teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,561 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Abhinav Sahu (abhinav.sahu@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.18
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.analytics.mle.DecisionForest import DecisionForest
|
|
30
|
-
|
|
31
|
-
class DecisionForestPredict:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
object = None,
|
|
35
|
-
newdata = None,
|
|
36
|
-
id_column = None,
|
|
37
|
-
detailed = False,
|
|
38
|
-
terms = None,
|
|
39
|
-
output_response_probdist = False,
|
|
40
|
-
output_responses = None,
|
|
41
|
-
newdata_sequence_column = None,
|
|
42
|
-
object_sequence_column = None,
|
|
43
|
-
newdata_order_column = None,
|
|
44
|
-
object_order_column = None):
|
|
45
|
-
"""
|
|
46
|
-
DESCRIPTION:
|
|
47
|
-
The DecisionForestPredict function uses the model generated by the
|
|
48
|
-
DecisionForest to generate predictions on a response variable
|
|
49
|
-
for a test set of data. The model can be stored in either a
|
|
50
|
-
teradataml DataFrame or a DecisionForest object.
|
|
51
|
-
|
|
52
|
-
Note: This function is available only when teradataml is connected to
|
|
53
|
-
Vantage 1.1 or later versions.
|
|
54
|
-
|
|
55
|
-
PARAMETERS:
|
|
56
|
-
object:
|
|
57
|
-
Required Argument.
|
|
58
|
-
Specifies the teradataml DataFrame containing the model data
|
|
59
|
-
or instance of DecisionForest, which contains the model.
|
|
60
|
-
|
|
61
|
-
object_order_column:
|
|
62
|
-
Optional Argument.
|
|
63
|
-
Specifies Order By columns for object.
|
|
64
|
-
Values to this argument can be provided as a list, if multiple columns
|
|
65
|
-
are used for ordering.
|
|
66
|
-
Types: str OR list of Strings (str)
|
|
67
|
-
|
|
68
|
-
newdata:
|
|
69
|
-
Required Argument.
|
|
70
|
-
Specifies the teradataml DataFrame containing the input test data.
|
|
71
|
-
|
|
72
|
-
newdata_order_column:
|
|
73
|
-
Optional Argument.
|
|
74
|
-
Specifies Order By columns for newdata.
|
|
75
|
-
Values to this argument can be provided as a list, if multiple
|
|
76
|
-
columns are used for ordering.
|
|
77
|
-
Types: str OR list of Strings (str)
|
|
78
|
-
|
|
79
|
-
id_column:
|
|
80
|
-
Required Argument.
|
|
81
|
-
Specifies a column containing a unique identifier for each test point
|
|
82
|
-
in the test set.
|
|
83
|
-
Types: str
|
|
84
|
-
|
|
85
|
-
detailed:
|
|
86
|
-
Optional Argument.
|
|
87
|
-
Specifies whether to output detailed information about the forest
|
|
88
|
-
trees; that is, the decision tree and the specific tree information,
|
|
89
|
-
including task index and tree index for each tree.
|
|
90
|
-
Default Value: False
|
|
91
|
-
Types: bool
|
|
92
|
-
|
|
93
|
-
terms:
|
|
94
|
-
Optional Argument.
|
|
95
|
-
Specifies the names of the input columns to copy to the output
|
|
96
|
-
teradataml DataFrame.
|
|
97
|
-
Types: str OR list of Strings (str)
|
|
98
|
-
|
|
99
|
-
output_response_probdist:
|
|
100
|
-
Optional Argument.
|
|
101
|
-
Specifies whether to output probabilities.
|
|
102
|
-
Note: "output_response_probdist" argument support is only available
|
|
103
|
-
when teradataml is connected to Vantage 1.1.1 or later.
|
|
104
|
-
Default Value: False
|
|
105
|
-
Types: bool
|
|
106
|
-
|
|
107
|
-
output_responses:
|
|
108
|
-
Optional Argument.
|
|
109
|
-
Specifies all responses in input table.
|
|
110
|
-
This argument requires the output_response_probdist argument to be set to True.
|
|
111
|
-
Note: "output_responses" argument support is only available when
|
|
112
|
-
teradataml is connected to Vantage 1.1.1 or later.
|
|
113
|
-
Types: str OR list of Strings (str)
|
|
114
|
-
|
|
115
|
-
newdata_sequence_column:
|
|
116
|
-
Optional Argument.
