teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,471 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.9
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class Pivot:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
partition_columns = None,
|
|
35
|
-
target_columns = None,
|
|
36
|
-
pivot_column = None,
|
|
37
|
-
pivot_keys = None,
|
|
38
|
-
numeric_pivotkey = False,
|
|
39
|
-
num_rows = None,
|
|
40
|
-
data_sequence_column = None,
|
|
41
|
-
data_partition_column = None,
|
|
42
|
-
data_order_column = None):
|
|
43
|
-
"""
|
|
44
|
-
DESCRIPTION:
|
|
45
|
-
The Pivot function pivots data that is stored in rows into columns.
|
|
46
|
-
It outputs a teradataml DataFrame whose columns are based on the
|
|
47
|
-
individual values from an input teradataml DataFrame column. The schema
|
|
48
|
-
of the output teradataml DataFrame depends on the arguments of the
|
|
49
|
-
function. The function handles missing or NULL values automatically.
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
PARAMETERS:
|
|
53
|
-
data:
|
|
54
|
-
Required Argument.
|
|
55
|
-
The teradataml DataFrame containing the data to be pivoted.
|
|
56
|
-
|
|
57
|
-
data_partition_column:
|
|
58
|
-
Required Argument.
|
|
59
|
-
Specifies Partition By columns for data.
|
|
60
|
-
Values to this argument can be provided as list, if multiple columns
|
|
61
|
-
are used for partition.
|
|
62
|
-
Types: str OR list of Strings (str)
|
|
63
|
-
|
|
64
|
-
data_order_column:
|
|
65
|
-
Optional Argument.
|
|
66
|
-
Specifies Order By columns for data.
|
|
67
|
-
Values to this argument can be provided as list, if multiple columns
|
|
68
|
-
are used for ordering.
|
|
69
|
-
Types: str OR list of Strings (str)
|
|
70
|
-
|
|
71
|
-
partition_columns:
|
|
72
|
-
Required Argument.
|
|
73
|
-
Specifies the same columns as the data_partition_column clause (in
|
|
74
|
-
any order).
|
|
75
|
-
Types: str OR list of Strings (str)
|
|
76
|
-
|
|
77
|
-
target_columns:
|
|
78
|
-
Required Argument.
|
|
79
|
-
Specifies the names of the input columns that contain the values
|
|
80
|
-
to pivot.
|
|
81
|
-
Types: str OR list of Strings (str)
|
|
82
|
-
|
|
83
|
-
pivot_column:
|
|
84
|
-
Optional Argument.
|
|
85
|
-
Specifies the name of the column that contains the pivot keys.
|
|
86
|
-
If the pivot_column argument contains numeric values, then the
|
|
87
|
-
function casts them to VARCHAR. If you omit the num_rows
|
|
88
|
-
argument, then you must specify this argument.
|
|
89
|
-
Note: If you specify the pivot_column argument, then you must
|
|
90
|
-
order the input data; otherwise, the output teradataml DataFrame
|
|
91
|
-
column content is non-deterministic.
|
|
92
|
-
Types: str
|
|
93
|
-
|
|
94
|
-
pivot_keys:
|
|
95
|
-
Optional Argument.
|
|
96
|
-
If you specify the pivot_column argument, then this argument
|
|
97
|
-
specifies the names of the pivot keys. Do not use this argument
|
|
98
|
-
without the pivot_column argument. If pivot_column contains a value
|
|
99
|
-
that is not specified as a pivot_keys, then the function ignores the
|
|
100
|
-
row containing that value. pivot_keys is required when pivot_column
|
|
101
|
-
is used.
|
|
102
|
-
Types: str OR list of Strings (str)
|
|
103
|
-
|
|
104
|
-
numeric_pivotkey:
|
|
105
|
-
Optional Argument.
|
|
106
|
-
Indicates whether the pivot key values are numeric values.
|
|
107
|
-
Default Value: False
|
|
108
|
-
Types: bool
|
|
109
|
-
|
|
110
|
-
num_rows:
|
|
111
|
-
Optional Argument.
