teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,530 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.7
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class TextTagger:
31
-
32
- def __init__(self,
33
- data = None,
34
- rules_data = None,
35
- language = "en",
36
- rules = None,
37
- tokenize = False,
38
- outputby_tag = False,
39
- tag_delimiter = ",",
40
- accumulate = None,
41
- data_sequence_column = None,
42
- rules_data_sequence_column = None,
43
- data_order_column = None,
44
- rules_data_order_column = None):
45
- """
46
- DESCRIPTION:
47
- The TextTagger function tags text documents according to user-defined
48
- rules that use text-processing and logical operators.
49
-
50
-
51
- PARAMETERS:
52
- data:
53
- Required Argument.
54
- The input teradataml DataFrame that contains the texts.
55
-
56
- data_order_column:
57
- Optional Argument.
58
- Specifies Order By columns for data.
59
- Values to this argument can be provided as a list, if multiple
60
- columns are used for ordering.
61
- Types: str OR list of Strings (str)
62
-
63
- rules_data:
64
- Optional Argument.
65
- The input teradataml DataFrame that contains the rules.
66
-
67
- rules_data_order_column:
68
- Optional Argument.
69
- Specifies Order By columns for rules_data.
70
- Values to this argument can be provided as a list, if multiple
71
- columns are used for ordering.
72
- Types: str OR list of Strings (str)
73
-
74
- language:
75
- Optional Argument.
76
- Specifies the language of the input text: "en": English (default),
77
- "zh_cn": Simple Chinese, "zh_tw": Traditional Chinese, If Tokenize
78
- specifies "true", then the function uses the value of Language to
79
- create the word tokenizer.
80
- Default Value: "en"
81
- Permitted Values: en, zh_CN, zh_TW
82
- Types: str
83
-
84
- rules:
85
- Optional Argument.
86
- Specifies the tag names and tagging rules. Use this argument if and
87
- only if you do not specify a rules table. For information about
88
- defining tagging rules, refer to "Defining Tagging Rules" in function documentation.
89
- Types: str OR list of Strings (str)
90
-
91
- tokenize:
92
- Optional Argument.
93
- Specifies whether the function tokenizes the input text before
94
- evaluating the rules and tokenizes the text string parameter in the
95
- rule definition when parsing a rule. If you specify "True", then you
96
- must also specify the Language argument.
97
- Default Value: False
98
- Types: bool
99
-
100
- outputby_tag:
101
- Optional Argument.
102
- Specifies whether the function outputs a tuple when a text document
103
- matches multiple tags. which means that one tuple in the output
104
- stands for one document and the matched tags are listed in the output
105
- column tag.
106
- Default Value: False
107
- Types: bool
108
-
109
- tag_delimiter:
110
- Optional Argument.
111
- Specifies the delimiter that separates multiple tags in the output
112
- column tag if outputby.tag has the value "False" (the default). The
113
- default value is the comma (,). If outputby.tag has the value "True",
114
- specifying this argument causes an error.
115
- Default Value: ","
116
- Types: str
117
-
118
- accumulate:
119
- Optional Argument.
120
- Specifies the names of text teradataml DataFrame columns to copy to
121
- the output table.
122
- Note: Do not use the name "tag" for an accumulate_column, because the
123
- function uses that name for the output teradataml DataFrame column
124
- that contains the tags.
125
- Types: str OR list of Strings (str)
126
-
127
- data_sequence_column:
128
- Optional Argument.
129
- Specifies the list of column(s) that uniquely identifies each row of
130
- the input argument "data". The argument is used to ensure
131
- deterministic results for functions which produce results that vary
132
- from run to run.
133
- Types: str OR list of Strings (str)
134
-
135
- rules_data_sequence_column:
136
- Optional Argument.
137
- Specifies the list of column(s) that uniquely identifies each row of
138
- the input argument "rules_data". The argument is used to ensure
139
- deterministic results for functions which produce results that vary
140
- from run to run.
141
- Types: str OR list of Strings (str)
142
-
143
- RETURNS:
144
- Instance of TextTagger.
145
- Output teradataml DataFrames can be accessed using attribute
146
- references, such as TextTaggerObj.<attribute_name>.
147
- Output teradataml DataFrame attribute name is:
148
- result
149
-
150
-
151
- RAISES:
152
- TeradataMlException
153
-
154
-
155
- EXAMPLES:
156
- # Load the data to run the example.
157
- load_example_data("TextTagger",["text_inputs","rule_inputs"])
158
-
159
- # Create teradataml DataFrame objects.
160
- text_inputs = DataFrame("text_inputs")
161
- rule_inputs = DataFrame("rule_inputs")
162
-
163
- # Example 1:
164
- # Passing rules through 'rules_data' argument as teradataml dataframe.