|
|
117
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
118
|
-
the input argument "newdata". The argument is used to ensure
|
|
119
|
-
deterministic results for functions which produce results that vary
|
|
120
|
-
from run to run.
|
|
121
|
-
Types: str OR list of Strings (str)
|
|
122
|
-
|
|
123
|
-
object_sequence_column:
|
|
124
|
-
Optional Argument.
|
|
125
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
126
|
-
the input argument "object". The argument is used to ensure
|
|
127
|
-
deterministic results for functions which produce results that vary
|
|
128
|
-
from run to run.
|
|
129
|
-
Types: str OR list of Strings (str)
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
RETURNS:
|
|
133
|
-
Instance of DecisionForestPredict.
|
|
134
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
135
|
-
references, such as DecisionForestPredictObj.<attribute_name>.
|
|
136
|
-
Output teradataml DataFrame attribute name is:
|
|
137
|
-
result
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
RAISES:
|
|
141
|
-
TeradataMlException
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
EXAMPLES:
|
|
145
|
-
# Load the data to run the example
|
|
146
|
-
load_example_data("decisionforestpredict", ["housing_train","housing_test"])
|
|
147
|
-
|
|
148
|
-
# Create teradataml DataFrame objects.
|
|
149
|
-
housing_test = DataFrame.from_table("housing_test")
|
|
150
|
-
housing_train = DataFrame.from_table("housing_train")
|
|
151
|
-
|
|
152
|
-
# Example 1 - This example uses home sales data to create a
|
|
153
|
-
# classifcation tree that predicts home style, which can be input
|
|
154
|
-
# to the DecisionForestPredict.
|
|
155
|
-
formula = "homestyle ~ driveway + recroom + fullbase + gashw + airco + prefarea + price + lotsize + bedrooms + bathrms + stories + garagepl"
|
|
156
|
-
rft_model = DecisionForest(data=housing_train,
|
|
157
|
-
formula = formula,
|
|
158
|
-
tree_type="classification",
|
|
159
|
-
ntree=50,
|
|
160
|
-
tree_size=100,
|
|
161
|
-
nodesize=1,
|
|
162
|
-
variance=0.0,
|
|
163
|
-
max_depth=12,
|
|
164
|
-
maxnum_categorical=20,
|
|
165
|
-
mtry=3,
|
|
166
|
-
mtry_seed=100,
|
|
167
|
-
seed=100
|
|
168
|
-
)
|
|
169
|
-
|
|
170
|
-
# Use the rft_model, the model created by DecisionForest to generate
|
|
171
|
-
# predictions on a response variable for a test set of data, housing_test
|
|
172
|
-
# which has 54 observations of 14 variables.
|
|
173
|
-
decision_forest_predict_out = DecisionForestPredict(object = rft_model,
|
|
174
|
-
newdata = housing_test,
|
|
175
|
-
id_column = "sn",
|
|
176
|
-
detailed = False,
|
|
177
|
-
terms = ["homestyle"],
|
|
178
|
-
newdata_sequence_column='sn',
|
|
179
|
-
object_sequence_column='worker_ip',
|
|
180
|
-
newdata_order_column=['sn', 'price'],
|
|
181
|
-
object_order_column=['worker_ip', 'task_index']
|
|
182
|
-
)
|
|
183
|
-
|
|
184
|
-
# Print the results
|
|
185
|
-
print(decision_forest_predict_out.result)
|
|
186
|
-
|
|
187
|
-
"""
|
|
188
|
-
|
|
189
|
-
# Start the timer to get the build time
|
|
190
|
-
_start_time = time.time()
|
|
191
|
-
|
|
192
|
-
self.object = object
|
|
193
|
-
self.newdata = newdata
|
|
194
|
-
self.id_column = id_column
|
|
195
|
-
self.detailed = detailed
|
|
196
|
-
self.terms = terms
|
|
197
|
-
self.output_response_probdist = output_response_probdist
|
|
198
|
-
self.output_responses = output_responses
|
|
199
|
-
self.newdata_sequence_column = newdata_sequence_column
|
|
200
|
-
self.object_sequence_column = object_sequence_column
|
|
201
|
-
self.newdata_order_column = newdata_order_column
|
|
202
|
-
self.object_order_column = object_order_column
|
|
203
|
-
|
|
204
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
205
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
206
|
-
self.__aed_utils = AedUtils()
|
|
207
|
-
|
|
208
|
-
# Create argument information matrix to do parameter checking
|
|
209
|
-
self.__arg_info_matrix = []
|
|
210
|
-
self.__arg_info_matrix.append(["object", self.object, False, (DataFrame)])
|
|
211
|
-
self.__arg_info_matrix.append(["object_order_column", self.object_order_column, True, (str,list)])
|
|
212
|
-
self.__arg_info_matrix.append(["newdata", self.newdata, False, (DataFrame)])
|
|
213
|
-
self.__arg_info_matrix.append(["newdata_order_column", self.newdata_order_column, True, (str,list)])
|
|
214
|
-
self.__arg_info_matrix.append(["id_column", self.id_column, False, (str)])