|
|
112
|
-
Specifies the maximum number of rows in any partition. If a
|
|
113
|
-
partition has fewer than num_rows rows, then the function adds
|
|
114
|
-
NULL values; if a partition has more than num_rows rows, then
|
|
115
|
-
the function omits the extra rows. If you omit this argument,
|
|
116
|
-
then you must specify the pivot_column argument.
|
|
117
|
-
Note: With this argument, the data_order_column is optional. If
|
|
118
|
-
omitted, the order of values can vary. The function adds NULL
|
|
119
|
-
values at the end.
|
|
120
|
-
Types: int
|
|
121
|
-
|
|
122
|
-
data_sequence_column:
|
|
123
|
-
Optional Argument.
|
|
124
|
-
Specifies the list of column(s) that uniquely identifies each
|
|
125
|
-
row of the input argument "data". The argument is used to ensure
|
|
126
|
-
deterministic results for functions which produce results that
|
|
127
|
-
vary from run to run.
|
|
128
|
-
Types: str OR list of Strings (str)
|
|
129
|
-
|
|
130
|
-
RETURNS:
|
|
131
|
-
Instance of Pivot.
|
|
132
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
133
|
-
references, such as PivotObj.<attribute_name>.
|
|
134
|
-
Output teradataml DataFrame attribute name is:
|
|
135
|
-
result
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
RAISES:
|
|
139
|
-
TeradataMlException
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
EXAMPLES:
|
|
143
|
-
# Load example data.
|
|
144
|
-
load_example_data('Pivot', "pivot_input")
|
|
145
|
-
|
|
146
|
-
# Create teradataml DataFrame objects.
|
|
147
|
-
pivot_input = DataFrame.from_table("pivot_input")
|
|
148
|
-
|
|
149
|
-
# Example 1 - This example specifies the pivot_column argument and
|
|
150
|
-
# with the pivot_keys argument, which specifies the values from the
|
|
151
|
-
# pivot_column to use as pivot keys. Because pivot_keys does not
|
|
152
|
-
# include 'dewpoint', the function ignores rows that include 'dewpoint'.
|
|
153
|
-
pivot_out1 = Pivot(data=pivot_input,
|
|
154
|
-
data_partition_column=['sn','city','week'],
|
|
155
|
-
partition_columns=['sn','city','week'],
|
|
156
|
-
target_columns='value1',
|
|
157
|
-
pivot_column='attribute',
|
|
158
|
-
pivot_keys=['temp','pressure'],
|
|
159
|
-
numeric_pivotkey=False,
|
|
160
|
-
data_sequence_column='sn')
|
|
161
|
-
|
|
162
|
-
# Print the result.
|
|
163
|
-
print(pivot_out1)
|
|
164
|
-
|
|
165
|
-
# Example 2 - Specify the num.rows argument instead of specifying
|
|
166
|
-
# the pivot.column argument.
|
|
167
|
-
pivot_out2 = Pivot(data=pivot_input,
|
|
168
|
-
data_partition_column=['sn','city','week'],
|
|
169
|
-
partition_columns=['sn','city','week'],
|
|
170
|
-
target_columns='value1',
|
|
171
|
-
num_rows=3,
|
|
172
|
-
numeric_pivotkey=False)
