teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,530 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.7
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class TextTagger:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
rules_data = None,
|
|
35
|
-
language = "en",
|
|
36
|
-
rules = None,
|
|
37
|
-
tokenize = False,
|
|
38
|
-
outputby_tag = False,
|
|
39
|
-
tag_delimiter = ",",
|
|
40
|
-
accumulate = None,
|
|
41
|
-
data_sequence_column = None,
|
|
42
|
-
rules_data_sequence_column = None,
|
|
43
|
-
data_order_column = None,
|
|
44
|
-
rules_data_order_column = None):
|
|
45
|
-
"""
|
|
46
|
-
DESCRIPTION:
|
|
47
|
-
The TextTagger function tags text documents according to user-defined
|
|
48
|
-
rules that use text-processing and logical operators.
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
PARAMETERS:
|
|
52
|
-
data:
|
|
53
|
-
Required Argument.
|
|
54
|
-
The input teradataml DataFrame that contains the texts.
|
|
55
|
-
|
|
56
|
-
data_order_column:
|
|
57
|
-
Optional Argument.
|
|
58
|
-
Specifies Order By columns for data.
|
|
59
|
-
Values to this argument can be provided as a list, if multiple
|
|
60
|
-
columns are used for ordering.
|
|
61
|
-
Types: str OR list of Strings (str)
|
|
62
|
-
|
|
63
|
-
rules_data:
|
|
64
|
-
Optional Argument.
|
|
65
|
-
The input teradataml DataFrame that contains the rules.
|
|
66
|
-
|
|
67
|
-
rules_data_order_column:
|
|
68
|
-
Optional Argument.
|
|
69
|
-
Specifies Order By columns for rules_data.
|
|
70
|
-
Values to this argument can be provided as a list, if multiple
|
|
71
|
-
columns are used for ordering.
|
|
72
|
-
Types: str OR list of Strings (str)
|
|
73
|
-
|
|
74
|
-
language:
|
|
75
|
-
Optional Argument.
|
|
76
|
-
Specifies the language of the input text: "en": English (default),
|
|
77
|
-
"zh_cn": Simple Chinese, "zh_tw": Traditional Chinese, If Tokenize
|
|
78
|
-
specifies "true", then the function uses the value of Language to
|
|
79
|
-
create the word tokenizer.
|
|
80
|
-
Default Value: "en"
|
|
81
|
-
Permitted Values: en, zh_CN, zh_TW
|
|
82
|
-
Types: str
|
|
83
|
-
|
|
84
|
-
rules:
|
|
85
|
-
Optional Argument.
|
|
86
|
-
Specifies the tag names and tagging rules. Use this argument if and
|
|
87
|
-
only if you do not specify a rules table. For information about
|
|
88
|
-
defining tagging rules, refer to "Defining Tagging Rules" in function documentation.
|
|
89
|
-
Types: str OR list of Strings (str)
|
|
90
|
-
|
|
91
|
-
tokenize:
|
|
92
|
-
Optional Argument.
|
|
93
|
-
Specifies whether the function tokenizes the input text before
|
|
94
|
-
evaluating the rules and tokenizes the text string parameter in the
|
|
95
|
-
rule definition when parsing a rule. If you specify "True", then you
|
|
96
|
-
must also specify the Language argument.
|
|
97
|
-
Default Value: False
|
|
98
|
-
Types: bool
|
|
99
|
-
|
|
100
|
-
outputby_tag:
|
|
101
|
-
Optional Argument.
|
|
102
|
-
Specifies whether the function outputs a tuple when a text document
|
|
103
|
-
matches multiple tags. which means that one tuple in the output
|
|
104
|
-
stands for one document and the matched tags are listed in the output
|
|
105
|
-
column tag.
|
|
106
|
-
Default Value: False
|
|
107
|
-
Types: bool
|
|
108
|
-
|
|
109
|
-
tag_delimiter:
|
|
110
|
-
Optional Argument.
|
|
111
|
-
Specifies the delimiter that separates multiple tags in the output
|
|
112
|
-
column tag if outputby.tag has the value "False" (the default). The
|
|
113
|
-
default value is the comma (,). If outputby.tag has the value "True",
|
|
114
|
-
specifying this argument causes an error.
|
|
115
|
-
Default Value: ","
|
|
116
|
-
Types: str
|
|
117
|
-
|
|
118
|
-
accumulate:
|
|
119
|
-
Optional Argument.
