teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
teradataml/analytics/mle/KNN.py
DELETED
|
@@ -1,627 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2020 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Pavansai Kumar Alladi (pavansaikumar.alladi@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 2.3
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class KNN:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
train = None,
|
|
34
|
-
test = None,
|
|
35
|
-
k = None,
|
|
36
|
-
response_column = None,
|
|
37
|
-
id_column = None,
|
|
38
|
-
distance_features = None,
|
|
39
|
-
voting_weight = 0.0,
|
|
40
|
-
customized_distance = None,
|
|
41
|
-
force_mapreduce = False,
|
|
42
|
-
parblock_size = None,
|
|
43
|
-
partition_key = None,
|
|
44
|
-
accumulate = None,
|
|
45
|
-
output_prob = False,
|
|
46
|
-
train_sequence_column = None,
|
|
47
|
-
test_sequence_column = None,
|
|
48
|
-
test_block_size = None,
|
|
49
|
-
output_responses = None):
|
|
50
|
-
"""
|
|
51
|
-
DESCRIPTION:
|
|
52
|
-
The KNN function uses training data objects to map test data objects
|
|
53
|
-
to categories. The function is optimized for both small and large
|
|
54
|
-
training sets. The function supports user-defined distance metrics
|
|
55
|
-
and distance-weighted voting.
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
PARAMETERS:
|
|
59
|
-
train:
|
|
60
|
-
Required Argument.
|
|
61
|
-
Specifies the name of the teradataml DataFrame that contains the
|
|
62
|
-
training data. Each row represents a classified data object.
|
|
63
|
-
|
|
64
|
-
test:
|
|
65
|
-
Required Argument.
|
|
66
|
-
Specifies the name of the teradataml DataFrame that contains the test
|
|
67
|
-
data to be classified by the KNN algorithm. Each row represents a
|
|
68
|
-
test data object.
|
|
69
|
-
|
|
70
|
-
k:
|
|
71
|
-
Required Argument.
|
|
72
|
-
Specifies the number of nearest neighbors to use for classifying the
|
|
73
|
-
test data.
|
|
74
|
-
Types: int
|
|
75
|
-
|
|
76
|
-
response_column:
|
|
77
|
-
Required Argument.
|
|
78
|
-
Specifies the name of the training teradataml DataFrame column that
|
|
79
|
-
contains the class label or classification of the classified data
|
|
80
|
-
objects.
|
|
81
|
-
Types: str
|
|
82
|
-
|
|
83
|
-
id_column:
|
|
84
|
-
Required Argument.
|
|
85
|
-
Specifies the name of the testing teradataml DataFrame column that
|
|
86
|
-
uniquely identifies a data object.
|
|
87
|
-
Types: str
|
|
88
|
-
|
|
89
|
-
distance_features:
|
|
90
|
-
Required Argument.
|
|
91
|
-
Specifies the names of the training teradataml DataFrame columns that
|
|
92
|
-
the function uses to compute the distance between a test object and
|
|
93
|
-
the training objects. The test teradataml DataFrame must also have
|
|
94
|
-
these columns.
|
|
95
|
-
Types: str OR list of Strings (str)
|
|
96
|
-
|
|
97
|
-
voting_weight:
|
|
98
|
-
Optional Argument.
|
|
99
|
-
Specifies the voting weight of the distance between a test object and
|
|
100
|
-
the training objects. The voting_weight must be a nonnegative
|
|
101
|
-
integer. The function calculates distance-weighted voting, w, with this
|
|
102
|
-
equation: w = 1/POWER(distance, voting_weight) Where distance is the distance
|
|
103
|
-
between the test object and the training object.
|
|
104
|
-
Default Value: 0.0
|
|
105
|
-
Types: float
|
|
106
|
-
|
|
107
|
-
customized_distance:
|
|
108
|
-
Optional Argument.
|
|
109
|
-
This argument is currently not supported.
|
|
110
|
-
|
|
111
|
-
force_mapreduce:
|
|
112
|
-
Optional Argument.
|
|
113
|
-
Specifies whether to partition the training data. which causes the
|
|
114
|
-
KNN function to load all training data into memory and use only
|
|
115
|
-
the row function. If you specify True, the KNN function
|
|
116
|
-
partitions the training data and uses the map-and reduce function.
