teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,519 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Rohit Agrawal (rohit.agrawal@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.7
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.analytics.mle.GLML1L2 import GLML1L2
|
|
30
|
-
|
|
31
|
-
class GLML1L2Predict:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
modeldata = None,
|
|
35
|
-
newdata = None,
|
|
36
|
-
accumulate = None,
|
|
37
|
-
output_prob = False,
|
|
38
|
-
output_responses = None,
|
|
39
|
-
newdata_sequence_column = None,
|
|
40
|
-
modeldata_sequence_column = None,
|
|
41
|
-
newdata_order_column = None,
|
|
42
|
-
modeldata_order_column = None):
|
|
43
|
-
"""
|
|
44
|
-
DESCRIPTION:
|
|
45
|
-
The GLML1L2Predict function uses the model output by the GLML1L2
|
|
46
|
-
function to perform generalized linear model prediction on new input
|
|
47
|
-
data.
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
PARAMETERS:
|
|
51
|
-
modeldata:
|
|
52
|
-
Required Argument.
|
|
53
|
-
Specifies the teradataml DataFrame which contains the model
|
|
54
|
-
data generated by the GLML1L2 function or instance of GLML1L2.
|
|
55
|
-
|
|
56
|
-
modeldata_order_column:
|
|
57
|
-
Optional Argument.
|
|
58
|
-
Specifies Order By columns for modeldata.
|
|
59
|
-
Values to this argument can be provided as a list, if multiple
|
|
60
|
-
columns are used for ordering.
|
|
61
|
-
Types: str OR list of Strings (str)
|
|
62
|
-
|
|
63
|
-
newdata:
|
|
64
|
-
Required Argument.
|
|
65
|
-
Specifies the teradataml DataFrame containing the test data set.
|
|
66
|
-
|
|
67
|
-
newdata_order_column:
|
|
68
|
-
Optional Argument.
|
|
69
|
-
Specifies Order By columns for newdata.
|
|
70
|
-
Values to this argument can be provided as a list, if multiple
|
|
71
|
-
columns are used for ordering.
|
|
72
|
-
Types: str OR list of Strings (str)
|
|
73
|
-
|
|
74
|
-
accumulate:
|
|
75
|
-
Optional Argument.
|
|
76
|
-
Specifies the names of input teradataml DataFrame columns to copy to
|
|
77
|
-
the output.
|
|
78
|
-
Types: str OR list of Strings (str)
|
|
79
|
-
|
|
80
|
-
output_prob:
|
|
81
|
-
Optional Argument.
|
|
82
|
-
Specifies whether to output probabilities or not.
|
|
83
|
-
Note: "output_prob" argument support is only available
|
|
84
|
-
when teradataml is connected to Vantage 1.1 or later.
|
|
85
|
-
Default Value: False
|
|
86
|
-
Types: bool
|
|
87
|
-
|
|
88
|
-
output_responses:
|
|
89
|
-
Optional Argument.
|
|
90
|
-
Specifies responses in the input teradataml DataFrame.
|
|
91
|
-
output_prob must be set to True in order to use this argument.
|
|
92
|
-
Note: "output_responses" argument support is only available
|
|
93
|
-
when teradataml is connected to Vantage 1.1.1 or later.
|
|
94
|
-
Permitted Values: 0, 1
|
|
95
|
-
Types: str OR list of strs
|
|
96
|
-
|
|
97
|
-
newdata_sequence_column:
|
|
98
|
-
Optional Argument.
|
|
99
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
100
|
-
the input argument "newdata". The argument is used to ensure
|
|
101
|
-
deterministic results for functions which produce results that vary
|
|
102
|
-
from run to run.
|
|
103
|
-
Types: str OR list of Strings (str)
|
|
104
|
-
|
|
105
|
-
modeldata_sequence_column:
|
|
106
|
-
Optional Argument.
|
|
107
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
108
|
-
the input argument "modeldata". The argument is used to ensure
|
|
109
|
-
deterministic results for functions which produce results that vary
|
|
110
|
-
from run to run.