|
|
120
|
-
Specifies the names of text teradataml DataFrame columns to copy to
|
|
121
|
-
the output table.
|
|
122
|
-
Note: Do not use the name "tag" for an accumulate_column, because the
|
|
123
|
-
function uses that name for the output teradataml DataFrame column
|
|
124
|
-
that contains the tags.
|
|
125
|
-
Types: str OR list of Strings (str)
|
|
126
|
-
|
|
127
|
-
data_sequence_column:
|
|
128
|
-
Optional Argument.
|
|
129
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
130
|
-
the input argument "data". The argument is used to ensure
|
|
131
|
-
deterministic results for functions which produce results that vary
|
|
132
|
-
from run to run.
|
|
133
|
-
Types: str OR list of Strings (str)
|
|
134
|
-
|
|
135
|
-
rules_data_sequence_column:
|
|
136
|
-
Optional Argument.
|
|
137
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
138
|
-
the input argument "rules_data". The argument is used to ensure
|
|
139
|
-
deterministic results for functions which produce results that vary
|
|
140
|
-
from run to run.
|
|
141
|
-
Types: str OR list of Strings (str)
|
|
142
|
-
|
|
143
|
-
RETURNS:
|
|
144
|
-
Instance of TextTagger.
|
|
145
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
146
|
-
references, such as TextTaggerObj.<attribute_name>.
|
|
147
|
-
Output teradataml DataFrame attribute name is:
|
|
148
|
-
result
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
RAISES:
|
|
152
|
-
TeradataMlException
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
EXAMPLES:
|
|
156
|
-
# Load the data to run the example.
|
|
157
|
-
load_example_data("TextTagger",["text_inputs","rule_inputs"])
|
|
158
|
-
|
|
159
|
-
# Create teradataml DataFrame objects.
|
|
160
|
-
text_inputs = DataFrame("text_inputs")
|
|
161
|
-
rule_inputs = DataFrame("rule_inputs")
|
|
162
|
-
|
|
163
|
-
# Example 1:
|
|
164
|
-
# Passing rules through 'rules_data' argument as teradataml dataframe.
|
|
165
|
-
result = TextTagger(data=text_inputs,
|
|
166
|
-
rules_data=rule_inputs,
|
|
167
|
-
accumulate='id',
|
|
168
|
-
language='en',
|
|
169
|
-
tokenize=False,
|
|
170
|
-
outputby_tag=False,
|
|
171
|
-
tag_delimiter=',',
|
|
172
|
-
data_sequence_column='id',
|
|
173
|
-
rules_data_sequence_column='tagname')
|
|
174
|
-
# Print the result
|
|
175
|
-
print(result.result)
|
|
176
|
-
|
|
177
|
-
# Example 2:
|
|
178
|
-
# Passing rules through 'rules' argument as List of strings
|
|
179
|
-
result = TextTagger(data=text_inputs,
|
|
180
|
-
accumulate='id',
|
|
181
|
-
rules=[
|
|
182
|
-
'contain(content,"floods",1,) or contain(content,"tsunamis",1,) AS Natural-Disaster',
|
|
183
|
-
'contain(content,"Roger",1,) and contain(content,"Nadal",1,) AS Tennis-Rivalry',
|
|
184
|
-
'contain(titles,"Tennis",1,) and contain(content,"Roger",1,) AS Tennis-Greats',
|
|
185
|
-
'contain(content,"India",1,) and contain(content,"Pakistan",1,) AS Cricket-Rivalry',
|
|
186
|
-
'contain(content,"Australia",1,) and contain(content,"England",1,) AS The-Ashes'],
|
|
187
|
-
language='en',
|
|
188
|
-
tokenize=False,
|
|
189
|
-
outputby_tag=False,
|
|
190
|
-
tag_delimiter=',',
|
|
191
|
-
data_sequence_column='id')
|
|
192
|
-
# Print the result
|
|
193
|
-
print(result.result)
|
|
194
|
-
|
|
195
|
-
# Example 3 - Specify dictionary file in rules argument
|
|
196
|
-
result = TextTagger(data = text_inputs,
|
|
197
|
-
rules=['dict(content, "keywords.txt", 1,) and equal(titles, "Chennai Floods") AS Natural-Disaster',
|
|
198
|
-
'dict(content, "keywords.txt", 2,) and equal(catalog, "sports") AS Great-Sports-Rivalry '],
|
|