|
|
117
|
-
Default Value: False
|
|
118
|
-
Types: bool
|
|
119
|
-
|
|
120
|
-
parblock_size:
|
|
121
|
-
Optional Argument.
|
|
122
|
-
Specifies the partition block size to use with force_mapreduce
|
|
123
|
-
(True). The recommended value depends on training data size and
|
|
124
|
-
number of vworkers.
|
|
125
|
-
For example, if your training data size is 10 billion and you have 10 vworkers,
|
|
126
|
-
the recommended, partition_block_size is 1/n billion, where n is an integer that
|
|
127
|
-
corresponds to your vworker nodes memory. Omitting this argument or
|
|
128
|
-
specifying an inappropriate partition_block_size can degrade
|
|
129
|
-
performance.
|
|
130
|
-
Types: int
|
|
131
|
-
|
|
132
|
-
partition_key:
|
|
133
|
-
Optional Argument.
|
|
134
|
-
Specifies the name of the training teradataml DataFrame column that
|
|
135
|
-
partition data in parallel model. The default value is the first
|
|
136
|
-
column of distance_features.
|
|
137
|
-
Note: "partition_key" argument support is only available when teradataml
|
|
138
|
-
is connected to Vantage 1.0 Maintenance Update 2 version or later.
|
|
139
|
-
Types: str
|
|
140
|
-
|
|
141
|
-
accumulate:
|
|
142
|
-
Optional Argument.
|
|
143
|
-
Specifies the names of test teradataml DataFrame columns to copy to
|
|
144
|
-
the output teradataml DataFrame.
|
|
145
|
-
Note: "accumulate" argument support is only available when teradataml
|
|
146
|
-
is connected to Vantage 1.1 or later.
|
|
147
|
-
Types: str OR list of Strings (str)
|
|
148
|
-
|
|
149
|
-
output_prob:
|
|
150
|
-
Optional Argument.
|
|
151
|
-
Specifies whether to display output probability for the predicted
|
|
152
|
-
category.
|
|
153
|
-
Note: "output_prob" argument support is only available when teradataml
|
|
154
|
-
is connected to Vantage 1.1 or later.
|
|
155
|
-
Default Value: False
|
|
156
|
-
Types: bool
|
|
157
|
-
|
|
158
|
-
train_sequence_column:
|
|
159
|
-
Optional Argument, Required if 'partition_key' is specified.
|
|
160
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
161
|
-
the input argument "train". The argument is used to ensure
|
|
162
|
-
deterministic results for functions which produce results that vary
|
|
163
|
-
from run to run.
|
|
164
|
-
Types: str OR list of Strings (str)
|
|
165
|
-
|
|
166
|
-
test_sequence_column:
|
|
167
|
-
Optional Argument, Required if 'partition_key' is specified.
|
|
168
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
169
|
-
the input argument "test". The argument is used to ensure
|
|
170
|
-
deterministic results for functions which produce results that vary
|
|
171
|
-
from run to run.
|
|
172
|
-
Types: str OR list of Strings (str)
|
|
173
|
-
|
|
174
|
-
test_block_size:
|
|
175
|
-
Optional with when "force_mapreduce" is 'True', disallowed otherwise.
|
|
176
|
-
Specifies the partition block size of testing data to use when
|
|
177
|
-
"force_mapreduce" set to 'True'. Omitting this argument will start to
|
|
178
|
-
estimate the value automatically. Specifying an inappropriate
|
|
179
|
-
'test_block_size' can degrade performance.
|
|
180
|
-
Note:
|
|
181
|
-
"test_block_size" argument support is only available when teradataml is connected to Vantage 1.3.
|
|
182
|
-
Types: int
|
|
183
|
-
|
|
184
|
-
output_responses:
|
|
185
|
-
Optional when "output_prob" is 'True', disallowed otherwise.
|
|
186
|
-
Specify 'response_column' for which to output probability. If you specify output_prob=True and omit
|
|
187
|
-
'response_column', the function adds the column prob to the output teradataml DataFrame.
|
|
188
|
-
If you set "output_prob" to 'True' and specify 'response_column', then the function adds the specified
|
|
189
|
-
response columns to the output table Dataframe
|
|
190
|
-
Note:
|
|
191
|
-
"output_responses" argument support is only available when teradataml is connected to Vantage 1.3.