|
|
215
|
-
self.__arg_info_matrix.append(["detailed", self.detailed, True, (bool)])
|
|
216
|
-
self.__arg_info_matrix.append(["terms", self.terms, True, (str,list)])
|
|
217
|
-
self.__arg_info_matrix.append(["output_response_probdist", self.output_response_probdist, True, (bool)])
|
|
218
|
-
self.__arg_info_matrix.append(["output_responses", self.output_responses, True, (str,list)])
|
|
219
|
-
self.__arg_info_matrix.append(["newdata_sequence_column", self.newdata_sequence_column, True, (str,list)])
|
|
220
|
-
self.__arg_info_matrix.append(["object_sequence_column", self.object_sequence_column, True, (str,list)])
|
|
221
|
-
|
|
222
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
223
|
-
# Perform the function validations
|
|
224
|
-
self.__validate()
|
|
225
|
-
# Generate the ML query
|
|
226
|
-
self.__form_tdml_query()
|
|
227
|
-
# Process output table schema
|
|
228
|
-
self.__process_output_column_info()
|
|
229
|
-
# Execute ML query
|
|
230
|
-
self.__execute()
|
|
231
|
-
# Get the prediction type
|
|
232
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
233
|
-
|
|
234
|
-
# End the timer to get the build time
|
|
235
|
-
_end_time = time.time()
|
|
236
|
-
|
|
237
|
-
# Calculate the build time
|
|
238
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
239
|
-
|
|
240
|
-
def __validate(self):
|
|
241
|
-
"""
|
|
242
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
243
|
-
arguments, input argument and table types. Also processes the
|
|
244
|
-
argument values.
|
|
245
|
-
"""
|
|
246
|
-
if isinstance(self.object, DecisionForest):
|
|
247
|
-
self.object = self.object._mlresults[0]
|
|
248
|
-
|
|
249
|
-
# To use output_responses, output_response_probdist must be set to True
|
|
250
|
-
if self.output_response_probdist is False and self.output_responses is not None:
|
|
251
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
|
|
252
|
-
'output_response_probdist=True',
|
|
253
|
-
'output_responses'),
|
|
254
|
-
MessageCodes.DEPENDENT_ARG_MISSING)
|
|
255
|
-
|
|
256
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
257
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
258
|
-
|
|
259
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
260
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
261
|
-
|
|
262
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
263
|
-
self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
|
|
264
|
-
self.__awu._validate_input_table_datatype(self.object, "object", DecisionForest)
|
|
265
|
-
|
|
266
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
267
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
268
|
-
self.__awu._validate_input_columns_not_empty(self.id_column, "id_column")
|
|
269
|
-
self.__awu._validate_dataframe_has_argument_columns(self.id_column, "id_column", self.newdata, "newdata", False)
|
|
270
|
-
|
|
271
|
-
self.__awu._validate_input_columns_not_empty(self.terms, "terms")
|
|
272
|
-
self.__awu._validate_dataframe_has_argument_columns(self.terms, "terms", self.newdata, "newdata", False)
|
|
273
|
-
|
|
274
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_sequence_column, "newdata_sequence_column")
|
|
275
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_sequence_column, "newdata_sequence_column", self.newdata, "newdata", False)
|
|
276
|
-
|
|
277
|
-
self.__awu._validate_input_columns_not_empty(self.object_sequence_column, "object_sequence_column")
|
|
278
|
-
self.__awu._validate_dataframe_has_argument_columns(self.object_sequence_column, "object_sequence_column", self.object, "object", False)
|
|
279
|
-
|
|
280
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_order_column, "newdata_order_column")
|
|
281
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_order_column, "newdata_order_column", self.newdata, "newdata", False)
|
|
282
|
-
|
|
283
|
-
self.__awu._validate_input_columns_not_empty(self.object_order_column, "object_order_column")
|
|
284
|
-
self.__awu._validate_dataframe_has_argument_columns(self.object_order_column, "object_order_column", self.object, "object", False)
|
|
285
|
-
|
|
286
|
-
self.__awu._validate_input_columns_not_empty(self.output_responses, "output_responses")
|
|
287
|
-
|
|
288
|
-
def __form_tdml_query(self):
|
|
289
|
-
"""
|
|
290
|
-
Function to generate the analytical function queries. The function defines
|
|
291
|
-
variables and list of arguments required to form the query.