199
|
-
accumulate = ["id"])
|
|
200
|
-
|
|
201
|
-
# Print the result
|
|
202
|
-
print(result.result)
|
|
203
|
-
|
|
204
|
-
# Example 4 - Specify superdist in rules argument
|
|
205
|
-
result = TextTagger(data = text_inputs,
|
|
206
|
-
rules=['superdist(content,"Chennai","floods",sent,,) AS Chennai-Flood-Disaster',
|
|
207
|
-
'superdist(content,"Roger","titles",para, "Nadal",para) AS Roger-Champion',
|
|
208
|
-
'superdist(content,"Roger","Nadal",para,,) AS Tennis-Rivalry',
|
|
209
|
-
'contain(content,regex"[A|a]shes",2,) AS Aus-Eng-Cricket',
|
|
210
|
-
'superdist(content,"Australia","won",nw5,,) AS Aus-victory'],
|
|
211
|
-
accumulate = ["id"]
|
|
212
|
-
)
|
|
213
|
-
# Print the result
|
|
214
|
-
print(result.result)
|
|
215
|
-
|
|
216
|
-
"""
|
|
217
|
-
|
|
218
|
-
# Start the timer to get the build time
|
|
219
|
-
_start_time = time.time()
|
|
220
|
-
|
|
221
|
-
self.data = data
|
|
222
|
-
self.rules_data = rules_data
|
|
223
|
-
self.language = language
|
|
224
|
-
self.rules = rules
|
|
225
|
-
self.tokenize = tokenize
|
|
226
|
-
self.outputby_tag = outputby_tag
|
|
227
|
-
self.tag_delimiter = tag_delimiter
|
|
228
|
-
self.accumulate = accumulate
|
|
229
|
-
self.data_sequence_column = data_sequence_column
|
|
230
|
-
self.rules_data_sequence_column = rules_data_sequence_column
|
|
231
|
-
self.data_order_column = data_order_column
|
|
232
|
-
self.rules_data_order_column = rules_data_order_column
|
|
233
|
-
|
|
234
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
235
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
236
|
-
self.__aed_utils = AedUtils()
|
|
237
|
-
|
|
238
|
-
# Create argument information matrix to do parameter checking
|
|
239
|
-
self.__arg_info_matrix = []
|
|
240
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
241
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
|
|
242
|
-
self.__arg_info_matrix.append(["rules_data", self.rules_data, True, (DataFrame)])
|
|
243
|
-
self.__arg_info_matrix.append(["rules_data_order_column", self.rules_data_order_column, True, (str,list)])
|
|
244
|
-
self.__arg_info_matrix.append(["language", self.language, True, (str)])
|
|
245
|
-
self.__arg_info_matrix.append(["rules", self.rules, True, (str,list)])
|
|
246
|
-
self.__arg_info_matrix.append(["tokenize", self.tokenize, True, (bool)])
|
|
247
|
-
self.__arg_info_matrix.append(["outputby_tag", self.outputby_tag, True, (bool)])
|
|
248
|
-
self.__arg_info_matrix.append(["tag_delimiter", self.tag_delimiter, True, (str)])
|
|
249
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
|
|
250
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
251
|
-
self.__arg_info_matrix.append(["rules_data_sequence_column", self.rules_data_sequence_column, True, (str,list)])
|
|
252
|
-
|
|
253
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
254
|
-
# Perform the function validations
|
|
255
|
-
self.__validate()
|
|
256
|
-
# Generate the ML query
|
|
257
|
-
self.__form_tdml_query()
|
|
258
|
-
# Execute ML query
|
|
259
|
-
self.__execute()
|
|
260
|
-
# Get the prediction type
|
|
261
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
262
|
-
|
|
263
|
-
# End the timer to get the build time
|
|
264
|
-
_end_time = time.time()
|
|
265
|
-
|
|
266
|
-
# Calculate the build time
|
|
267
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
268
|
-
|
|
269
|
-
def __validate(self):
|
|
270
|
-
"""
|
|
271
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
272
|
-
arguments, input argument and table types. Also processes the
|
|
273
|
-
argument values.
