teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,627 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2020 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Pavansai Kumar Alladi (pavansaikumar.alladi@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 2.3
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class KNN:
31
-
32
- def __init__(self,
33
- train = None,
34
- test = None,
35
- k = None,
36
- response_column = None,
37
- id_column = None,
38
- distance_features = None,
39
- voting_weight = 0.0,
40
- customized_distance = None,
41
- force_mapreduce = False,
42
- parblock_size = None,
43
- partition_key = None,
44
- accumulate = None,
45
- output_prob = False,
46
- train_sequence_column = None,
47
- test_sequence_column = None,
48
- test_block_size = None,
49
- output_responses = None):
50
- """
51
- DESCRIPTION:
52
- The KNN function uses training data objects to map test data objects
53
- to categories. The function is optimized for both small and large
54
- training sets. The function supports user-defined distance metrics
55
- and distance-weighted voting.
56
-
57
-
58
- PARAMETERS:
59
- train:
60
- Required Argument.
61
- Specifies the name of the teradataml DataFrame that contains the
62
- training data. Each row represents a classified data object.
63
-
64
- test:
65
- Required Argument.
66
- Specifies the name of the teradataml DataFrame that contains the test
67
- data to be classified by the KNN algorithm. Each row represents a
68
- test data object.
69
-
70
- k:
71
- Required Argument.
72
- Specifies the number of nearest neighbors to use for classifying the
73
- test data.
74
- Types: int
75
-
76
- response_column:
77
- Required Argument.
78
- Specifies the name of the training teradataml DataFrame column that
79
- contains the class label or classification of the classified data
80
- objects.
81
- Types: str
82
-
83
- id_column:
84
- Required Argument.
85
- Specifies the name of the testing teradataml DataFrame column that
86
- uniquely identifies a data object.
87
- Types: str
88
-
89
- distance_features:
90
- Required Argument.
91
- Specifies the names of the training teradataml DataFrame columns that
92
- the function uses to compute the distance between a test object and
93
- the training objects. The test teradataml DataFrame must also have
94
- these columns.
95
- Types: str OR list of Strings (str)
96
-
97
- voting_weight:
98
- Optional Argument.
99
- Specifies the voting weight of the distance between a test object and
100
- the training objects. The voting_weight must be a nonnegative
101
- integer. The function calculates distance-weighted voting, w, with this
102
- equation: w = 1/POWER(distance, voting_weight) Where distance is the distance
103
- between the test object and the training object.
104
- Default Value: 0.0
105
- Types: float
106
-
107
- customized_distance:
108
- Optional Argument.
109
- This argument is currently not supported.
110
-
111
- force_mapreduce:
112
- Optional Argument.
113
- Specifies whether to partition the training data. which causes the
114
- KNN function to load all training data into memory and use only
115
- the row function. If you specify True, the KNN function
116
- partitions the training data and uses the map-and reduce function.
117
- Default Value: False
118
- Types: bool
119
-
120
- parblock_size:
121
- Optional Argument.
122
- Specifies the partition block size to use with force_mapreduce
123
- (True). The recommended value depends on training data size and
124
- number of vworkers.
125
- For example, if your training data size is 10 billion and you have 10 vworkers,
126
- the recommended, partition_block_size is 1/n billion, where n is an integer that
127
- corresponds to your vworker nodes memory. Omitting this argument or
128
- specifying an inappropriate partition_block_size can degrade
129
- performance.
130
- Types: int
131
-
132
- partition_key:
133
- Optional Argument.
134
- Specifies the name of the training teradataml DataFrame column that
135
- partition data in parallel model. The default value is the first
136
- column of distance_features.
137
- Note: "partition_key" argument support is only available when teradataml
138
- is connected to Vantage 1.0 Maintenance Update 2 version or later.
139
- Types: str
140
-
141
- accumulate:
142
- Optional Argument.
143
- Specifies the names of test teradataml DataFrame columns to copy to
144
- the output teradataml DataFrame.