|
|
192
|
-
Types: str OR list of strs
|
|
193
|
-
|
|
194
|
-
RETURNS:
|
|
195
|
-
Instance of KNN.
|
|
196
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
197
|
-
references, such as KNNObj.<attribute_name>.
|
|
198
|
-
Output teradataml DataFrame attribute name is:
|
|
199
|
-
1. output_table
|
|
200
|
-
2. output
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
RAISES:
|
|
204
|
-
TeradataMlException
|
|
205
|
-
|
|
206
|
-
EXAMPLES:
|
|
207
|
-
|
|
208
|
-
# Load the data to run the example
|
|
209
|
-
load_example_data("knn", ["computers_train1_clustered","computers_test1"])
|
|
210
|
-
|
|
211
|
-
# Create teradataml DataFrame objects.
|
|
212
|
-
# The "computers_train1_clustered" and "computers_test1" remote tables
|
|
213
|
-
# contains five attributes of personal computers price, speed, hard disk
|
|
214
|
-
# size, RAM, and screen size.
|
|
215
|
-
computers_train1_clustered = DataFrame.from_table("computers_train1_clustered")
|
|
216
|
-
computers_test1 = DataFrame.from_table("computers_test1")
|
|
217
|
-
|
|
218
|
-
# Example 1 - Map the test computer data to their respective categories
|
|
219
|
-
knn_out = KNN(train = computers_train1_clustered,
|
|
220
|
-
test = computers_test1,
|
|
221
|
-
k = 50,
|
|
222
|
-
response_column = "computer_category",
|
|
223
|
-
id_column = "id",
|
|
224
|
-
distance_features = ["price","speed","hd","ram","screen"],
|
|
225
|
-
voting_weight = 1.0
|
|
226
|
-
)
|
|
227
|
-
# Print the result DataFrame
|
|
228
|
-
print(knn_out)
|
|
229
|
-
|
|
230
|
-
"""
|
|
231
|
-
|
|
232
|
-
# Start the timer to get the build time
|
|
233
|
-
_start_time = time.time()
|
|
234
|
-
|
|
235
|
-
self.train = train
|
|
236
|
-
self.test = test
|
|
237
|
-
self.k = k
|
|
238
|
-
self.response_column = response_column
|
|
239
|
-
self.id_column = id_column
|
|
240
|
-
self.distance_features = distance_features
|
|
241
|
-
self.voting_weight = voting_weight
|
|
242
|
-
self.customized_distance = customized_distance
|
|
243
|
-
self.force_mapreduce = force_mapreduce
|
|
244
|
-
self.parblock_size = parblock_size
|
|
245
|
-
self.partition_key = partition_key
|
|
246
|
-
self.accumulate = accumulate
|
|
247
|
-
self.output_prob = output_prob
|
|
248
|
-
self.train_sequence_column = train_sequence_column
|
|
249
|
-
self.test_sequence_column = test_sequence_column
|
|
250
|
-
self.output_responses = output_responses
|
|
251
|
-
self.test_block_size = test_block_size
|
|
252
|
-
|
|
253
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
254
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
255
|
-
self.__aed_utils = AedUtils()
|
|
256
|
-
|
|
257
|
-
# Create argument information matrix to do parameter checking
|
|
258
|
-
self.__arg_info_matrix = []
|
|
259
|
-
self.__arg_info_matrix.append(["train", self.train, False, (DataFrame)])
|
|
260
|
-
self.__arg_info_matrix.append(["test", self.test, False, (DataFrame)])
|
|
261
|
-
self.__arg_info_matrix.append(["k", self.k, False, (int)])
|
|
262
|
-
self.__arg_info_matrix.append(["response_column", self.response_column, False, (str)])
|
|
263
|
-
self.__arg_info_matrix.append(["id_column", self.id_column, False, (str)])
|
|
264
|
-
self.__arg_info_matrix.append(["distance_features", self.distance_features, False, (str,list)])
|
|
265
|
-
self.__arg_info_matrix.append(["voting_weight", self.voting_weight, True, (float)])
|
|
266
|
-
self.__arg_info_matrix.append(["customized_distance", self.customized_distance, True, (str,list)])
|
|
267
|
-
self.__arg_info_matrix.append(["force_mapreduce", self.force_mapreduce, True, (bool)])
|
|
268
|
-
self.__arg_info_matrix.append(["parblock_size", self.parblock_size, True, (int)])
|
|
269
|
-
self.__arg_info_matrix.append(["partition_key", self.partition_key, True, (str)])
|
|
270
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
|
|
271
|
-
self.__arg_info_matrix.append(["output_prob", self.output_prob, True, (bool)])
|
|
272
|
-
self.__arg_info_matrix.append(["train_sequence_column", self.train_sequence_column, True, (str,list)])
|
|
273
|
-
self.__arg_info_matrix.append(["test_sequence_column", self.test_sequence_column, True, (str,list)])
|
|
274
|
-