|
|
292
|
-
"""
|
|
293
|
-
|
|
294
|
-
# Output table arguments list
|
|
295
|
-
self.__func_output_args_sql_names = []
|
|
296
|
-
self.__func_output_args = []
|
|
297
|
-
|
|
298
|
-
# Model Cataloging related attributes.
|
|
299
|
-
self._sql_specific_attributes = {}
|
|
300
|
-
self._sql_formula_attribute_mapper = {}
|
|
301
|
-
self._target_column = None
|
|
302
|
-
self._algorithm_name = None
|
|
303
|
-
|
|
304
|
-
# Generate lists for rest of the function arguments
|
|
305
|
-
self.__func_other_arg_sql_names = []
|
|
306
|
-
self.__func_other_args = []
|
|
307
|
-
self.__func_other_arg_json_datatypes = []
|
|
308
|
-
|
|
309
|
-
self.__func_other_arg_sql_names.append("IdColumn")
|
|
310
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.id_column, "\""), "'"))
|
|
311
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
312
|
-
|
|
313
|
-
if self.terms is not None:
|
|
314
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
315
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.terms, "\""), "'"))
|
|
316
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
317
|
-
|
|
318
|
-
if self.detailed is not None and self.detailed != False:
|
|
319
|
-
self.__func_other_arg_sql_names.append("Detailed")
|
|
320
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.detailed, "'"))
|
|
321
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
322
|
-
|
|
323
|
-
if self.output_response_probdist is not None and self.output_response_probdist != False:
|
|
324
|
-
self.__func_other_arg_sql_names.append("OutputProb")
|
|
325
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_response_probdist, "'"))
|
|
326
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
327
|
-
|
|
328
|
-
if self.output_responses is not None:
|
|
329
|
-
self.__func_other_arg_sql_names.append("Responses")
|
|
330
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_responses, "'"))
|
|
331
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
332
|
-
|
|
333
|
-
# Generate lists for rest of the function arguments
|
|
334
|
-
sequence_input_by_list = []
|
|
335
|
-
if self.newdata_sequence_column is not None:
|
|
336
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.newdata_sequence_column, ""))
|
|
337
|
-
|
|
338
|
-
if self.object_sequence_column is not None:
|
|
339
|
-
sequence_input_by_list.append("ModelTable:" + UtilFuncs._teradata_collapse_arglist(self.object_sequence_column, ""))
|
|
340
|
-
|
|
341
|
-
if len(sequence_input_by_list) > 0:
|
|
342
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
343
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
344
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
345
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
346
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
# Declare empty lists to hold input table information.
|
|
350
|
-
self.__func_input_arg_sql_names = []
|
|
351
|
-
self.__func_input_table_view_query = []
|
|
352
|
-
self.__func_input_dataframe_type = []
|
|
353
|
-
self.__func_input_distribution = []
|
|
354
|
-
self.__func_input_partition_by_cols = []
|
|
355
|
-
self.__func_input_order_by_cols = []
|
|
356
|
-
|
|
357
|
-
# Process newdata
|
|
358
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.newdata)
|
|
359
|
-
self.__func_input_distribution.append("FACT")
|
|
360
|
-
self.__func_input_arg_sql_names.append("input")
|
|
361
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
362
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
363
|
-
self.__func_input_partition_by_cols.append("ANY")
|
|
364
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.newdata_order_column, "\""))
|
|
365
|
-
|
|
366
|
-
# Process object
|
|
367
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.object)
|
|
368
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
369
|
-
self.__func_input_arg_sql_names.append("ModelTable")
|
|
370
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
371
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
372
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
373
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.object_order_column, "\""))
|
|
374
|
-
|
|
375
|
-
function_name = "DecisionForestPredict"