|
|
111
|
-
Types: str OR list of Strings (str)
|
|
112
|
-
|
|
113
|
-
RETURNS:
|
|
114
|
-
Instance of GLML1L2Predict.
|
|
115
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
116
|
-
references, such as GLML1L2PredictObj.<attribute_name>.
|
|
117
|
-
Output teradataml DataFrame attribute name is:
|
|
118
|
-
result
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
RAISES:
|
|
122
|
-
TeradataMlException
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
EXAMPLES:
|
|
126
|
-
# Load the data to run the example.
|
|
127
|
-
load_example_data("GLMPredict", ["admissions_test","admissions_train","housing_test","housing_train"])
|
|
128
|
-
|
|
129
|
-
# Create teradataml DataFrame objects.
|
|
130
|
-
admissions_test = DataFrame.from_table("admissions_test")
|
|
131
|
-
admissions_train = DataFrame.from_table("admissions_train")
|
|
132
|
-
housing_test = DataFrame.from_table("housing_test")
|
|
133
|
-
housing_train = DataFrame.from_table("housing_train")
|
|
134
|
-
|
|
135
|
-
# Example 1 -
|
|
136
|
-
# Generate a model based on train data "admissions_train" & Ridge Regression, Family ('BINOMIAL').
|
|
137
|
-
glml1l2_out = GLML1L2(data=admissions_train,
|
|
138
|
-
formula = "admitted ~ masters + gpa + stats + programming",
|
|
139
|
-
alpha=0.0,
|
|
140
|
-
lambda1=0.02,
|
|
141
|
-
family='Binomial',
|
|
142
|
-
randomization=True
|
|
143
|
-
)
|
|
144
|
-
|
|
145
|
-
# Use the generated model to predict the 'admissions' on the test data
|
|
146
|
-
# admissions_test by using generated model by GLM.
|
|
147
|
-
glml1l2_predict_out1 = GLML1L2Predict(modeldata = glml1l2_out,
|
|
148
|
-
newdata = admissions_test,
|
|
149
|
-
accumulate = "id",
|
|
150
|
-
output_prob=True
|
|
151
|
-
)
|
|
152
|
-
|
|
153
|
-
# Print the result DataFrame.
|
|
154
|
-
print(glml1l2_predict_out1.result)
|
|
155
|
-
|
|
156
|
-
# Example 2 - Generate a model based on train data "housing_train" & LASSO, Family ('GAUSSIAN').
|
|
157
|
-
glml1l2_out_hs = GLML1L2(data=housing_train ,
|
|
158
|
-
formula = "price ~ lotsize + bedrooms + bathrms + stories + garagepl + driveway + recroom + fullbase + gashw + airco + prefarea + homestyle",
|
|
159
|
-
alpha=1.0,
|
|
160
|
-
lambda1=0.02,
|
|
161
|
-
family='Gaussian'
|
|
162
|
-
)
|
|
163
|
-
|
|
164
|
-
# Use the generated model to predict the 'price' on the test data
|
|
165
|
-
# housing_test by using generated model by GLM.
|
|
166
|
-
glml1l2_predict_out2 = GLML1L2Predict(modeldata = glml1l2_out_hs.output,
|
|
167
|
-
newdata = housing_test,
|
|
168
|
-
accumulate = "sn"
|
|
169
|
-
)