|
|
173
|
-
|
|
174
|
-
# Print the result.
|
|
175
|
-
print(pivot_out2.result)
|
|
176
|
-
|
|
177
|
-
"""
|
|
178
|
-
|
|
179
|
-
# Start the timer to get the build time
|
|
180
|
-
_start_time = time.time()
|
|
181
|
-
|
|
182
|
-
self.data = data
|
|
183
|
-
self.partition_columns = partition_columns
|
|
184
|
-
self.target_columns = target_columns
|
|
185
|
-
self.pivot_column = pivot_column
|
|
186
|
-
self.pivot_keys = pivot_keys
|
|
187
|
-
self.numeric_pivotkey = numeric_pivotkey
|
|
188
|
-
self.num_rows = num_rows
|
|
189
|
-
self.data_sequence_column = data_sequence_column
|
|
190
|
-
self.data_partition_column = data_partition_column
|
|
191
|
-
self.data_order_column = data_order_column
|
|
192
|
-
|
|
193
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
194
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
195
|
-
self.__aed_utils = AedUtils()
|
|
196
|
-
|
|
197
|
-
# Create argument information matrix to do parameter checking
|
|
198
|
-
self.__arg_info_matrix = []
|
|
199
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
200
|
-
self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, False, (str,list)])
|
|
201
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
|
|
202
|
-
self.__arg_info_matrix.append(["partition_columns", self.partition_columns, False, (str,list)])
|
|
203
|
-
self.__arg_info_matrix.append(["target_columns", self.target_columns, False, (str,list)])
|
|
204
|
-
self.__arg_info_matrix.append(["pivot_column", self.pivot_column, True, (str)])
|
|
205
|
-
self.__arg_info_matrix.append(["pivot_keys", self.pivot_keys, True, (str,list)])
|
|
206
|
-
self.__arg_info_matrix.append(["numeric_pivotkey", self.numeric_pivotkey, True, (bool)])
|
|
207
|
-
self.__arg_info_matrix.append(["num_rows", self.num_rows, True, (int)])
|
|
208
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
209
|
-
|
|
210
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
211
|
-
# Perform the function validations
|
|
212
|
-
self.__validate()
|
|
213
|
-
# Generate the ML query
|
|
214
|
-
self.__form_tdml_query()
|
|
215
|
-
# Execute ML query
|
|
216
|
-
self.__execute()
|
|
217
|
-
# Get the prediction type
|
|
218
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
219
|
-
|
|
220
|
-
# End the timer to get the build time
|
|
221
|
-
_end_time = time.time()
|
|
222
|
-
|
|
223
|
-
# Calculate the build time
|
|
224
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
225
|
-
|
|
226
|
-
def __validate(self):
|
|
227
|
-
"""
|
|
228
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
229
|
-
arguments, input argument and table types. Also processes the
|
|
230
|
-
argument values.
|
|
231
|
-
"""
|
|
232
|
-
|
|
233
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
234
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
235
|
-
|
|
236
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
237
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
238
|
-
|
|
239
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
240
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
241
|
-
|
|
242
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
243
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
244
|
-
self.__awu._validate_input_columns_not_empty(self.partition_columns, "partition_columns")
|
|
245
|
-
self.__awu._validate_dataframe_has_argument_columns(self.partition_columns, "partition_columns", self.data, "data", False)
|
|
246
|
-
|
|
247
|
-
self.__awu._validate_input_columns_not_empty(self.target_columns, "target_columns")
|
|
248
|
-
self.__awu._validate_dataframe_has_argument_columns(self.target_columns, "target_columns", self.data, "data", False)
|
|
249
|
-
|
|
250
|
-
self.__awu._validate_input_columns_not_empty(self.pivot_column, "pivot_column")
|
|
251
|
-
self.__awu._validate_dataframe_has_argument_columns(self.pivot_column, "pivot_column", self.data, "data", False)
|
|
252
|
-
|
|
253
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
254
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
255
|
-
|
|
256
|
-
self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
|
|
257
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
|
|
258
|
-
|
|
259
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
260
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
def __form_tdml_query(self):
|
|
264
|
-
"""
|
|
265
|
-
Function to generate the analytical function queries. The function defines
|
|
266
|
-
variables and list of arguments required to form the query.
|
|
267
|
-
"""
|
|
268
|
-
|
|
269
|
-
# Output table arguments list
|
|
270
|
-
self.__func_output_args_sql_names = []
|
|
271
|
-
self.__func_output_args = []