|
|
376
|
-
# Create instance to generate SQLMR.
|
|
377
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
378
|
-
self.__func_input_arg_sql_names,
|
|
379
|
-
self.__func_input_table_view_query,
|
|
380
|
-
self.__func_input_dataframe_type,
|
|
381
|
-
self.__func_input_distribution,
|
|
382
|
-
self.__func_input_partition_by_cols,
|
|
383
|
-
self.__func_input_order_by_cols,
|
|
384
|
-
self.__func_other_arg_sql_names,
|
|
385
|
-
self.__func_other_args,
|
|
386
|
-
self.__func_other_arg_json_datatypes,
|
|
387
|
-
self.__func_output_args_sql_names,
|
|
388
|
-
self.__func_output_args,
|
|
389
|
-
engine="ENGINE_ML")
|
|
390
|
-
# Invoke call to SQL-MR generation.
|
|
391
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
392
|
-
|
|
393
|
-
# Print SQL-MR query if requested to do so.
|
|
394
|
-
if display.print_sqlmr_query:
|
|
395
|
-
print(self.sqlmr_query)
|
|
396
|
-
|
|
397
|
-
# Set the algorithm name for Model Cataloging.
|
|
398
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
399
|
-
|
|
400
|
-
def __execute(self):
|
|
401
|
-
"""
|
|
402
|
-
Function to generate AED nodes for output tables.
|
|
403
|
-
This makes a call aed_ml_query() and then output table dataframes are created.
|
|
404
|
-
"""
|
|
405
|
-
# Create a list of input node ids contributing to a query.
|
|
406
|
-
self.__input_nodeids = []
|
|
407
|
-
self.__input_nodeids.append(self.newdata._nodeid)
|
|
408
|
-
self.__input_nodeids.append(self.object._nodeid)
|
|
409
|
-
|
|
410
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
411
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
412
|
-
self.__func_output_args.insert(0, sqlmr_stdout_temp_tablename)
|
|
413
|
-
try:
|
|
414
|
-
# Call aed_ml_query and generate AED nodes.
|
|
415
|
-
node_id_list = self.__aed_utils._aed_ml_query(self.__input_nodeids, self.sqlmr_query, self.__func_output_args, "DecisionForestPredict", self.__aqg_obj._multi_query_input_nodes)
|
|
416
|
-
except Exception as emsg:
|
|
417
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.AED_EXEC_FAILED, str(emsg)), MessageCodes.AED_EXEC_FAILED)
|
|
418
|
-
|
|
419
|
-
|
|
420
|
-
# Update output table data frames.
|
|
421
|
-
self._mlresults = []
|
|
422
|
-
self.result = self.__awu._create_data_set_object(df_input=node_id_list[0], metaexpr=UtilFuncs._get_metaexpr_using_columns(node_id_list[0], self.__stdout_column_info))
|
|
423
|
-
self._mlresults.append(self.result)
|
|
424
|
-
|
|
425
|
-
def __process_output_column_info(self):
|
|
426
|
-
"""
|
|
427
|
-
Function to process the output schema for all the ouptut tables.
|
|
428
|
-
This function generates list of column names and column types
|
|
429
|
-
for each generated output tables, which can be used to create metaexpr.
|
|
430
|
-
"""
|
|
431
|
-
# Collecting STDOUT output column information.
|
|
432
|
-
stdout_column_info_name = []
|
|
433
|
-
stdout_column_info_type = []
|
|
434
|
-
if self.terms is not None:
|
|
435
|
-
for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.newdata, parameter=self.terms, columns=None):
|
|
436
|
-
stdout_column_info_name.append(column_name)
|
|
437
|
-
stdout_column_info_type.append(column_type)
|
|
438
|
-
|
|
439
|
-
for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.newdata, parameter=self.id_column, columns=None):
|
|
440
|
-
stdout_column_info_name.append(column_name)
|
|
441
|
-
stdout_column_info_type.append(column_type)
|
|
442
|
-
|
|
443
|
-
stdout_column_info_name.append("prediction")
|
|
444
|
-
stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("varchar"))
|
|
445
|
-
|
|
446
|
-
if not self.output_response_probdist:
|
|
447
|
-
stdout_column_info_name.append("confidence_lower")
|
|
448
|
-
stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
|
|
449
|
-
stdout_column_info_name.append("confidence_upper")
|
|
450
|
-
stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
if self.output_response_probdist and self.output_responses is None:
|
|
454
|
-
stdout_column_info_name.append("prob")
|
|
455
|
-
stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
|
|
456
|
-
|
|
457
|
-
|
|
458
|
-
if self.output_response_probdist and self.output_responses is not None:
|
|
459
|
-
if isinstance(self.output_responses, list):
|
|
460
|
-
argValuesList = self.output_responses
|
|
461
|
-
else:
|
|
462
|
-
argValuesList = [self.output_responses]
|
|
463
|
-
if self.output_responses is not None:
|
|
464
|
-
for column_name in argValuesList:
|
|
465
|
-
stdout_column_info_name.append("prob_" + column_name)
|
|
466
|
-
stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
|
|
467
|
-
|
|
468
|
-
|
|
469
|
-
if self.detailed:
|
|
470
|
-
stdout_column_info_name.append("tree_num")
|
|
471
|
-
stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("varchar"))
|
|
472
|
-
|
|
473
|
-
|
|
474
|
-
self.__stdout_column_info = zip(stdout_column_info_name, stdout_column_info_type)
|
|
475
|
-
|
|
476
|
-
def show_query(self):
|
|
477
|
-
"""
|
|
478
|
-
Function to return the underlying SQL query.