self.__arg_info_matrix.append(["test_block_size", self.test_block_size, True, (int)])
|
|
275
|
-
self.__arg_info_matrix.append(["output_responses", self.output_responses, True, (str, list)])
|
|
276
|
-
|
|
277
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
278
|
-
# Perform the function validations
|
|
279
|
-
self.__validate()
|
|
280
|
-
# Generate the ML query
|
|
281
|
-
self.__form_tdml_query()
|
|
282
|
-
# Execute ML query
|
|
283
|
-
self.__execute()
|
|
284
|
-
# Get the prediction type
|
|
285
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
286
|
-
|
|
287
|
-
# End the timer to get the build time
|
|
288
|
-
_end_time = time.time()
|
|
289
|
-
|
|
290
|
-
# Calculate the build time
|
|
291
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
292
|
-
|
|
293
|
-
def __validate(self):
|
|
294
|
-
"""
|
|
295
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
296
|
-
arguments, input argument and table types. Also processes the
|
|
297
|
-
argument values.
|
|
298
|
-
"""
|
|
299
|
-
# Check whether customized_distance argument is present.
|
|
300
|
-
# If present throw error
|
|
301
|
-
# This check is valid till support is provided in R and Python.
|
|
302
|
-
if self.customized_distance:
|
|
303
|
-
raise TeradataMlException(
|
|
304
|
-
Messages.get_message(MessageCodes.UNSUPPORTED_ARGUMENT, "customized_distance", "customized_distance"),
|
|
305
|
-
MessageCodes.UNSUPPORTED_ARGUMENT)
|
|
306
|
-
|
|
307
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
308
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
309
|
-
|
|
310
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
311
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
312
|
-
|
|
313
|
-
# This is a manual check added to validate whether 'partition_key' is provided when 'train_sequence_column' or
|
|
314
|
-
# 'test_sequence_column'is specified.
|
|
315
|
-
if self.partition_key is None:
|
|
316
|
-
if self.train_sequence_column:
|
|
317
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
|
|
318
|
-
'partition_key',
|
|
319
|
-
'train_sequence_column'
|
|
320
|
-
),
|
|
321
|
-
MessageCodes.DEPENDENT_ARG_MISSING)
|
|
322
|
-
if self.test_sequence_column:
|
|
323
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
|
|
324
|
-
'partition_key',
|
|
325
|
-
'test_sequence_column'
|
|
326
|
-
),
|
|
327
|
-
MessageCodes.DEPENDENT_ARG_MISSING)
|
|
328
|
-
|
|
329
|
-
# This is a manual check to validate that 'output_responses' should be specified only when output_prob=True
|
|
330
|
-
if self.output_prob is False and self.output_responses is not None:
|
|
331
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
|
|
332
|
-
'output_prob=True',
|
|
333
|
-
'output_responses'),
|
|
334
|
-
MessageCodes.DEPENDENT_ARG_MISSING)
|
|
335
|
-
|
|
336
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
337
|
-
self.__awu._validate_input_table_datatype(self.train, "train", None)
|
|
338
|
-
self.__awu._validate_input_table_datatype(self.test, "test", None)
|
|
339
|
-
|
|
340
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
341
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
342
|
-
self.__awu._validate_input_columns_not_empty(self.response_column, "response_column")
|
|
343
|
-
self.__awu._validate_dataframe_has_argument_columns(self.response_column, "response_column", self.train, "train", False)
|
|
344
|
-
|
|
345
|
-
self.__awu._validate_input_columns_not_empty(self.id_column, "id_column")
|
|
346
|
-
self.__awu._validate_dataframe_has_argument_columns(self.id_column, "id_column", self.test, "test", False)
|
|
347
|
-
|
|
348
|
-
self.__awu._validate_input_columns_not_empty(self.distance_features, "distance_features")
|
|
349
|
-
self.__awu._validate_dataframe_has_argument_columns(self.distance_features, "distance_features", self.train, "train", False)
|
|
350
|
-
|
|
351
|
-
self.__awu._validate_input_columns_not_empty(self.partition_key, "partition_key")
|
|
352
|
-
self.__awu._validate_dataframe_has_argument_columns(self.partition_key, "partition_key", self.train, "train", False)
|
|
353
|
-
|
|
354
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
355
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.test, "test", False)