|
|
272
|
-
|
|
273
|
-
# Model Cataloging related attributes.
|
|
274
|
-
self._sql_specific_attributes = {}
|
|
275
|
-
self._sql_formula_attribute_mapper = {}
|
|
276
|
-
self._target_column = None
|
|
277
|
-
self._algorithm_name = None
|
|
278
|
-
|
|
279
|
-
# Generate lists for rest of the function arguments
|
|
280
|
-
self.__func_other_arg_sql_names = []
|
|
281
|
-
self.__func_other_args = []
|
|
282
|
-
self.__func_other_arg_json_datatypes = []
|
|
283
|
-
|
|
284
|
-
self.__func_other_arg_sql_names.append("PartitionColumns")
|
|
285
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.partition_columns, "\""), "'"))
|
|
286
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
287
|
-
|
|
288
|
-
self.__func_other_arg_sql_names.append("TargetColumns")
|
|
289
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.target_columns, "\""), "'"))
|
|
290
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
291
|
-
|
|
292
|
-
if self.pivot_column is not None:
|
|
293
|
-
self.__func_other_arg_sql_names.append("PivotColumn")
|
|
294
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.pivot_column, "\""), "'"))
|
|
295
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
296
|
-
|
|
297
|
-
if self.num_rows is not None:
|
|
298
|
-
self.__func_other_arg_sql_names.append("NumberOfRows")
|
|
299
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.num_rows, "'"))
|
|
300
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
301
|
-
|
|
302
|
-
if self.pivot_keys is not None:
|
|
303
|
-
self.__func_other_arg_sql_names.append("PivotKeys")
|
|
304
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.pivot_keys, "'"))
|
|
305
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
306
|
-
|
|
307
|
-
if self.numeric_pivotkey is not None and self.numeric_pivotkey != False:
|
|
308
|
-
self.__func_other_arg_sql_names.append("NumericPivotKey")
|
|
309
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.numeric_pivotkey, "'"))
|
|
310
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
311
|
-
|
|
312
|
-
# Generate lists for rest of the function arguments
|
|
313
|
-
sequence_input_by_list = []
|
|
314
|
-
if self.data_sequence_column is not None:
|
|
315
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
316
|
-
|
|
317
|
-
if len(sequence_input_by_list) > 0:
|
|
318
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
319
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
320
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
321
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
322
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
# Declare empty lists to hold input table information.
|
|
326
|
-
self.__func_input_arg_sql_names = []
|
|
327
|
-
self.__func_input_table_view_query = []
|
|
328
|
-
self.__func_input_dataframe_type = []
|
|
329
|
-
self.__func_input_distribution = []
|
|
330
|
-
self.__func_input_partition_by_cols = []
|
|
331
|
-
self.__func_input_order_by_cols = []
|
|
332
|
-
|
|
333
|
-
# Process data
|
|
334
|
-
self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
|
|
335
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
336
|
-
self.__func_input_distribution.append("FACT")
|
|
337
|
-
self.__func_input_arg_sql_names.append("input")
|
|
338
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
339
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
340
|
-
self.__func_input_partition_by_cols.append(self.data_partition_column)
|
|
341
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
342
|
-
|
|
343
|
-
function_name = "Pivoting"
|
|
344
|
-
# Create instance to generate SQLMR.
|
|
345
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
346
|
-
self.__func_input_arg_sql_names,
|
|
347
|
-
self.__func_input_table_view_query,
|
|
348
|
-
self.__func_input_dataframe_type,
|
|
349
|
-
self.__func_input_distribution,
|
|
350
|
-
self.__func_input_partition_by_cols,
|
|
351
|
-
self.__func_input_order_by_cols,
|
|
352
|
-
self.__func_other_arg_sql_names,
|
|
353
|
-
self.__func_other_args,
|
|
354
|
-
self.__func_other_arg_json_datatypes,
|
|
355
|
-
self.__func_output_args_sql_names,
|
|
356
|
-
self.__func_output_args,
|
|
357
|
-
engine="ENGINE_ML")
|
|
358
|
-
# Invoke call to SQL-MR generation.
|
|
359
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
360
|
-
|
|
361
|
-
# Print SQL-MR query if requested to do so.
|
|
362
|
-
if display.print_sqlmr_query:
|
|
363
|
-
print(self.sqlmr_query)
|
|
364
|
-
|
|
365
|
-
# Set the algorithm name for Model Cataloging.
|
|
366
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
367
|
-
|
|
368
|
-
def __execute(self):
|
|
369
|
-
"""
|
|
370
|
-
Function to execute SQL-MR queries.