|
|
170
|
-
|
|
171
|
-
# Print the result.
|
|
172
|
-
print(glml1l2_predict_out2)
|
|
173
|
-
|
|
174
|
-
"""
|
|
175
|
-
|
|
176
|
-
# Start the timer to get the build time
|
|
177
|
-
_start_time = time.time()
|
|
178
|
-
|
|
179
|
-
self.modeldata = modeldata
|
|
180
|
-
self.newdata = newdata
|
|
181
|
-
self.accumulate = accumulate
|
|
182
|
-
self.output_prob = output_prob
|
|
183
|
-
self.output_responses = output_responses
|
|
184
|
-
self.newdata_sequence_column = newdata_sequence_column
|
|
185
|
-
self.modeldata_sequence_column = modeldata_sequence_column
|
|
186
|
-
self.newdata_order_column = newdata_order_column
|
|
187
|
-
self.modeldata_order_column = modeldata_order_column
|
|
188
|
-
|
|
189
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
190
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
191
|
-
self.__aed_utils = AedUtils()
|
|
192
|
-
|
|
193
|
-
# Create argument information matrix to do parameter checking
|
|
194
|
-
self.__arg_info_matrix = []
|
|
195
|
-
self.__arg_info_matrix.append(["modeldata", self.modeldata, False, (DataFrame)])
|
|
196
|
-
self.__arg_info_matrix.append(["modeldata_order_column", self.modeldata_order_column, True, (str,list)])
|
|
197
|
-
self.__arg_info_matrix.append(["newdata", self.newdata, False, (DataFrame)])
|
|
198
|
-
self.__arg_info_matrix.append(["newdata_order_column", self.newdata_order_column, True, (str,list)])
|
|
199
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
|
|
200
|
-
self.__arg_info_matrix.append(["output_prob", self.output_prob, True, (bool)])
|
|
201
|
-
self.__arg_info_matrix.append(["output_responses", self.output_responses, True, (str,list)])
|
|
202
|
-
self.__arg_info_matrix.append(["newdata_sequence_column", self.newdata_sequence_column, True, (str,list)])
|
|
203
|
-
self.__arg_info_matrix.append(["modeldata_sequence_column", self.modeldata_sequence_column, True, (str,list)])
|
|
204
|
-
|
|
205
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
206
|
-
# Perform the function validations
|
|
207
|
-
self.__validate()
|
|
208
|
-
# Generate the ML query
|
|
209
|
-
self.__form_tdml_query()
|
|
210
|
-
# Process output table schema
|
|
211
|
-
self.__process_output_column_info()
|
|
212
|
-
# Execute ML query
|
|
213
|
-
self.__execute()
|
|
214
|
-
# Get the prediction type
|
|
215
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
216
|
-
|
|
217
|
-
# End the timer to get the build time
|
|
218
|
-
_end_time = time.time()
|
|
219
|
-
|
|
220
|
-
# Calculate the build time
|
|
221
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
222
|
-
|
|
223
|
-
def __validate(self):
|
|
224
|
-
"""
|
|
225
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
226
|
-
arguments, input argument and table types. Also processes the
|
|
227
|
-
argument values.
|
|
228
|
-
"""
|
|
229
|
-
if isinstance(self.modeldata, GLML1L2):
|
|
230
|
-
self.modeldata = self.modeldata._mlresults[0]
|
|
231
|
-
|
|
232
|
-
# To use output_responses, output_prob must be set to True
|
|
233
|
-
if self.output_prob is False and self.output_responses is not None:
|
|
234
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
|
|
235
|
-
'output_prob=True',
|
|
236
|
-
'output_responses'),
|
|
237
|
-
MessageCodes.DEPENDENT_ARG_MISSING)
|
|
238
|
-
|
|
239
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
240
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
241
|
-
|
|
242
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
243
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
244
|
-
|
|
245
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
246
|
-
self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
|
|
247
|
-
self.__awu._validate_input_table_datatype(self.modeldata, "modeldata", GLML1L2)
|
|
248
|
-
|
|
249
|
-
# Check for permitted values
|
|
250
|
-
output_responses_permitted_values = ["0", "1"]
|
|
251
|
-
self.__awu._validate_permitted_values(self.output_responses, output_responses_permitted_values, "output_responses")
|
|
252
|
-
|
|
253
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
254
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
255
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
256
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.newdata, "newdata", False)
|
|
257
|
-
|
|
258
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_sequence_column, "newdata_sequence_column")
|
|
259
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_sequence_column, "newdata_sequence_column", self.newdata, "newdata", False)
|
|
260
|
-
|
|
261
|
-
self.__awu._validate_input_columns_not_empty(self.modeldata_sequence_column, "modeldata_sequence_column")
|
|
262
|
-
self.__awu._validate_dataframe_has_argument_columns(self.modeldata_sequence_column, "modeldata_sequence_column", self.modeldata, "modeldata", False)
|
|
263
|
-
|
|
264
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_order_column, "newdata_order_column")
|
|
265
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_order_column, "newdata_order_column", self.newdata, "newdata", False)
|
|
266
|
-
|
|
267
|
-
self.__awu._validate_input_columns_not_empty(self.modeldata_order_column, "modeldata_order_column")
|
|
268
|
-
self.__awu._validate_dataframe_has_argument_columns(self.modeldata_order_column, "modeldata_order_column", self.modeldata, "modeldata", False)
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
def __form_tdml_query(self):
|
|
272
|
-
"""
|
|
273
|
-
Function to generate the analytical function queries. The function defines
|
|
274
|
-
variables and list of arguments required to form the query.
