teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,400 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.3
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class WeightedMovAvg:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
target_columns = None,
|
|
35
|
-
include_first = False,
|
|
36
|
-
window_size = 10,
|
|
37
|
-
data_sequence_column = None,
|
|
38
|
-
data_partition_column = None,
|
|
39
|
-
data_order_column = None):
|
|
40
|
-
"""
|
|
41
|
-
DESCRIPTION:
|
|
42
|
-
The WeightedMovAvg function computes the weighted moving average the average of
|
|
43
|
-
points in a time series, applying weights to older values. The
|
|
44
|
-
weights for the older values decrease arithmetically.
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
PARAMETERS:
|
|
48
|
-
data:
|
|
49
|
-
Required Argument.
|
|
50
|
-
Specifies the name of the teradataml DataFrame that contains the
|
|
51
|
-
columns.
|
|
52
|
-
|
|
53
|
-
data_partition_column:
|
|
54
|
-
Required Argument.
|
|
55
|
-
Specifies Partition By columns for data.
|
|
56
|
-
Values to this argument can be provided as list, if multiple columns
|
|
57
|
-
are used for partition.
|
|
58
|
-
Types: str OR list of Strings (str)
|
|
59
|
-
|
|
60
|
-
data_order_column:
|
|
61
|
-
Required Argument.
|
|
62
|
-
Specifies Order By columns for data.
|
|
63
|
-
Values to this argument can be provided as list, if multiple columns
|
|
64
|
-
are used for ordering.
|
|
65
|
-
Types: str OR list of Strings (str)
|
|
66
|
-
|
|
67
|
-
target_columns:
|
|
68
|
-
Optional Argument.
|
|
69
|
-
Specifies the input column names for which the moving average is to
|
|
70
|
-
be computed. If you omit this argument, then the function copies
|
|
71
|
-
every input column to the output teradataml DataFrame but does not
|
|
72
|
-
compute moving average.
|
|
73
|
-
Types: str OR list of Strings (str)
|
|
74
|
-
|
|
75
|
-
include_first:
|
|
76
|
-
Optional Argument.
|
|
77
|
-
Specifies whether to include the starting rows in the output table.
|
|
78
|
-
If you specify "true", the output columns for the starting rows
|
|
79
|
-
contain NULL, because their exponential moving average is undefined.
|
|
80
|
-
Default Value: False
|
|
81
|
-
Types: bool
|
|
82
|
-
|
|
83
|
-
window_size:
|
|
84
|
-
Optional Argument.
|
|
85
|
-
Specifies the number of old values to be considered for calculating
|
|
86
|
-
the new weighted moving average.
|
|
87
|
-
Default Value: 10
|
|
88
|
-
Types: int
|
|
89
|
-
|
|
90
|
-
data_sequence_column:
|
|
91
|
-
Optional Argument.
|
|
92
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
93
|
-
the input argument "data". The argument is used to ensure
|
|
94
|
-
deterministic results for functions which produce results that vary
|
|
95
|
-
from run to run.
|
|
96
|
-
Types: str OR list of Strings (str)
|
|
97
|
-
|
|
98
|
-
RETURNS:
|
|
99
|
-
Instance of WeightedMovAvg.
|
|
100
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
101
|
-
references, such as WeightedMovAvgObj.<attribute_name>.
|
|
102
|
-
Output teradataml DataFrame attribute name is:
|
|
103
|
-
result
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
RAISES:
|
|
107
|
-
TeradataMlException
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
EXAMPLES:
|
|
111
|
-
# Load Example Data
|
|
112
|
-
load_example_data("weightedmovavg", "stock_vol")
|
|
113
|
-
|
|
114
|
-
# Create teradataml DataFrame objects.
|
|
115
|
-
stock_vol = DataFrame.from_table("stock_vol")