|
|
371
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
372
|
-
"""
|
|
373
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
374
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
375
|
-
try:
|
|
376
|
-
# Generate the output.
|
|
377
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
378
|
-
except Exception as emsg:
|
|
379
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
380
|
-
|
|
381
|
-
# Update output table data frames.
|
|
382
|
-
self._mlresults = []
|
|
383
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
384
|
-
self._mlresults.append(self.result)
|
|
385
|
-
|
|
386
|
-
def show_query(self):
|
|
387
|
-
"""
|
|
388
|
-
Function to return the underlying SQL query.
|
|
389
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
390
|
-
"""
|
|
391
|
-
return self.sqlmr_query
|
|
392
|
-
|
|
393
|
-
def get_prediction_type(self):
|
|
394
|
-
"""
|
|
395
|
-
Function to return the Prediction type of the algorithm.
|
|
396
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
397
|
-
as saved in the Model Catalog.
|
|
398
|
-
"""
|
|
399
|
-
return self._prediction_type
|
|
400
|
-
|
|
401
|
-
def get_target_column(self):
|
|
402
|
-
"""
|
|
403
|
-
Function to return the Target Column of the algorithm.
|
|
404
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
405
|
-
as saved in the Model Catalog.
|
|
406
|
-
"""
|
|
407
|
-
return self._target_column
|
|
408
|
-
|
|
409
|
-
def get_build_time(self):
|
|
410
|
-
"""
|
|
411
|
-
Function to return the build time of the algorithm in seconds.
|
|
412
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
413
|
-
as saved in the Model Catalog.
|
|
414
|
-
"""
|
|
415
|
-
return self._build_time
|
|
416
|
-
|
|
417
|
-
def _get_algorithm_name(self):
|
|
418
|
-
"""
|
|
419
|
-
Function to return the name of the algorithm.
|
|
420
|
-
"""
|
|
421
|
-
return self._algorithm_name
|
|
422
|
-
|
|
423
|
-
def _get_sql_specific_attributes(self):
|
|
424
|
-
"""
|
|
425
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
426
|
-
"""
|
|
427
|
-
return self._sql_specific_attributes
|
|
428
|
-
|
|
429
|
-
@classmethod
|
|
430
|
-
def _from_model_catalog(cls,
|
|
431
|
-
result = None,
|
|
432
|
-
**kwargs):
|
|
433
|
-
"""
|
|
434
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
435
|
-
"""
|
|
436
|
-
kwargs.pop("result", None)
|
|
437
|
-
|
|
438
|
-
# Model Cataloging related attributes.
|
|
439
|
-
target_column = kwargs.pop("__target_column", None)
|
|
440
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
441
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
442
|
-
build_time = kwargs.pop("__build_time", None)
|
|
443
|
-
|
|
444
|
-
# Let's create an object of this class.
|
|
445
|
-
obj = cls(**kwargs)
|
|
446
|
-
obj.result = result
|
|
447
|
-
|
|
448
|
-
# Initialize the sqlmr_query class attribute.
|
|
449
|
-
obj.sqlmr_query = None
|
|
450
|
-
|
|
451
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
452
|
-
obj._sql_specific_attributes = None
|
|
453
|
-
obj._target_column = target_column
|
|
454
|
-
obj._prediction_type = prediction_type
|
|
455
|
-
obj._algorithm_name = algorithm_name
|
|
456
|
-
obj._build_time = build_time
|
|
457
|
-
|
|
458
|
-
# Update output table data frames.
|
|
459
|
-
obj._mlresults = []
|
|
460
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
461
|
-
obj._mlresults.append(obj.result)
|
|
462
|
-
return obj
|
|
463
|
-
|
|
464
|
-
def __repr__(self):
|
|
465
|
-
"""
|
|
466
|
-
Returns the string representation for a Pivot class instance.
|
|
467
|
-
"""
|
|
468
|
-
repr_string="############ STDOUT Output ############"
|
|
469
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
470
|
-
return repr_string
|
|
471
|
-
|