145
- Note: "accumulate" argument support is only available when teradataml
146
- is connected to Vantage 1.1 or later.
147
- Types: str OR list of Strings (str)
148
-
149
- output_prob:
150
- Optional Argument.
151
- Specifies whether to display output probability for the predicted
152
- category.
153
- Note: "output_prob" argument support is only available when teradataml
154
- is connected to Vantage 1.1 or later.
155
- Default Value: False
156
- Types: bool
157
-
158
- train_sequence_column:
159
- Optional Argument, Required if 'partition_key' is specified.
160
- Specifies the list of column(s) that uniquely identifies each row of
161
- the input argument "train". The argument is used to ensure
162
- deterministic results for functions which produce results that vary
163
- from run to run.
164
- Types: str OR list of Strings (str)
165
-
166
- test_sequence_column:
167
- Optional Argument, Required if 'partition_key' is specified.
168
- Specifies the list of column(s) that uniquely identifies each row of
169
- the input argument "test". The argument is used to ensure
170
- deterministic results for functions which produce results that vary
171
- from run to run.
172
- Types: str OR list of Strings (str)
173
-
174
- test_block_size:
175
- Optional with when "force_mapreduce" is 'True', disallowed otherwise.
176
- Specifies the partition block size of testing data to use when
177
- "force_mapreduce" set to 'True'. Omitting this argument will start to
178
- estimate the value automatically. Specifying an inappropriate
179
- 'test_block_size' can degrade performance.
180
- Note:
181
- "test_block_size" argument support is only available when teradataml is connected to Vantage 1.3.
182
- Types: int
183
-
184
- output_responses:
185
- Optional when "output_prob" is 'True', disallowed otherwise.
186
- Specify 'response_column' for which to output probability. If you specify output_prob=True and omit
187
- 'response_column', the function adds the column prob to the output teradataml DataFrame.
188
- If you set "output_prob" to 'True' and specify 'response_column', then the function adds the specified
189
- response columns to the output table Dataframe
190
- Note:
191
- "output_responses" argument support is only available when teradataml is connected to Vantage 1.3.
192
- Types: str OR list of strs
193
-
194
- RETURNS:
195
- Instance of KNN.
196
- Output teradataml DataFrames can be accessed using attribute
197
- references, such as KNNObj.<attribute_name>.
198
- Output teradataml DataFrame attribute name is:
199
- 1. output_table
200
- 2. output
201
-
202
-
203
- RAISES:
204
- TeradataMlException
205
-
206
- EXAMPLES:
207
-
208
- # Load the data to run the example
209
- load_example_data("knn", ["computers_train1_clustered","computers_test1"])
210
-
211
- # Create teradataml DataFrame objects.
212
- # The "computers_train1_clustered" and "computers_test1" remote tables
213
- # contains five attributes of personal computers price, speed, hard disk
214
- # size, RAM, and screen size.
215
- computers_train1_clustered = DataFrame.from_table("computers_train1_clustered")
216
- computers_test1 = DataFrame.from_table("computers_test1")
217
-
218
- # Example 1 - Map the test computer data to their respective categories
219
- knn_out = KNN(train = computers_train1_clustered,
220
- test = computers_test1,
221
- k = 50,
222
- response_column = "computer_category",
223
- id_column = "id",
224
- distance_features = ["price","speed","hd","ram","screen"],
225
- voting_weight = 1.0
226
- )
227
- # Print the result DataFrame
228
- print(knn_out)
229
-
230
- """
231
-
232
- # Start the timer to get the build time
233
- _start_time = time.time()
234
-
235
- self.train = train
236
- self.test = test
237
- self.k = k
238
- self.response_column = response_column
239
- self.id_column = id_column
240
- self.distance_features = distance_features
241
- self.voting_weight = voting_weight
242
- self.customized_distance = customized_distance
243
- self.force_mapreduce = force_mapreduce
244
- self.parblock_size = parblock_size
245
- self.partition_key = partition_key
246
- self.accumulate = accumulate
247
- self.output_prob = output_prob
248
- self.train_sequence_column = train_sequence_column
249
- self.test_sequence_column = test_sequence_column
250
- self.output_responses = output_responses
251
- self.test_block_size = test_block_size
252
-
253
- # Create TeradataPyWrapperUtils instance which contains validation functions.