|
|
116
|
-
|
|
117
|
-
# Example: Compute the weighted moving average for columns: "stockprice" and "volume".
|
|
118
|
-
# The input table, stock_vol, contains hypothetical stock price and volume data of three
|
|
119
|
-
# companies between 17 May 1961 and 21 June 1961.
|
|
120
|
-
WeightedMovAvg_out = WeightedMovAvg(data = stock_vol,
|
|
121
|
-
data_partition_column = ["id"],
|
|
122
|
-
data_order_column = ["name"],
|
|
123
|
-
target_columns = ["stockprice","volume"],
|
|
124
|
-
include_first = True,
|
|
125
|
-
window_size = 5
|
|
126
|
-
)
|
|
127
|
-
|
|
128
|
-
# Print the results
|
|
129
|
-
print(WeightedMovAvg_out)
|
|
130
|
-
|
|
131
|
-
"""
|
|
132
|
-
|
|
133
|
-
# Start the timer to get the build time
|
|
134
|
-
_start_time = time.time()
|
|
135
|
-
|
|
136
|
-
self.data = data
|
|
137
|
-
self.target_columns = target_columns
|
|
138
|
-
self.include_first = include_first
|
|
139
|
-
self.window_size = window_size
|
|
140
|
-
self.data_sequence_column = data_sequence_column
|
|
141
|
-
self.data_partition_column = data_partition_column
|
|
142
|
-
self.data_order_column = data_order_column
|
|
143
|
-
|
|
144
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
145
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
146
|
-
self.__aed_utils = AedUtils()
|
|
147
|
-
|
|
148
|
-
# Create argument information matrix to do parameter checking
|
|
149
|
-
self.__arg_info_matrix = []
|
|
150
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
151
|
-
self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, False, (str,list)])
|
|
152
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, False, (str,list)])
|
|
153
|
-
self.__arg_info_matrix.append(["target_columns", self.target_columns, True, (str,list)])
|
|
154
|
-
self.__arg_info_matrix.append(["include_first", self.include_first, True, (bool)])
|
|
155
|
-
self.__arg_info_matrix.append(["window_size", self.window_size, True, (int)])
|
|
156
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
157
|
-
|
|
158
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
159
|
-
# Perform the function validations
|
|
160
|
-
self.__validate()
|
|
161
|
-
# Generate the ML query
|
|
162
|
-
self.__form_tdml_query()
|
|
163
|
-
# Execute ML query
|
|
164
|
-
self.__execute()
|
|
165
|
-
# Get the prediction type
|
|
166
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
167
|
-
|
|
168
|
-
# End the timer to get the build time
|
|
169
|
-
_end_time = time.time()
|
|
170
|
-
|
|
171
|
-
# Calculate the build time
|
|
172
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
173
|
-
|
|
174
|
-
def __validate(self):
|
|
175
|
-
"""
|
|
176
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
177
|
-
arguments, input argument and table types. Also processes the
|
|
178
|
-
argument values.
|
|
179
|
-
"""
|
|
180
|
-
|
|
181
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
182
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
183
|
-
|
|
184
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
185
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
186
|
-
|
|
187
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
188
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
189
|
-
|
|
190
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
191
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
192
|
-
self.__awu._validate_input_columns_not_empty(self.target_columns, "target_columns")
|
|
193
|
-
self.__awu._validate_dataframe_has_argument_columns(self.target_columns, "target_columns", self.data, "data", False)
|
|
194
|
-
|
|
195
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
196
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
197
|
-
|
|
198
|
-
self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
|
|
199
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
|
|
200
|
-
|
|
201
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
202
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
def __form_tdml_query(self):
|
|
206
|
-
"""
|
|
207
|
-
Function to generate the analytical function queries. The function defines
|
|
208
|
-
variables and list of arguments required to form the query.