165
- result = TextTagger(data=text_inputs,
166
- rules_data=rule_inputs,
167
- accumulate='id',
168
- language='en',
169
- tokenize=False,
170
- outputby_tag=False,
171
- tag_delimiter=',',
172
- data_sequence_column='id',
173
- rules_data_sequence_column='tagname')
174
- # Print the result
175
- print(result.result)
176
-
177
- # Example 2:
178
- # Passing rules through 'rules' argument as List of strings
179
- result = TextTagger(data=text_inputs,
180
- accumulate='id',
181
- rules=[
182
- 'contain(content,"floods",1,) or contain(content,"tsunamis",1,) AS Natural-Disaster',
183
- 'contain(content,"Roger",1,) and contain(content,"Nadal",1,) AS Tennis-Rivalry',
184
- 'contain(titles,"Tennis",1,) and contain(content,"Roger",1,) AS Tennis-Greats',
185
- 'contain(content,"India",1,) and contain(content,"Pakistan",1,) AS Cricket-Rivalry',
186
- 'contain(content,"Australia",1,) and contain(content,"England",1,) AS The-Ashes'],
187
- language='en',
188
- tokenize=False,
189
- outputby_tag=False,
190
- tag_delimiter=',',
191
- data_sequence_column='id')
192
- # Print the result
193
- print(result.result)
194
-
195
- # Example 3 - Specify dictionary file in rules argument
196
- result = TextTagger(data = text_inputs,
197
- rules=['dict(content, "keywords.txt", 1,) and equal(titles, "Chennai Floods") AS Natural-Disaster',
198
- 'dict(content, "keywords.txt", 2,) and equal(catalog, "sports") AS Great-Sports-Rivalry '],
199
- accumulate = ["id"])
200
-
201
- # Print the result
202
- print(result.result)
203
-
204
- # Example 4 - Specify superdist in rules argument
205
- result = TextTagger(data = text_inputs,
206
- rules=['superdist(content,"Chennai","floods",sent,,) AS Chennai-Flood-Disaster',
207
- 'superdist(content,"Roger","titles",para, "Nadal",para) AS Roger-Champion',
208
- 'superdist(content,"Roger","Nadal",para,,) AS Tennis-Rivalry',
209
- 'contain(content,regex"[A|a]shes",2,) AS Aus-Eng-Cricket',
210
- 'superdist(content,"Australia","won",nw5,,) AS Aus-victory'],
211
- accumulate = ["id"]
212
- )
213
- # Print the result
214
- print(result.result)
215
-
216
- """
217
-
218
- # Start the timer to get the build time
219
- _start_time = time.time()
220
-
221
- self.data = data
222
- self.rules_data = rules_data
223
- self.language = language
224
- self.rules = rules
225
- self.tokenize = tokenize
226
- self.outputby_tag = outputby_tag
227
- self.tag_delimiter = tag_delimiter
228
- self.accumulate = accumulate
229
- self.data_sequence_column = data_sequence_column
230
- self.rules_data_sequence_column = rules_data_sequence_column
231
- self.data_order_column = data_order_column
232
- self.rules_data_order_column = rules_data_order_column
233
-
234
- # Create TeradataPyWrapperUtils instance which contains validation functions.
235
- self.__awu = AnalyticsWrapperUtils()
236
- self.__aed_utils = AedUtils()
237
-
238
- # Create argument information matrix to do parameter checking
239
- self.__arg_info_matrix = []
240
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
241
- self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
242
- self.__arg_info_matrix.append(["rules_data", self.rules_data, True, (DataFrame)])
243
- self.__arg_info_matrix.append(["rules_data_order_column", self.rules_data_order_column, True, (str,list)])
244
- self.__arg_info_matrix.append(["language", self.language, True, (str)])
245
- self.__arg_info_matrix.append(["rules", self.rules, True, (str,list)])
246
- self.__arg_info_matrix.append(["tokenize", self.tokenize, True, (bool)])
247
- self.__arg_info_matrix.append(["outputby_tag", self.outputby_tag, True, (bool)])
248
- self.__arg_info_matrix.append(["tag_delimiter", self.tag_delimiter, True, (str)])
249
- self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
250
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
251
- self.__arg_info_matrix.append(["rules_data_sequence_column", self.rules_data_sequence_column, True, (str,list)])
252
-
253
- if inspect.stack()[1][3] != '_from_model_catalog':
254
- # Perform the function validations
255
- self.__validate()
256
- # Generate the ML query
257
- self.__form_tdml_query()
258
- # Execute ML query
259
- self.__execute()
260
- # Get the prediction type
261
- self._prediction_type = self.__awu._get_function_prediction_type(self)
262
-
263
- # End the timer to get the build time
264
- _end_time = time.time()
265
-
266
- # Calculate the build time
267
- self._build_time = (int)(_end_time - _start_time)
268
-
269
- def __validate(self):
270
- """
271
- Function to validate sqlmr function arguments, which verifies missing
272
- arguments, input argument and table types. Also processes the
273
- argument values.