254
- self.__awu = AnalyticsWrapperUtils()
255
- self.__aed_utils = AedUtils()
256
-
257
- # Create argument information matrix to do parameter checking
258
- self.__arg_info_matrix = []
259
- self.__arg_info_matrix.append(["train", self.train, False, (DataFrame)])
260
- self.__arg_info_matrix.append(["test", self.test, False, (DataFrame)])
261
- self.__arg_info_matrix.append(["k", self.k, False, (int)])
262
- self.__arg_info_matrix.append(["response_column", self.response_column, False, (str)])
263
- self.__arg_info_matrix.append(["id_column", self.id_column, False, (str)])
264
- self.__arg_info_matrix.append(["distance_features", self.distance_features, False, (str,list)])
265
- self.__arg_info_matrix.append(["voting_weight", self.voting_weight, True, (float)])
266
- self.__arg_info_matrix.append(["customized_distance", self.customized_distance, True, (str,list)])
267
- self.__arg_info_matrix.append(["force_mapreduce", self.force_mapreduce, True, (bool)])
268
- self.__arg_info_matrix.append(["parblock_size", self.parblock_size, True, (int)])
269
- self.__arg_info_matrix.append(["partition_key", self.partition_key, True, (str)])
270
- self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
271
- self.__arg_info_matrix.append(["output_prob", self.output_prob, True, (bool)])
272
- self.__arg_info_matrix.append(["train_sequence_column", self.train_sequence_column, True, (str,list)])
273
- self.__arg_info_matrix.append(["test_sequence_column", self.test_sequence_column, True, (str,list)])
274
- self.__arg_info_matrix.append(["test_block_size", self.test_block_size, True, (int)])
275
- self.__arg_info_matrix.append(["output_responses", self.output_responses, True, (str, list)])
276
-
277
- if inspect.stack()[1][3] != '_from_model_catalog':
278
- # Perform the function validations
279
- self.__validate()
280
- # Generate the ML query
281
- self.__form_tdml_query()
282
- # Execute ML query
283
- self.__execute()
284
- # Get the prediction type
285
- self._prediction_type = self.__awu._get_function_prediction_type(self)
286
-
287
- # End the timer to get the build time
288
- _end_time = time.time()
289
-
290
- # Calculate the build time
291
- self._build_time = (int)(_end_time - _start_time)
292
-
293
- def __validate(self):
294
- """
295
- Function to validate sqlmr function arguments, which verifies missing
296
- arguments, input argument and table types. Also processes the
297
- argument values.
298
- """
299
- # Check whether customized_distance argument is present.
300
- # If present throw error
301
- # This check is valid till support is provided in R and Python.
302
- if self.customized_distance:
303
- raise TeradataMlException(
304
- Messages.get_message(MessageCodes.UNSUPPORTED_ARGUMENT, "customized_distance", "customized_distance"),
305
- MessageCodes.UNSUPPORTED_ARGUMENT)
306
-
307
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
308
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
309
-
310
- # Make sure that a non-NULL value has been supplied correct type of argument
311
- self.__awu._validate_argument_types(self.__arg_info_matrix)
312
-
313
- # This is a manual check added to validate whether 'partition_key' is provided when 'train_sequence_column' or
314
- # 'test_sequence_column'is specified.