|
|
275
|
-
"""
|
|
276
|
-
|
|
277
|
-
# Output table arguments list
|
|
278
|
-
self.__func_output_args_sql_names = []
|
|
279
|
-
self.__func_output_args = []
|
|
280
|
-
|
|
281
|
-
# Model Cataloging related attributes.
|
|
282
|
-
self._sql_specific_attributes = {}
|
|
283
|
-
self._sql_formula_attribute_mapper = {}
|
|
284
|
-
self._target_column = None
|
|
285
|
-
self._algorithm_name = None
|
|
286
|
-
|
|
287
|
-
# Generate lists for rest of the function arguments
|
|
288
|
-
self.__func_other_arg_sql_names = []
|
|
289
|
-
self.__func_other_args = []
|
|
290
|
-
self.__func_other_arg_json_datatypes = []
|
|
291
|
-
|
|
292
|
-
if self.accumulate is not None:
|
|
293
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
294
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
295
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
296
|
-
|
|
297
|
-
if self.output_prob is not None and self.output_prob != False:
|
|
298
|
-
self.__func_other_arg_sql_names.append("OutputProb")
|
|
299
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_prob, "'"))
|
|
300
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
301
|
-
|
|
302
|
-
if self.output_responses is not None:
|
|
303
|
-
self.__func_other_arg_sql_names.append("Responses")
|
|
304
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_responses, "'"))
|
|
305
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
306
|
-
|
|
307
|
-
# Generate lists for rest of the function arguments
|
|
308
|
-
sequence_input_by_list = []
|
|
309
|
-
if self.newdata_sequence_column is not None:
|
|
310
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.newdata_sequence_column, ""))
|
|
311
|
-
|
|
312
|
-
if self.modeldata_sequence_column is not None:
|
|
313
|
-
sequence_input_by_list.append("model:" + UtilFuncs._teradata_collapse_arglist(self.modeldata_sequence_column, ""))
|
|
314
|
-
|
|
315
|
-
if len(sequence_input_by_list) > 0:
|
|
316
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
317
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
318
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
319
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
320
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
# Declare empty lists to hold input table information.
|
|
324
|
-
self.__func_input_arg_sql_names = []
|
|
325
|
-
self.__func_input_table_view_query = []
|
|
326
|
-
self.__func_input_dataframe_type = []
|
|
327
|
-
self.__func_input_distribution = []
|
|
328
|
-
self.__func_input_partition_by_cols = []
|
|
329
|
-
self.__func_input_order_by_cols = []
|
|
330
|
-
|
|
331
|
-
# Process newdata
|
|
332
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.newdata)
|
|
333
|
-
self.__func_input_distribution.append("FACT")
|
|
334
|
-
self.__func_input_arg_sql_names.append("input")
|
|
335
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
336
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
337
|
-
self.__func_input_partition_by_cols.append("ANY")
|
|
338
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.newdata_order_column, "\""))
|
|
339
|
-
|
|
340
|
-
# Process modeldata
|
|
341
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.modeldata)
|
|
342
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
343
|
-
self.__func_input_arg_sql_names.append("model")
|
|
344
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
345
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
346
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
347
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.modeldata_order_column, "\""))
|
|
348
|
-
|
|
349
|
-
function_name = "GLML1L2Predict"