|
|
356
|
-
|
|
357
|
-
self.__awu._validate_input_columns_not_empty(self.train_sequence_column, "train_sequence_column")
|
|
358
|
-
self.__awu._validate_dataframe_has_argument_columns(self.train_sequence_column, "train_sequence_column", self.train, "train", False)
|
|
359
|
-
|
|
360
|
-
self.__awu._validate_input_columns_not_empty(self.test_sequence_column, "test_sequence_column")
|
|
361
|
-
self.__awu._validate_dataframe_has_argument_columns(self.test_sequence_column, "test_sequence_column", self.test, "test", False)
|
|
362
|
-
|
|
363
|
-
|
|
364
|
-
def __form_tdml_query(self):
|
|
365
|
-
"""
|
|
366
|
-
Function to generate the analytical function queries. The function defines
|
|
367
|
-
variables and list of arguments required to form the query.
|
|
368
|
-
"""
|
|
369
|
-
# Generate temp table names for output table parameters if any.
|
|
370
|
-
self.__output_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_knn0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
371
|
-
|
|
372
|
-
# Output table arguments list
|
|
373
|
-
self.__func_output_args_sql_names = ["OutputTable"]
|
|
374
|
-
self.__func_output_args = [self.__output_table_temp_tablename]
|
|
375
|
-
|
|
376
|
-
# Model Cataloging related attributes.
|
|
377
|
-
self._sql_specific_attributes = {}
|
|
378
|
-
self._sql_formula_attribute_mapper = {}
|
|
379
|
-
self._target_column = None
|
|
380
|
-
self._algorithm_name = None
|
|
381
|
-
|
|
382
|
-
# Generate lists for rest of the function arguments
|
|
383
|
-
self.__func_other_arg_sql_names = []
|
|
384
|
-
self.__func_other_args = []
|
|
385
|
-
self.__func_other_arg_json_datatypes = []
|
|
386
|
-
|
|
387
|
-
self.__func_other_arg_sql_names.append("ResponseColumn")
|
|
388
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.response_column, "\""), "'"))
|
|
389
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
390
|
-
|
|
391
|
-
self.__func_other_arg_sql_names.append("IdColumn")
|
|
392
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.id_column, "\""), "'"))
|
|
393
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
394
|
-
|
|
395
|
-
self.__func_other_arg_sql_names.append("DistanceFeatures")
|
|
396
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.distance_features, "\""), "'"))
|
|
397
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
398
|
-
|
|
399
|
-
if self.partition_key is not None:
|
|
400
|
-
self.__func_other_arg_sql_names.append("PartitionColumn")
|
|
401
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.partition_key, "\""), "'"))
|
|
402
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
403
|
-
|
|
404
|
-
if self.accumulate is not None:
|
|
405
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
406
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
407
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
408
|
-
|
|
409
|
-
self.__func_other_arg_sql_names.append("K")
|
|
410
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.k, "'"))
|
|
411
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
412
|
-
|
|
413
|
-
if self.parblock_size is not None:
|
|
414
|
-
self.__func_other_arg_sql_names.append("PartitionBlockSize")
|
|
415
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.parblock_size, "'"))
|
|
416
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
417
|
-
|
|
418
|
-
if self.test_block_size is not None:
|
|
419
|
-
self.__func_other_arg_sql_names.append("TestBlockSize")
|
|
420
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.test_block_size, "'"))
|
|
421
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
422
|
-
|
|
423
|
-
if self.force_mapreduce is not None and self.force_mapreduce != False:
|
|
424
|
-
self.__func_other_arg_sql_names.append("ForceMapreduce")
|
|
425
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.force_mapreduce, "'"))
|
|
426
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
427
|
-
|
|
428
|
-
if self.customized_distance is not None:
|
|
429
|
-
self.__func_other_arg_sql_names.append("CustomizedDistance")
|
|
430
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.customized_distance, "'"))
|
|
431
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