315
- if self.partition_key is None:
316
- if self.train_sequence_column:
317
- raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
318
- 'partition_key',
319
- 'train_sequence_column'
320
- ),
321
- MessageCodes.DEPENDENT_ARG_MISSING)
322
- if self.test_sequence_column:
323
- raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
324
- 'partition_key',
325
- 'test_sequence_column'
326
- ),
327
- MessageCodes.DEPENDENT_ARG_MISSING)
328
-
329
- # This is a manual check to validate that 'output_responses' should be specified only when output_prob=True
330
- if self.output_prob is False and self.output_responses is not None:
331
- raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
332
- 'output_prob=True',
333
- 'output_responses'),
334
- MessageCodes.DEPENDENT_ARG_MISSING)
335
-
336
- # Check to make sure input table types are strings or data frame objects or of valid type.
337
- self.__awu._validate_input_table_datatype(self.train, "train", None)
338
- self.__awu._validate_input_table_datatype(self.test, "test", None)
339
-
340
- # Check whether the input columns passed to the argument are not empty.
341
- # Also check whether the input columns passed to the argument valid or not.
342
- self.__awu._validate_input_columns_not_empty(self.response_column, "response_column")
343
- self.__awu._validate_dataframe_has_argument_columns(self.response_column, "response_column", self.train, "train", False)
344
-
345
- self.__awu._validate_input_columns_not_empty(self.id_column, "id_column")
346
- self.__awu._validate_dataframe_has_argument_columns(self.id_column, "id_column", self.test, "test", False)
347
-
348
- self.__awu._validate_input_columns_not_empty(self.distance_features, "distance_features")
349
- self.__awu._validate_dataframe_has_argument_columns(self.distance_features, "distance_features", self.train, "train", False)
350
-
351
- self.__awu._validate_input_columns_not_empty(self.partition_key, "partition_key")
352
- self.__awu._validate_dataframe_has_argument_columns(self.partition_key, "partition_key", self.train, "train", False)
353
-
354
- self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
355
- self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.test, "test", False)
356
-
357
- self.__awu._validate_input_columns_not_empty(self.train_sequence_column, "train_sequence_column")
358
- self.__awu._validate_dataframe_has_argument_columns(self.train_sequence_column, "train_sequence_column", self.train, "train", False)
359
-
360
- self.__awu._validate_input_columns_not_empty(self.test_sequence_column, "test_sequence_column")
361
- self.__awu._validate_dataframe_has_argument_columns(self.test_sequence_column, "test_sequence_column", self.test, "test", False)
362
-
363
-
364
- def __form_tdml_query(self):
365
- """
366
- Function to generate the analytical function queries. The function defines
367
- variables and list of arguments required to form the query.
368
- """
369
- # Generate temp table names for output table parameters if any.
370
- self.__output_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_knn0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
371
-
372
- # Output table arguments list
373
- self.__func_output_args_sql_names = ["OutputTable"]
374
- self.__func_output_args = [self.__output_table_temp_tablename]
375
-
376
- # Model Cataloging related attributes.
377
- self._sql_specific_attributes = {}
378
- self._sql_formula_attribute_mapper = {}
379
- self._target_column = None
380
- self._algorithm_name = None
381
-
382
- # Generate lists for rest of the function arguments
383
- self.__func_other_arg_sql_names = []
384
- self.__func_other_args = []
385
- self.__func_other_arg_json_datatypes = []
386
-
387
- self.__func_other_arg_sql_names.append("ResponseColumn")
388
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.response_column, "\""), "'"))
389
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
390
-
391
- self.__func_other_arg_sql_names.append("IdColumn")
392
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.id_column, "\""), "'"))
393
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
394
-
395
- self.__func_other_arg_sql_names.append("DistanceFeatures")
396
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.distance_features, "\""), "'"))
397
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
398
-
399
- if self.partition_key is not None:
400
- self.__func_other_arg_sql_names.append("PartitionColumn")
401
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.partition_key, "\""), "'"))
402
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
403
-
404
- if self.accumulate is not None:
405
- self.__func_other_arg_sql_names.append("Accumulate")
406
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