274
- """
275
-
276
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
277
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
278
-
279
- # Make sure that a non-NULL value has been supplied correct type of argument
280
- self.__awu._validate_argument_types(self.__arg_info_matrix)
281
-
282
- # Check to make sure input table types are strings or data frame objects or of valid type.
283
- self.__awu._validate_input_table_datatype(self.data, "data", None)
284
- self.__awu._validate_input_table_datatype(self.rules_data, "rules_data", None)
285
-
286
- # Check for permitted values
287
- language_permitted_values = ["EN", "ZH_CN", "ZH_TW"]
288
- self.__awu._validate_permitted_values(self.language, language_permitted_values, "language")
289
-
290
- # Check whether the input columns passed to the argument are not empty.
291
- # Also check whether the input columns passed to the argument valid or not.
292
- self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
293
- self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.data, "data", False)
294
-
295
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
296
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
297
-
298
- self.__awu._validate_input_columns_not_empty(self.rules_data_sequence_column, "rules_data_sequence_column")
299
- self.__awu._validate_dataframe_has_argument_columns(self.rules_data_sequence_column, "rules_data_sequence_column", self.rules_data, "rules_data", False)
300
-
301
- self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
302
- self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
303
-
304
- self.__awu._validate_input_columns_not_empty(self.rules_data_order_column, "rules_data_order_column")
305
- self.__awu._validate_dataframe_has_argument_columns(self.rules_data_order_column, "rules_data_order_column", self.rules_data, "rules_data", False)
306
-
307
-
308
- def __form_tdml_query(self):
309
- """
310
- Function to generate the analytical function queries. The function defines
311
- variables and list of arguments required to form the query.
312
- """
313
-
314
- # Output table arguments list
315
- self.__func_output_args_sql_names = []
316
- self.__func_output_args = []
317
-
318
- # Model Cataloging related attributes.
319
- self._sql_specific_attributes = {}
320
- self._sql_formula_attribute_mapper = {}
321
- self._target_column = None
322
- self._algorithm_name = None
323
-
324
- # Generate lists for rest of the function arguments
325
- self.__func_other_arg_sql_names = []
326
- self.__func_other_args = []
327
- self.__func_other_arg_json_datatypes = []
328
-
329
- if self.accumulate is not None:
330
- self.__func_other_arg_sql_names.append("Accumulate")
331
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
332
- self.__func_other_arg_json_datatypes.append("COLUMNS")
333
-
334
- if self.rules is not None:
335
- self.__func_other_arg_sql_names.append("TaggingRules")
336
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.rules, "'"))
337
- self.__func_other_arg_json_datatypes.append("STRING")
338
-
339
- if self.language is not None and self.language != "en":
340
- self.__func_other_arg_sql_names.append("InputLanguage")
341
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.language, "'"))
342
- self.__func_other_arg_json_datatypes.append("STRING")
343
-
344
- if self.tokenize is not None and self.tokenize != False:
345
- self.__func_other_arg_sql_names.append("Tokenize")
346
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.tokenize, "'"))
347
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
348
-
349
- if self.outputby_tag is not None and self.outputby_tag != False:
350
- self.__func_other_arg_sql_names.append("OutputbyTag")
351
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.outputby_tag, "'"))
352
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
353
-
354
- if self.tag_delimiter is not None and self.tag_delimiter != ",":
355
- self.__func_other_arg_sql_names.append("TagDelimiter")
356
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.tag_delimiter, "'"))
357
- self.__func_other_arg_json_datatypes.append("STRING")
358
-
359
- # Generate lists for rest of the function arguments
360
- sequence_input_by_list = []
361
- if self.data_sequence_column is not None:
362
- sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
363
-
364
- if self.rules_data_sequence_column is not None:
365
- sequence_input_by_list.append("rules:" + UtilFuncs._teradata_collapse_arglist(self.rules_data_sequence_column, ""))
366
-
367
- if len(sequence_input_by_list) > 0:
368
- self.__func_other_arg_sql_names.append("SequenceInputBy")
369
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
370
- self.__func_other_args.append(sequence_input_by_arg_value)
371
- self.__func_other_arg_json_datatypes.append("STRING")
372
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
373
-
374
-
375
- # Declare empty lists to hold input table information.
