNS",
|
|
17
|
-
"rName": "exclude",
|
|
18
|
-
"name": ["Exclude"],
|
|
19
|
-
"useInR": true,
|
|
20
|
-
"rOrderNum": 2
|
|
21
|
-
},
|
|
22
|
-
{
|
|
23
|
-
"allowsLists": true,
|
|
24
|
-
"datatype": "COLUMN_NAMES",
|
|
25
|
-
"rName": "sequence.column",
|
|
26
|
-
"name": [
|
|
27
|
-
"SequenceInputBy",
|
|
28
|
-
"UniqueId"
|
|
29
|
-
],
|
|
30
|
-
"useInR": true,
|
|
31
|
-
"rOrderNum": 50
|
|
32
|
-
}
|
|
33
|
-
]
|
|
34
|
-
}
|
|
@@ -1,34 +0,0 @@
|
|
|
1
|
-
{
|
|
2
|
-
"function_tdplyr_name": "td_antiselect_mle",
|
|
3
|
-
"function_r_name": "aa.antiselect",
|
|
4
|
-
"function_alias_name": "AntiSelect",
|
|
5
|
-
"input_tables": [{
|
|
6
|
-
"rName": "data",
|
|
7
|
-
"name": ["input"],
|
|
8
|
-
"useInR": true,
|
|
9
|
-
"rOrderNum": 1
|
|
10
|
-
}],
|
|
11
|
-
"function_name": "Antiselect",
|
|
12
|
-
"function_tdml_name": "Antiselect",
|
|
13
|
-
"argument_clauses": [
|
|
14
|
-
{
|
|
15
|
-
"allowsLists": true,
|
|
16
|
-
"datatype": "COLUMNS",
|
|
17
|
-
"rName": "exclude",
|
|
18
|
-
"name": ["Exclude"],
|
|
19
|
-
"useInR": true,
|
|
20
|
-
"rOrderNum": 2
|
|
21
|
-
},
|
|
22
|
-
{
|
|
23
|
-
"allowsLists": true,
|
|
24
|
-
"datatype": "COLUMN_NAMES",
|
|
25
|
-
"rName": "sequence.column",
|
|
26
|
-
"name": [
|
|
27
|
-
"SequenceInputBy",
|
|
28
|
-
"UniqueId"
|
|
29
|
-
],
|
|
30
|
-
"useInR": true,
|
|
31
|
-
"rOrderNum": 50
|
|
32
|
-
}
|
|
33
|
-
]
|
|
34
|
-
}
|
|
@@ -1,172 +0,0 @@
|
|
|
1
|
-
{
|
|
2
|
-
"function_tdplyr_name": "td_arima_mle",
|
|
3
|
-
"function_r_name": "aa.arima",
|
|
4
|
-
"function_alias_name": "ARIMA",
|
|
5
|
-
"input_tables": [
|
|
6
|
-
{
|
|
7
|
-
"rName": "data",
|
|
8
|
-
"name": ["InputTable"],
|
|
9
|
-
"useInR": true,
|
|
10
|
-
"rOrderNum": 1
|
|
11
|
-
},
|
|
12
|
-
{
|
|
13
|
-
"rName": "orders.table",
|
|
14
|
-
"name": ["OrdersTable"],
|
|
15
|
-
"useInR": true,
|
|
16
|
-
"rOrderNum": 2
|
|
17
|
-
}
|
|
18
|
-
],
|
|
19
|
-
"function_name": "Arima",
|
|
20
|
-
"function_tdml_name": "Arima",
|
|
21
|
-
"output_tables": [
|
|
22
|
-
{
|
|
23
|
-
"rName": "coefficient",
|
|
24
|
-
"name": ["ModelTable"],
|
|
25
|
-
"useInR": true,
|
|
26
|
-
"rOrderNum": 100
|
|
27
|
-
},
|
|
28
|
-
{
|
|
29
|
-
"rName": "residual.table",
|
|
30
|
-
"name": ["ResidualTable"],
|
|
31
|
-
"useInR": true,
|
|
32
|
-
"rOrderNum": 101
|
|
33
|
-
}
|
|
34
|
-
],
|
|
35
|
-
"argument_clauses": [
|
|
36
|
-
{
|
|
37
|
-
"allowsLists": true,
|
|
38
|
-
"datatype": "COLUMN_NAMES",
|