407
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
408
-
409
- self.__func_other_arg_sql_names.append("K")
410
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.k, "'"))
411
- self.__func_other_arg_json_datatypes.append("INTEGER")
412
-
413
- if self.parblock_size is not None:
414
- self.__func_other_arg_sql_names.append("PartitionBlockSize")
415
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.parblock_size, "'"))
416
- self.__func_other_arg_json_datatypes.append("INTEGER")
417
-
418
- if self.test_block_size is not None:
419
- self.__func_other_arg_sql_names.append("TestBlockSize")
420
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.test_block_size, "'"))
421
- self.__func_other_arg_json_datatypes.append("INTEGER")
422
-
423
- if self.force_mapreduce is not None and self.force_mapreduce != False:
424
- self.__func_other_arg_sql_names.append("ForceMapreduce")
425
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.force_mapreduce, "'"))
426
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
427
-
428
- if self.customized_distance is not None:
429
- self.__func_other_arg_sql_names.append("CustomizedDistance")
430
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.customized_distance, "'"))
431
- self.__func_other_arg_json_datatypes.append("STRING")
432
-
433
- if self.voting_weight is not None and self.voting_weight != 0:
434
- self.__func_other_arg_sql_names.append("VotingWeight")
435
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.voting_weight, "'"))
436
- self.__func_other_arg_json_datatypes.append("DOUBLE")
437
-
438
- if self.output_prob is not None and self.output_prob != False:
439
- self.__func_other_arg_sql_names.append("OutputProb")
440
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_prob, "'"))
441
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
442
-
443
- if self.output_responses is not None:
444
- self.__func_other_arg_sql_names.append("Responses")
445
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_responses, "'"))
446
- self.__func_other_arg_json_datatypes.append("STRING")
447
-
448
- # Generate lists for rest of the function arguments
449
- sequence_input_by_list = []
450
- if self.train_sequence_column is not None:
451
- sequence_input_by_list.append("TrainingTable:" + UtilFuncs._teradata_collapse_arglist(self.train_sequence_column, ""))
452
-
453
- if self.test_sequence_column is not None:
454
- sequence_input_by_list.append("TestTable:" + UtilFuncs._teradata_collapse_arglist(self.test_sequence_column, ""))
455
-
456
- if len(sequence_input_by_list) > 0:
457
- self.__func_other_arg_sql_names.append("SequenceInputBy")
458
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
459
- self.__func_other_args.append(sequence_input_by_arg_value)
460
- self.__func_other_arg_json_datatypes.append("STRING")
461
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
462
-
463
-
464
- # Declare empty lists to hold input table information.
465
- self.__func_input_arg_sql_names = []
466
- self.__func_input_table_view_query = []
467
- self.__func_input_dataframe_type = []
468
- self.__func_input_distribution = []
469
- self.__func_input_partition_by_cols = []
470
- self.__func_input_order_by_cols = []
471
-
472
- # Process train
473
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.train, False)
474
- self.__func_input_distribution.append("NONE")
475
- self.__func_input_arg_sql_names.append("TrainingTable")
476
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
477
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
478
- self.__func_input_partition_by_cols.append("NA_character_")
479
- self.__func_input_order_by_cols.append("NA_character_")
480
-
481
- # Process test
482
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.test, False)
483
- self.__func_input_distribution.append("NONE")
484
- self.__func_input_arg_sql_names.append("TestTable")
485
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
486
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
487
- self.__func_input_partition_by_cols.append("NA_character_")
488
- self.__func_input_order_by_cols.append("NA_character_")
489
-
490
- function_name = "KNN"
491
- # Create instance to generate SQLMR.
492
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
493
- self.__func_input_arg_sql_names,
494
- self.__func_input_table_view_query,
495
- self.__func_input_dataframe_type,
496
- self.__func_input_distribution,
497
- self.__func_input_partition_by_cols,
498
- self.__func_input_order_by_cols,
499
- self.__func_other_arg_sql_names,
500
- self.__func_other_args,
501
- self.__func_other_arg_json_datatypes,
502
- self.__func_output_args_sql_names,
503
- self.__func_output_args,
504
- engine="ENGINE_ML")
505
- # Invoke call to SQL-MR generation.