|
|
350
|
-
# Create instance to generate SQLMR.
|
|
351
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
352
|
-
self.__func_input_arg_sql_names,
|
|
353
|
-
self.__func_input_table_view_query,
|
|
354
|
-
self.__func_input_dataframe_type,
|
|
355
|
-
self.__func_input_distribution,
|
|
356
|
-
self.__func_input_partition_by_cols,
|
|
357
|
-
self.__func_input_order_by_cols,
|
|
358
|
-
self.__func_other_arg_sql_names,
|
|
359
|
-
self.__func_other_args,
|
|
360
|
-
self.__func_other_arg_json_datatypes,
|
|
361
|
-
self.__func_output_args_sql_names,
|
|
362
|
-
self.__func_output_args,
|
|
363
|
-
engine="ENGINE_ML")
|
|
364
|
-
# Invoke call to SQL-MR generation.
|
|
365
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
366
|
-
|
|
367
|
-
# Print SQL-MR query if requested to do so.
|
|
368
|
-
if display.print_sqlmr_query:
|
|
369
|
-
print(self.sqlmr_query)
|
|
370
|
-
|
|
371
|
-
# Set the algorithm name for Model Cataloging.
|
|
372
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
373
|
-
|
|
374
|
-
def __execute(self):
|
|
375
|
-
"""
|
|
376
|
-
Function to generate AED nodes for output tables.
|
|
377
|
-
This makes a call aed_ml_query() and then output table dataframes are created.
|
|
378
|
-
"""
|
|
379
|
-
# Create a list of input node ids contributing to a query.
|
|
380
|
-
self.__input_nodeids = []
|
|
381
|
-
self.__input_nodeids.append(self.newdata._nodeid)
|
|
382
|
-
self.__input_nodeids.append(self.modeldata._nodeid)
|
|
383
|
-
|
|
384
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
385
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
386
|
-
self.__func_output_args.insert(0, sqlmr_stdout_temp_tablename)
|
|
387
|
-
try:
|
|
388
|
-
# Call aed_ml_query and generate AED nodes.
|
|
389
|
-
node_id_list = self.__aed_utils._aed_ml_query(self.__input_nodeids, self.sqlmr_query, self.__func_output_args, "GLML1L2Predict", self.__aqg_obj._multi_query_input_nodes)
|
|
390
|
-
except Exception as emsg:
|
|
391
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.AED_EXEC_FAILED, str(emsg)), MessageCodes.AED_EXEC_FAILED)
|
|
392
|
-
|
|
393
|
-
|
|
394
|
-
# Update output table data frames.
|
|
395
|
-
self._mlresults = []
|
|
396
|
-
self.result = self.__awu._create_data_set_object(df_input=node_id_list[0], metaexpr=UtilFuncs._get_metaexpr_using_columns(node_id_list[0], self.__stdout_column_info))
|
|
397
|
-
self._mlresults.append(self.result)
|
|
398
|
-
|
|
399
|
-
def __process_output_column_info(self):
|
|
400
|
-
"""
|
|
401
|
-
Function to process the output schema for all the ouptut tables.
|
|
402
|
-
This function generates list of column names and column types
|
|
403
|
-
for each generated output tables, which can be used to create metaexpr.
|
|
404
|
-
"""
|
|
405
|
-
# Collecting STDOUT output column information.
|
|
406
|
-
stdout_column_info_name = []
|
|
407
|
-
stdout_column_info_type = []
|
|
408
|
-
if self.accumulate is not None:
|
|
409
|
-
for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.newdata, parameter=self.accumulate, columns=None):
|
|
410
|
-
stdout_column_info_name.append(column_name)
|
|
411
|
-
stdout_column_info_type.append(column_type)
|
|
412
|
-
|
|
413
|
-
stdout_column_info_name.append("prediction")
|
|
414
|
-
stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
|
|
415
|
-
|
|
416
|
-
if self.output_prob and self.output_responses is None:
|
|
417
|
-
stdout_column_info_name.append("prob")
|
|
418
|
-
stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
|
|
419
|
-
|
|
420
|
-
else:
|
|
421
|
-
if self.output_prob and self.output_responses is not None:
|
|
422
|
-
if isinstance(self.output_responses, list):
|
|
423
|
-
argValuesList = self.output_responses
|
|
424
|
-
else:
|
|
425
|
-
argValuesList = [self.output_responses]
|
|
426
|
-
if self.output_responses is not None:
|
|
427
|
-
for column_name in argValuesList:
|
|
428
|
-
stdout_column_info_name.append("prob_" + column_name)
|
|
429
|
-
stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
|
|
430
|
-
|
|
431
|
-
|
|
432
|
-
self.__stdout_column_info = zip(stdout_column_info_name, stdout_column_info_type)
|
|
433
|
-
|
|
434
|
-
def show_query(self):
|
|
435
|
-
"""
|
|
436
|
-
Function to return the underlying SQL query.