376
- self.__func_input_arg_sql_names = []
377
- self.__func_input_table_view_query = []
378
- self.__func_input_dataframe_type = []
379
- self.__func_input_distribution = []
380
- self.__func_input_partition_by_cols = []
381
- self.__func_input_order_by_cols = []
382
-
383
- # Process data
384
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
385
- self.__func_input_distribution.append("FACT")
386
- self.__func_input_arg_sql_names.append("input")
387
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
388
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
389
- self.__func_input_partition_by_cols.append("ANY")
390
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
391
-
392
- # Process rules_data
393
- if self.rules_data is not None:
394
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.rules_data, False)
395
- self.__func_input_distribution.append("DIMENSION")
396
- self.__func_input_arg_sql_names.append("rules")
397
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
398
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
399
- self.__func_input_partition_by_cols.append("NA_character_")
400
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.rules_data_order_column, "\""))
401
-
402
- function_name = "TextTagger"
403
- # Create instance to generate SQLMR.
404
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
405
- self.__func_input_arg_sql_names,
406
- self.__func_input_table_view_query,
407
- self.__func_input_dataframe_type,
408
- self.__func_input_distribution,
409
- self.__func_input_partition_by_cols,
410
- self.__func_input_order_by_cols,
411
- self.__func_other_arg_sql_names,
412
- self.__func_other_args,
413
- self.__func_other_arg_json_datatypes,
414
- self.__func_output_args_sql_names,
415
- self.__func_output_args,
416
- engine="ENGINE_ML")
417
- # Invoke call to SQL-MR generation.
418
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
419
-
420
- # Print SQL-MR query if requested to do so.
421
- if display.print_sqlmr_query:
422
- print(self.sqlmr_query)
423
-
424
- # Set the algorithm name for Model Cataloging.
425
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
426
-
427
- def __execute(self):
428
- """
429
- Function to execute SQL-MR queries.
430
- Create DataFrames for the required SQL-MR outputs.
431
- """
432
- # Generate STDOUT table name and add it to the output table list.
433
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
434
- try:
435
- # Generate the output.
436
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
437
- except Exception as emsg:
438
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
439
-
440
- # Update output table data frames.
441
- self._mlresults = []
442
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
443
- self._mlresults.append(self.result)
444
-
445
- def show_query(self):
446
- """
447
- Function to return the underlying SQL query.
448
- When model object is created using retrieve_model(), then None is returned.
449
- """
450
- return self.sqlmr_query
451
-
452
- def get_prediction_type(self):
453
- """
454
- Function to return the Prediction type of the algorithm.
455
- When model object is created using retrieve_model(), then the value returned is
456
- as saved in the Model Catalog.
457
- """
458
- return self._prediction_type
459
-
460
- def get_target_column(self):
461
- """
462
- Function to return the Target Column of the algorithm.
463
- When model object is created using retrieve_model(), then the value returned is
464
- as saved in the Model Catalog.
465
- """
466
- return self._target_column
467
-
468
- def get_build_time(self):
469
- """
470
- Function to return the build time of the algorithm in seconds.
471
- When model object is created using retrieve_model(), then the value returned is
472
- as saved in the Model Catalog.
473
- """
474
- return self._build_time
475
-
476
- def _get_algorithm_name(self):
477
- """
478
- Function to return the name of the algorithm.
479
- """
480
- return self._algorithm_name
481
-
482
- def _get_sql_specific_attributes(self):
483
- """
484
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
485
- """
486
- return self._sql_specific_attributes
487
-
488
- @classmethod
489
- def _from_model_catalog(cls,
490
- result = None,
491
- **kwargs):
492
- """
493
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
494
- """
495
- kwargs.pop("result", None)
496
-
497
- # Model Cataloging related attributes.
498
- target_column = kwargs.pop("__target_column", None)
499
- prediction_type = kwargs.pop("__prediction_type", None)
500
- algorithm_name = kwargs.pop("__algorithm_name", None)
501
- build_time = kwargs.pop("__build_time", None)
502
-
503
- # Let's create an object of this class.
504
- obj = cls(**kwargs)
505
- obj.result = result
506
-
507
- # Initialize the sqlmr_query class attribute.
508
- obj.sqlmr_query = None
509
-
510
- # Initialize the SQL specific Model Cataloging attributes.
511
- obj._sql_specific_attributes = None
512
- obj._target_column = target_column
513
- obj._prediction_type = prediction_type
514
- obj._algorithm_name = algorithm_name
515
- obj._build_time = build_time
516
-
517
- # Update output table data frames.
518
- obj._mlresults = []
519
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
520
- obj._mlresults.append(obj.result)
521
- return obj
522
-
523
- def __repr__(self):
524
- """
525
- Returns the string representation for a TextTagger class instance.
526
- """
527
- repr_string="############ STDOUT Output ############"
528
- repr_string = "{}\n\n{}".format(repr_string,self.result)
529
- return repr_string
530
-