|
|
479
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
480
|
-
"""
|
|
481
|
-
return self.sqlmr_query
|
|
482
|
-
|
|
483
|
-
def get_prediction_type(self):
|
|
484
|
-
"""
|
|
485
|
-
Function to return the Prediction type of the algorithm.
|
|
486
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
487
|
-
as saved in the Model Catalog.
|
|
488
|
-
"""
|
|
489
|
-
return self._prediction_type
|
|
490
|
-
|
|
491
|
-
def get_target_column(self):
|
|
492
|
-
"""
|
|
493
|
-
Function to return the Target Column of the algorithm.
|
|
494
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
495
|
-
as saved in the Model Catalog.
|
|
496
|
-
"""
|
|
497
|
-
return self._target_column
|
|
498
|
-
|
|
499
|
-
def get_build_time(self):
|
|
500
|
-
"""
|
|
501
|
-
Function to return the build time of the algorithm in seconds.
|
|
502
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
503
|
-
as saved in the Model Catalog.
|
|
504
|
-
"""
|
|
505
|
-
return self._build_time
|
|
506
|
-
|
|
507
|
-
def _get_algorithm_name(self):
|
|
508
|
-
"""
|
|
509
|
-
Function to return the name of the algorithm.
|
|
510
|
-
"""
|
|
511
|
-
return self._algorithm_name
|
|
512
|
-
|
|
513
|
-
def _get_sql_specific_attributes(self):
|
|
514
|
-
"""
|
|
515
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
516
|
-
"""
|
|
517
|
-
return self._sql_specific_attributes
|
|
518
|
-
|
|
519
|
-
@classmethod
|
|
520
|
-
def _from_model_catalog(cls,
|
|
521
|
-
result = None,
|
|
522
|
-
**kwargs):
|
|
523
|
-
"""
|
|
524
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
525
|
-
"""
|
|
526
|
-
kwargs.pop("result", None)
|
|
527
|
-
|
|
528
|
-
# Model Cataloging related attributes.
|
|
529
|
-
target_column = kwargs.pop("__target_column", None)
|
|
530
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
531
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
532
|
-
build_time = kwargs.pop("__build_time", None)
|
|
533
|
-
|
|
534
|
-
# Let's create an object of this class.
|
|
535
|
-
obj = cls(**kwargs)
|
|
536
|
-
obj.result = result
|
|
537
|
-
|
|
538
|
-
# Initialize the sqlmr_query class attribute.
|
|
539
|
-
obj.sqlmr_query = None
|
|
540
|
-
|
|
541
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
542
|
-
obj._sql_specific_attributes = None
|
|
543
|
-
obj._target_column = target_column
|
|
544
|
-
obj._prediction_type = prediction_type
|
|
545
|
-
obj._algorithm_name = algorithm_name
|
|
546
|
-
obj._build_time = build_time
|
|
547
|
-
|
|
548
|
-
# Update output table data frames.
|
|
549
|
-
obj._mlresults = []
|
|
550
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
551
|
-
obj._mlresults.append(obj.result)
|
|
552
|
-
return obj
|
|
553
|
-
|
|
554
|
-
def __repr__(self):
|
|
555
|
-
"""
|
|
556
|
-
Returns the string representation for a DecisionForestPredict class instance.
|
|
557
|
-
"""
|
|
558
|
-
repr_string="############ STDOUT Output ############"
|
|
559
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
560
|
-
return repr_string
|
|
561
|
-
|