|
39
|
-
"rName": "timestamp.columns",
|
|
40
|
-
"name": [
|
|
41
|
-
"TimeColumns",
|
|
42
|
-
"TimestampColumns"
|
|
43
|
-
],
|
|
44
|
-
"useInR": true,
|
|
45
|
-
"rOrderNum": 3
|
|
46
|
-
},
|
|
47
|
-
{
|
|
48
|
-
"datatype": "COLUMN_NAMES",
|
|
49
|
-
"rName": "value.column",
|
|
50
|
-
"name": [
|
|
51
|
-
"TargetColumn",
|
|
52
|
-
"ValueColumn",
|
|
53
|
-
"ResponseColumn"
|
|
54
|
-
],
|
|
55
|
-
"useInR": true,
|
|
56
|
-
"rOrderNum": 4
|
|
57
|
-
},
|
|
58
|
-
{
|
|
59
|
-
"allowsLists": true,
|
|
60
|
-
"datatype": "COLUMN_NAMES",
|
|
61
|
-
"rName": "partition.columns",
|
|
62
|
-
"name": ["PartitionColumns"],
|
|
63
|
-
"useInR": true,
|
|
64
|
-
"rOrderNum": 9
|
|
65
|
-
},
|
|
66
|
-
{
|
|
67
|
-
"datatype": "STRING",
|
|
68
|
-
"rName": "order",
|
|
69
|
-
"name": ["Orders"],
|
|
70
|
-
"useInR": true,
|
|
71
|
-
"rOrderNum": 5
|
|
72
|
-
},
|
|
73
|
-
{
|
|
74
|
-
"datatype": "STRING",
|
|
75
|
-
"rName": "seasonal",
|
|
76
|
-
"name": ["SeasonalOrders"],
|
|
77
|
-
"useInR": true,
|
|
78
|
-
"rOrderNum": 6
|
|
79
|
-
},
|
|
80
|
-
{
|
|
81
|
-
"datatype": "INTEGER",
|
|
82
|
-
"rName": "period",
|
|
83
|
-
"name": ["Period"],
|
|
84
|
-
"useInR": true,
|
|
85
|
-
"rOrderNum": 7
|
|
86
|
-
},
|
|
87
|
-
{
|
|
88
|
-
"datatype": "BOOLEAN",
|
|
89
|
-
"rName": "include.mean",
|
|
90
|
-
"name": ["IncludeMean"],
|
|
91
|
-
"useInR": true,
|
|
92
|
-
"rOrderNum": 8
|
|
93
|
-
},
|
|
94
|
-
{
|
|
95
|
-
"datatype": "INTEGER",
|
|
96
|
-
"rName": "max.iterations",
|
|
97
|
-
"name": ["MaxIterNum"],
|
|
98
|
-
"useInR": true,
|
|
99
|
-
"rOrderNum": 10
|
|
100
|
-
},
|
|
101
|
-
{
|
|
102
|
-
"datatype": "STRING",
|
|
103
|
-
"rName": "method",
|
|
104
|
-
"name": [
|
|
105
|
-
"FitMethod",
|
|
106
|
-
"Method"
|
|
107
|
-
],
|
|
108
|
-
"useInR": true,
|
|
109
|
-
"rOrderNum": 11
|
|
110
|
-
},
|
|
111
|
-
{
|
|
112
|
-
"datatype": "BOOLEAN",
|
|
113
|
-
"rName": "include.drift",
|
|
114
|
-
"name": ["IncludeDrift"],
|
|
115
|
-
"useInR": true,
|
|
116
|
-
"rOrderNum": 12
|
|
117
|
-
},
|
|
118
|
-
{
|
|
119
|
-
"datatype": "INTEGER",
|
|
120
|
-
"rName": "order.p",
|
|
121
|
-
"name": ["OrderP"],
|
|
122
|
-
"useInR": true,
|
|
123
|
-
"rOrderNum": 13
|
|
124
|
-
},
|
|
125
|
-
{
|
|
126
|
-
"datatype": "INTEGER",
|
|
127
|
-
"rName": "order.d",
|
|
128
|
-
"name": ["OrderD"],
|
|
129
|
-
"useInR": true,
|
|
130
|
-
"rOrderNum": 14
|
|
131
|
-
},
|
|
132
|
-
{
|
|
133
|
-
"datatype": "INTEGER",
|
|