506
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
507
-
508
- # Print SQL-MR query if requested to do so.
509
- if display.print_sqlmr_query:
510
- print(self.sqlmr_query)
511
-
512
- # Set the algorithm name for Model Cataloging.
513
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
514
-
515
- def __execute(self):
516
- """
517
- Function to execute SQL-MR queries.
518
- Create DataFrames for the required SQL-MR outputs.
519
- """
520
- # Generate STDOUT table name and add it to the output table list.
521
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
522
- try:
523
- # Generate the output.
524
- UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
525
- except Exception as emsg:
526
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
527
-
528
- # Update output table data frames.
529
- self._mlresults = []
530
- self.output_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__output_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__output_table_temp_tablename))
531
- self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
532
- self._mlresults.append(self.output_table)
533
- self._mlresults.append(self.output)
534
-
535
- def show_query(self):
536
- """
537
- Function to return the underlying SQL query.
538
- When model object is created using retrieve_model(), then None is returned.
539
- """
540
- return self.sqlmr_query
541
-
542
- def get_prediction_type(self):
543
- """
544
- Function to return the Prediction type of the algorithm.
545
- When model object is created using retrieve_model(), then the value returned is
546
- as saved in the Model Catalog.
547
- """
548
- return self._prediction_type
549
-
550
- def get_target_column(self):
551
- """
552
- Function to return the Target Column of the algorithm.
553
- When model object is created using retrieve_model(), then the value returned is
554
- as saved in the Model Catalog.
555
- """
556
- return self._target_column
557
-
558
- def get_build_time(self):
559
- """
560
- Function to return the build time of the algorithm in seconds.
561
- When model object is created using retrieve_model(), then the value returned is
562
- as saved in the Model Catalog.
563
- """
564
- return self._build_time
565
-
566
- def _get_algorithm_name(self):
567
- """
568
- Function to return the name of the algorithm.
569
- """
570
- return self._algorithm_name
571
-
572
- def _get_sql_specific_attributes(self):
573
- """
574
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
575
- """
576
- return self._sql_specific_attributes
577
-
578
- @classmethod
579
- def _from_model_catalog(cls,
580
- output_table = None,
581
- output = None,
582
- **kwargs):
583
- """
584
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
585
- """
586
- kwargs.pop("output_table", None)
587
- kwargs.pop("output", None)
588
-
589
- # Model Cataloging related attributes.
590
- target_column = kwargs.pop("__target_column", None)
591
- prediction_type = kwargs.pop("__prediction_type", None)
592
- algorithm_name = kwargs.pop("__algorithm_name", None)
593
- build_time = kwargs.pop("__build_time", None)
594
-
595
- # Let's create an object of this class.
596
- obj = cls(**kwargs)
597
- obj.output_table = output_table
598
- obj.output = output
599
-
600
- # Initialize the sqlmr_query class attribute.
601
- obj.sqlmr_query = None
602
-
603
- # Initialize the SQL specific Model Cataloging attributes.
604
- obj._sql_specific_attributes = None
605
- obj._target_column = target_column
606
- obj._prediction_type = prediction_type
607
- obj._algorithm_name = algorithm_name
608
- obj._build_time = build_time
609
-
610
- # Update output table data frames.
611
- obj._mlresults = []
612
- obj.output_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_table))
613
- obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
614
- obj._mlresults.append(obj.output_table)
615
- obj._mlresults.append(obj.output)
616
- return obj
617
-
618
- def __repr__(self):
619
- """
620
- Returns the string representation for a KNN class instance.
621
- """
622
- repr_string="############ STDOUT Output ############"
623
- repr_string = "{}\n\n{}".format(repr_string,self.output)
624
- repr_string="{}\n\n\n############ output_table Output ############".format(repr_string)
625
- repr_string = "{}\n\n{}".format(repr_string,self.output_table)
626
- return repr_string
627
-