432
|
-
|
|
433
|
-
if self.voting_weight is not None and self.voting_weight != 0:
|
|
434
|
-
self.__func_other_arg_sql_names.append("VotingWeight")
|
|
435
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.voting_weight, "'"))
|
|
436
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
437
|
-
|
|
438
|
-
if self.output_prob is not None and self.output_prob != False:
|
|
439
|
-
self.__func_other_arg_sql_names.append("OutputProb")
|
|
440
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_prob, "'"))
|
|
441
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
442
|
-
|
|
443
|
-
if self.output_responses is not None:
|
|
444
|
-
self.__func_other_arg_sql_names.append("Responses")
|
|
445
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_responses, "'"))
|
|
446
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
447
|
-
|
|
448
|
-
# Generate lists for rest of the function arguments
|
|
449
|
-
sequence_input_by_list = []
|
|
450
|
-
if self.train_sequence_column is not None:
|
|
451
|
-
sequence_input_by_list.append("TrainingTable:" + UtilFuncs._teradata_collapse_arglist(self.train_sequence_column, ""))
|
|
452
|
-
|
|
453
|
-
if self.test_sequence_column is not None:
|
|
454
|
-
sequence_input_by_list.append("TestTable:" + UtilFuncs._teradata_collapse_arglist(self.test_sequence_column, ""))
|
|
455
|
-
|
|
456
|
-
if len(sequence_input_by_list) > 0:
|
|
457
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
458
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
459
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
460
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
461
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
462
|
-
|
|
463
|
-
|
|
464
|
-
# Declare empty lists to hold input table information.
|
|
465
|
-
self.__func_input_arg_sql_names = []
|
|
466
|
-
self.__func_input_table_view_query = []
|
|
467
|
-
self.__func_input_dataframe_type = []
|
|
468
|
-
self.__func_input_distribution = []
|
|
469
|
-
self.__func_input_partition_by_cols = []
|
|
470
|
-
self.__func_input_order_by_cols = []
|
|
471
|
-
|
|
472
|
-
# Process train
|
|
473
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.train, False)
|
|
474
|
-
self.__func_input_distribution.append("NONE")
|
|
475
|
-
self.__func_input_arg_sql_names.append("TrainingTable")
|
|
476
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
477
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
478
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
479
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
480
|
-
|
|
481
|
-
# Process test
|
|
482
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.test, False)
|
|
483
|
-
self.__func_input_distribution.append("NONE")
|
|
484
|
-
self.__func_input_arg_sql_names.append("TestTable")
|
|
485
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
486
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
487
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
488
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
489
|
-
|
|
490
|
-
function_name = "KNN"
|
|
491
|
-
# Create instance to generate SQLMR.
|
|
492
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
493
|
-
self.__func_input_arg_sql_names,
|
|
494
|
-
self.__func_input_table_view_query,
|
|
495
|
-
self.__func_input_dataframe_type,
|
|
496
|
-
self.__func_input_distribution,
|
|
497
|
-
self.__func_input_partition_by_cols,
|
|
498
|
-
self.__func_input_order_by_cols,
|
|
499
|
-
self.__func_other_arg_sql_names,
|
|
500
|
-
self.__func_other_args,
|
|
501
|
-
self.__func_other_arg_json_datatypes,
|
|
502
|
-
self.__func_output_args_sql_names,
|
|
503
|
-
self.__func_output_args,
|
|
504
|
-
engine="ENGINE_ML")
|
|
505
|
-
# Invoke call to SQL-MR generation.
|
|
506
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
507
|
-
|
|
508
|
-
# Print SQL-MR query if requested to do so.
|
|
509
|
-
if display.print_sqlmr_query:
|
|
510
|
-
print(self.sqlmr_query)
|
|
511
|
-
|
|
512
|
-
# Set the algorithm name for Model Cataloging.
|
|
513
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
514
|
-
|
|
515
|
-
def __execute(self):
|
|
516
|
-
"""
|
|
517
|
-
Function to execute SQL-MR queries.