|
|
209
|
-
"""
|
|
210
|
-
|
|
211
|
-
# Output table arguments list
|
|
212
|
-
self.__func_output_args_sql_names = []
|
|
213
|
-
self.__func_output_args = []
|
|
214
|
-
|
|
215
|
-
# Model Cataloging related attributes.
|
|
216
|
-
self._sql_specific_attributes = {}
|
|
217
|
-
self._sql_formula_attribute_mapper = {}
|
|
218
|
-
self._target_column = None
|
|
219
|
-
self._algorithm_name = None
|
|
220
|
-
|
|
221
|
-
# Generate lists for rest of the function arguments
|
|
222
|
-
self.__func_other_arg_sql_names = []
|
|
223
|
-
self.__func_other_args = []
|
|
224
|
-
self.__func_other_arg_json_datatypes = []
|
|
225
|
-
|
|
226
|
-
if self.target_columns is not None:
|
|
227
|
-
self.__func_other_arg_sql_names.append("TargetColumns")
|
|
228
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.target_columns, "\""), "'"))
|
|
229
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
230
|
-
|
|
231
|
-
if self.window_size is not None and self.window_size != 10:
|
|
232
|
-
self.__func_other_arg_sql_names.append("WindowSize")
|
|
233
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.window_size, "'"))
|
|
234
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
235
|
-
|
|
236
|
-
if self.include_first is not None and self.include_first != False:
|
|
237
|
-
self.__func_other_arg_sql_names.append("IncludeFirst")
|
|
238
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.include_first, "'"))
|
|
239
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
240
|
-
|
|
241
|
-
# Generate lists for rest of the function arguments
|
|
242
|
-
sequence_input_by_list = []
|
|
243
|
-
if self.data_sequence_column is not None:
|
|
244
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
245
|
-
|
|
246
|
-
if len(sequence_input_by_list) > 0:
|
|
247
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
248
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
249
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
250
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
251
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
252
|
-
|
|
253
|
-
|
|
254
|
-
# Declare empty lists to hold input table information.
|
|
255
|
-
self.__func_input_arg_sql_names = []
|
|
256
|
-
self.__func_input_table_view_query = []
|
|
257
|
-
self.__func_input_dataframe_type = []
|
|
258
|
-
self.__func_input_distribution = []
|
|
259
|
-
self.__func_input_partition_by_cols = []
|
|
260
|
-
self.__func_input_order_by_cols = []
|
|
261
|
-
|
|
262
|
-
# Process data
|
|
263
|
-
self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
|
|
264
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
265
|
-
self.__func_input_distribution.append("FACT")
|
|
266
|
-
self.__func_input_arg_sql_names.append("input")
|
|
267
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
268
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
269
|
-
self.__func_input_partition_by_cols.append(self.data_partition_column)
|
|
270
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
271
|
-
|
|
272
|
-
function_name = "WeightedMovAvg"
|
|
273
|
-
# Create instance to generate SQLMR.
|
|
274
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
275
|
-
self.__func_input_arg_sql_names,
|
|
276
|
-
self.__func_input_table_view_query,
|
|
277
|
-
self.__func_input_dataframe_type,
|
|
278
|
-
self.__func_input_distribution,
|
|
279
|
-
self.__func_input_partition_by_cols,
|
|
280
|
-
self.__func_input_order_by_cols,
|
|
281
|
-
self.__func_other_arg_sql_names,
|
|
282
|
-
self.__func_other_args,
|
|
283
|
-
self.__func_other_arg_json_datatypes,
|
|
284
|
-
self.__func_output_args_sql_names,
|
|
285
|
-
self.__func_output_args,
|
|
286
|
-
engine="ENGINE_ML")
|
|
287
|
-
# Invoke call to SQL-MR generation.
|
|
288
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
289
|
-
|
|
290
|
-
# Print SQL-MR query if requested to do so.
|
|
291
|
-
if display.print_sqlmr_query:
|
|
292
|
-
print(self.sqlmr_query)
|
|
293
|
-
|
|
294
|
-
# Set the algorithm name for Model Cataloging.
|
|
295
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
296
|
-
|
|
297
|
-
def __execute(self):
|
|
298
|
-
"""
|
|
299
|
-
Function to execute SQL-MR queries.