|
|
437
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
438
|
-
"""
|
|
439
|
-
return self.sqlmr_query
|
|
440
|
-
|
|
441
|
-
def get_prediction_type(self):
|
|
442
|
-
"""
|
|
443
|
-
Function to return the Prediction type of the algorithm.
|
|
444
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
445
|
-
as saved in the Model Catalog.
|
|
446
|
-
"""
|
|
447
|
-
return self._prediction_type
|
|
448
|
-
|
|
449
|
-
def get_target_column(self):
|
|
450
|
-
"""
|
|
451
|
-
Function to return the Target Column of the algorithm.
|
|
452
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
453
|
-
as saved in the Model Catalog.
|
|
454
|
-
"""
|
|
455
|
-
return self._target_column
|
|
456
|
-
|
|
457
|
-
def get_build_time(self):
|
|
458
|
-
"""
|
|
459
|
-
Function to return the build time of the algorithm in seconds.
|
|
460
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
461
|
-
as saved in the Model Catalog.
|
|
462
|
-
"""
|
|
463
|
-
return self._build_time
|
|
464
|
-
|
|
465
|
-
def _get_algorithm_name(self):
|
|
466
|
-
"""
|
|
467
|
-
Function to return the name of the algorithm.
|
|
468
|
-
"""
|
|
469
|
-
return self._algorithm_name
|
|
470
|
-
|
|
471
|
-
def _get_sql_specific_attributes(self):
|
|
472
|
-
"""
|
|
473
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
474
|
-
"""
|
|
475
|
-
return self._sql_specific_attributes
|
|
476
|
-
|
|
477
|
-
@classmethod
|
|
478
|
-
def _from_model_catalog(cls,
|
|
479
|
-
result = None,
|
|
480
|
-
**kwargs):
|
|
481
|
-
"""
|
|
482
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
483
|
-
"""
|
|
484
|
-
kwargs.pop("result", None)
|
|
485
|
-
|
|
486
|
-
# Model Cataloging related attributes.
|
|
487
|
-
target_column = kwargs.pop("__target_column", None)
|
|
488
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
489
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
490
|
-
build_time = kwargs.pop("__build_time", None)
|
|
491
|
-
|
|
492
|
-
# Let's create an object of this class.
|
|
493
|
-
obj = cls(**kwargs)
|
|
494
|
-
obj.result = result
|
|
495
|
-
|
|
496
|
-
# Initialize the sqlmr_query class attribute.
|
|
497
|
-
obj.sqlmr_query = None
|
|
498
|
-
|
|
499
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
500
|
-
obj._sql_specific_attributes = None
|
|
501
|
-
obj._target_column = target_column
|
|
502
|
-
obj._prediction_type = prediction_type
|
|
503
|
-
obj._algorithm_name = algorithm_name
|
|
504
|
-
obj._build_time = build_time
|
|
505
|
-
|
|
506
|
-
# Update output table data frames.
|
|
507
|
-
obj._mlresults = []
|
|
508
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
509
|
-
obj._mlresults.append(obj.result)
|
|
510
|
-
return obj
|
|
511
|
-
|
|
512
|
-
def __repr__(self):
|
|
513
|
-
"""
|
|
514
|
-
Returns the string representation for a GLML1L2Predict class instance.
|
|
515
|
-
"""
|
|
516
|
-
repr_string="############ STDOUT Output ############"
|
|
517
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
518
|
-
return repr_string
|
|
519
|
-
|