|
|
518
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
519
|
-
"""
|
|
520
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
521
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
522
|
-
try:
|
|
523
|
-
# Generate the output.
|
|
524
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
525
|
-
except Exception as emsg:
|
|
526
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
527
|
-
|
|
528
|
-
# Update output table data frames.
|
|
529
|
-
self._mlresults = []
|
|
530
|
-
self.output_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__output_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__output_table_temp_tablename))
|
|
531
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
532
|
-
self._mlresults.append(self.output_table)
|
|
533
|
-
self._mlresults.append(self.output)
|
|
534
|
-
|
|
535
|
-
def show_query(self):
|
|
536
|
-
"""
|
|
537
|
-
Function to return the underlying SQL query.
|
|
538
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
539
|
-
"""
|
|
540
|
-
return self.sqlmr_query
|
|
541
|
-
|
|
542
|
-
def get_prediction_type(self):
|
|
543
|
-
"""
|
|
544
|
-
Function to return the Prediction type of the algorithm.
|
|
545
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
546
|
-
as saved in the Model Catalog.
|
|
547
|
-
"""
|
|
548
|
-
return self._prediction_type
|
|
549
|
-
|
|
550
|
-
def get_target_column(self):
|
|
551
|
-
"""
|
|
552
|
-
Function to return the Target Column of the algorithm.
|
|
553
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
554
|
-
as saved in the Model Catalog.
|
|
555
|
-
"""
|
|
556
|
-
return self._target_column
|
|
557
|
-
|
|
558
|
-
def get_build_time(self):
|
|
559
|
-
"""
|
|
560
|
-
Function to return the build time of the algorithm in seconds.
|
|
561
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
562
|
-
as saved in the Model Catalog.
|
|
563
|
-
"""
|
|
564
|
-
return self._build_time
|
|
565
|
-
|
|
566
|
-
def _get_algorithm_name(self):
|
|
567
|
-
"""
|
|
568
|
-
Function to return the name of the algorithm.
|
|
569
|
-
"""
|
|
570
|
-
return self._algorithm_name
|
|
571
|
-
|
|
572
|
-
def _get_sql_specific_attributes(self):
|
|
573
|
-
"""
|
|
574
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
575
|
-
"""
|
|
576
|
-
return self._sql_specific_attributes
|
|
577
|
-
|
|
578
|
-
@classmethod
|
|
579
|
-
def _from_model_catalog(cls,
|
|
580
|
-
output_table = None,
|
|
581
|
-
output = None,
|
|
582
|
-
**kwargs):
|
|
583
|
-
"""
|
|
584
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
585
|
-
"""
|
|
586
|
-
kwargs.pop("output_table", None)
|
|
587
|
-
kwargs.pop("output", None)
|
|
588
|
-
|
|
589
|
-
# Model Cataloging related attributes.
|
|
590
|
-
target_column = kwargs.pop("__target_column", None)
|
|
591
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
592
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
593
|
-
build_time = kwargs.pop("__build_time", None)
|
|
594
|
-
|
|
595
|
-
# Let's create an object of this class.
|
|
596
|
-
obj = cls(**kwargs)
|
|
597
|
-
obj.output_table = output_table
|
|
598
|
-
obj.output = output
|
|
599
|
-
|
|
600
|
-
# Initialize the sqlmr_query class attribute.
|
|
601
|
-
obj.sqlmr_query = None
|
|
602
|
-
|
|
603
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
604
|
-
obj._sql_specific_attributes = None
|
|
605
|
-
obj._target_column = target_column
|
|
606
|
-
obj._prediction_type = prediction_type
|
|
607
|
-
obj._algorithm_name = algorithm_name
|
|
608
|
-
obj._build_time = build_time
|
|
609
|
-
|
|
610
|
-
# Update output table data frames.
|
|
611
|
-
obj._mlresults = []
|
|
612
|
-
obj.output_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_table))
|
|
613
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
614
|
-
obj._mlresults.append(obj.output_table)
|
|
615
|
-
obj._mlresults.append(obj.output)
|
|
616
|
-
return obj
|
|
617
|
-
|
|
618
|
-
def __repr__(self):
|
|
619
|
-
"""
|
|
620
|
-
Returns the string representation for a KNN class instance.
|
|
621
|
-
"""
|
|
622
|
-
repr_string="############ STDOUT Output ############"
|
|
623
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
624
|
-
repr_string="{}\n\n\n############ output_table Output ############".format(repr_string)
|
|
625
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output_table)
|
|
626
|
-
return repr_string
|
|
627
|
-
|