|
|
300
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
301
|
-
"""
|
|
302
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
303
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
304
|
-
try:
|
|
305
|
-
# Generate the output.
|
|
306
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
307
|
-
except Exception as emsg:
|
|
308
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
309
|
-
|
|
310
|
-
# Update output table data frames.
|
|
311
|
-
self._mlresults = []
|
|
312
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
313
|
-
self._mlresults.append(self.result)
|
|
314
|
-
|
|
315
|
-
def show_query(self):
|
|
316
|
-
"""
|
|
317
|
-
Function to return the underlying SQL query.
|
|
318
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
319
|
-
"""
|
|
320
|
-
return self.sqlmr_query
|
|
321
|
-
|
|
322
|
-
def get_prediction_type(self):
|
|
323
|
-
"""
|
|
324
|
-
Function to return the Prediction type of the algorithm.
|
|
325
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
326
|
-
as saved in the Model Catalog.
|
|
327
|
-
"""
|
|
328
|
-
return self._prediction_type
|
|
329
|
-
|
|
330
|
-
def get_target_column(self):
|
|
331
|
-
"""
|
|
332
|
-
Function to return the Target Column of the algorithm.
|
|
333
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
334
|
-
as saved in the Model Catalog.
|
|
335
|
-
"""
|
|
336
|
-
return self._target_column
|
|
337
|
-
|
|
338
|
-
def get_build_time(self):
|
|
339
|
-
"""
|
|
340
|
-
Function to return the build time of the algorithm in seconds.
|
|
341
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
342
|
-
as saved in the Model Catalog.
|
|
343
|
-
"""
|
|
344
|
-
return self._build_time
|
|
345
|
-
|
|
346
|
-
def _get_algorithm_name(self):
|
|
347
|
-
"""
|
|
348
|
-
Function to return the name of the algorithm.
|
|
349
|
-
"""
|
|
350
|
-
return self._algorithm_name
|
|
351
|
-
|
|
352
|
-
def _get_sql_specific_attributes(self):
|
|
353
|
-
"""
|
|
354
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
355
|
-
"""
|
|
356
|
-
return self._sql_specific_attributes
|
|
357
|
-
|
|
358
|
-
@classmethod
|
|
359
|
-
def _from_model_catalog(cls,
|
|
360
|
-
result = None,
|
|
361
|
-
**kwargs):
|
|
362
|
-
"""
|
|
363
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
364
|
-
"""
|
|
365
|
-
kwargs.pop("result", None)
|
|
366
|
-
|
|
367
|
-
# Model Cataloging related attributes.
|
|
368
|
-
target_column = kwargs.pop("__target_column", None)
|
|
369
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
370
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
371
|
-
build_time = kwargs.pop("__build_time", None)
|
|
372
|
-
|
|
373
|
-
# Let's create an object of this class.
|
|
374
|
-
obj = cls(**kwargs)
|
|
375
|
-
obj.result = result
|
|
376
|
-
|
|
377
|
-
# Initialize the sqlmr_query class attribute.
|
|
378
|
-
obj.sqlmr_query = None
|
|
379
|
-
|
|
380
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
381
|
-
obj._sql_specific_attributes = None
|
|
382
|
-
obj._target_column = target_column
|
|
383
|
-
obj._prediction_type = prediction_type
|
|
384
|
-
obj._algorithm_name = algorithm_name
|
|
385
|
-
obj._build_time = build_time
|
|
386
|
-
|
|
387
|
-
# Update output table data frames.
|
|
388
|
-
obj._mlresults = []
|
|
389
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
390
|
-
obj._mlresults.append(obj.result)
|
|
391
|
-
return obj
|
|
392
|
-
|
|
393
|
-
def __repr__(self):
|
|
394
|
-
"""
|
|
395
|
-
Returns the string representation for a WeightedMovAvg class instance.
|
|
396
|
-
"""
|
|
397
|
-
repr_string="############ STDOUT Output ############"
|
|
398
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
399
|
-
return repr_string
|
|
400
|
-
|