134
|
-
"rName": "order.q",
|
|
135
|
-
"name": ["OrderQ"],
|
|
136
|
-
"useInR": true,
|
|
137
|
-
"rOrderNum": 15
|
|
138
|
-
},
|
|
139
|
-
{
|
|
140
|
-
"datatype": "INTEGER",
|
|
141
|
-
"rName": "seasonal.order.p",
|
|
142
|
-
"name": ["SeasonalOrderP"],
|
|
143
|
-
"useInR": true,
|
|
144
|
-
"rOrderNum": 16
|
|
145
|
-
},
|
|
146
|
-
{
|
|
147
|
-
"datatype": "INTEGER",
|
|
148
|
-
"rName": "seasonal.order.d",
|
|
149
|
-
"name": ["SeasonalOrderD"],
|
|
150
|
-
"useInR": true,
|
|
151
|
-
"rOrderNum": 17
|
|
152
|
-
},
|
|
153
|
-
{
|
|
154
|
-
"datatype": "INTEGER",
|
|
155
|
-
"rName": "seasonal.order.q",
|
|
156
|
-
"name": ["SeasonalOrderQ"],
|
|
157
|
-
"useInR": true,
|
|
158
|
-
"rOrderNum": 18
|
|
159
|
-
},
|
|
160
|
-
{
|
|
161
|
-
"allowsLists": true,
|
|
162
|
-
"datatype": "COLUMN_NAMES",
|
|
163
|
-
"rName": "sequence.column",
|
|
164
|
-
"name": [
|
|
165
|
-
"SequenceInputBy",
|
|
166
|
-
"UniqueId"
|
|
167
|
-
],
|
|
168
|
-
"useInR": true,
|
|
169
|
-
"rOrderNum": 50
|
|
170
|
-
}
|
|
171
|
-
]
|
|
172
|
-
}
|
|
@@ -1,52 +0,0 @@
|
|
|
1
|
-
{
|
|
2
|
-
"function_tdplyr_name": "td_arima_predict_mle",
|
|
3
|
-
"function_r_name": "aa.arima.predict",
|
|
4
|
-
"function_alias_name": "ARIMAPredict",
|
|
5
|
-
"input_tables": [
|
|
6
|
-
{
|
|
7
|
-
"rName": "object",
|
|
8
|
-
"name": [
|
|
9
|
-
"Model",
|
|
10
|
-
"ModelTable"
|
|
11
|
-
],
|
|
12
|
-
"useInR": true,
|
|
13
|
-
"rOrderNum": 1
|
|
14
|
-
},
|
|
15
|
-
{
|
|
16
|
-
"rName": "residual.table",
|
|
17
|
-
"name": ["ResidualTable"],
|
|
18
|
-
"useInR": true,
|
|
19
|
-
"rOrderNum": 2
|
|
20
|
-
}
|
|
21
|
-
],
|
|
22
|
-
"function_name": "ArimaPredict",
|
|
23
|
-
"function_tdml_name": "ArimaPredict",
|
|
24
|
-
"argument_clauses": [
|
|
25
|
-
{
|
|
26
|
-
"allowsLists": true,
|
|
27
|
-
"datatype": "COLUMNS",
|
|
28
|
-
"rName": "partition.columns",
|
|
29
|
-
"name": ["PartitionColumns"],
|
|
30
|
-
"useInR": true,
|
|
31
|
-
"rOrderNum": 4
|
|
32
|
-
},
|
|
33
|
-
{
|
|
34
|
-
"datatype": "INTEGER",
|
|
35
|
-
"rName": "n.ahead",
|
|
36
|
-
"name": ["StepAhead"],
|
|
37
|
-
"useInR": true,
|
|
38
|
-
"rOrderNum": 3
|
|
39
|
-
},
|
|
40
|
-
{
|
|
41
|
-
"allowsLists": true,
|
|
42
|
-
"datatype": "COLUMN_NAMES",
|
|
43
|
-
"rName": "sequence.column",
|
|
44
|
-
"name": [
|
|
45
|
-
"SequenceInputBy",
|
|
46
|
-
"UniqueId"
|
|
47
|
-
],
|
|
48
|
-
"useInR": true,
|
|
49
|
-
"rOrderNum": 50
|
|
50
|
-
}
|
|
51
|
-
]
|
|
52
|
-
}
|