|
|
274
|
-
"""
|
|
275
|
-
|
|
276
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
277
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
278
|
-
|
|
279
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
280
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
281
|
-
|
|
282
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
283
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
284
|
-
self.__awu._validate_input_table_datatype(self.rules_data, "rules_data", None)
|
|
285
|
-
|
|
286
|
-
# Check for permitted values
|
|
287
|
-
language_permitted_values = ["EN", "ZH_CN", "ZH_TW"]
|
|
288
|
-
self.__awu._validate_permitted_values(self.language, language_permitted_values, "language")
|
|
289
|
-
|
|
290
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
291
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
292
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
293
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.data, "data", False)
|
|
294
|
-
|
|
295
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
296
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
297
|
-
|
|
298
|
-
self.__awu._validate_input_columns_not_empty(self.rules_data_sequence_column, "rules_data_sequence_column")
|
|
299
|
-
self.__awu._validate_dataframe_has_argument_columns(self.rules_data_sequence_column, "rules_data_sequence_column", self.rules_data, "rules_data", False)
|
|
300
|
-
|
|
301
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
302
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
303
|
-
|
|
304
|
-
self.__awu._validate_input_columns_not_empty(self.rules_data_order_column, "rules_data_order_column")
|
|
305
|
-
self.__awu._validate_dataframe_has_argument_columns(self.rules_data_order_column, "rules_data_order_column", self.rules_data, "rules_data", False)
|
|
306
|
-
|
|
307
|
-
|
|
308
|
-
def __form_tdml_query(self):
|
|
309
|
-
"""
|
|
310
|
-
Function to generate the analytical function queries. The function defines
|
|
311
|
-
variables and list of arguments required to form the query.
|
|
312
|
-
"""
|
|
313
|
-
|
|
314
|
-
# Output table arguments list
|
|
315
|
-
self.__func_output_args_sql_names = []
|
|
316
|
-
self.__func_output_args = []
|
|
317
|
-
|
|
318
|
-
# Model Cataloging related attributes.
|
|
319
|
-
self._sql_specific_attributes = {}
|
|
320
|
-
self._sql_formula_attribute_mapper = {}
|
|
321
|
-
self._target_column = None
|
|
322
|
-
self._algorithm_name = None
|
|
323
|
-
|
|
324
|
-
# Generate lists for rest of the function arguments
|
|
325
|
-
self.__func_other_arg_sql_names = []
|
|
326
|
-
self.__func_other_args = []
|
|
327
|
-
self.__func_other_arg_json_datatypes = []
|
|
328
|
-
|
|
329
|
-
if self.accumulate is not None:
|
|
330
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
331
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
332
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
333
|
-
|
|
334
|
-
if self.rules is not None:
|
|
335
|
-
self.__func_other_arg_sql_names.append("TaggingRules")
|
|
336
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.rules, "'"))
|
|
337
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
338
|
-
|
|
339
|
-
if self.language is not None and self.language != "en":
|
|
340
|
-
self.__func_other_arg_sql_names.append("InputLanguage")
|
|
341
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.language, "'"))
|
|
342
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
343
|
-
|
|
344
|
-
if self.tokenize is not None and self.tokenize != False:
|
|
345
|
-
self.__func_other_arg_sql_names.append("Tokenize")
|
|
346
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.tokenize, "'"))
|
|
347
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
348
|
-
|
|
349
|
-
if self.outputby_tag is not None and self.outputby_tag != False:
|
|
350
|
-
self.__func_other_arg_sql_names.append("OutputbyTag")
|
|
351
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.outputby_tag, "'"))
|
|
352
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
353
|
-
|
|
354
|
-
if self.tag_delimiter is not None and self.tag_delimiter != ",":
|
|
355
|
-
self.__func_other_arg_sql_names.append("TagDelimiter")
|
|
356
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.tag_delimiter, "'"))
|
|
357
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
358
|
-
|
|
359
|
-
# Generate lists for rest of the function arguments
|
|
360
|
-
sequence_input_by_list = []
|
|
361
|
-
if self.data_sequence_column is not None:
|
|
362
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
363
|
-
|
|
364
|
-
if self.rules_data_sequence_column is not None:
|
|
365
|
-
sequence_input_by_list.append("rules:" + UtilFuncs._teradata_collapse_arglist(self.rules_data_sequence_column, ""))
|
|
366
|
-
|
|
367
|
-
if len(sequence_input_by_list) > 0:
|
|
368
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
369
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
370
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
371
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
372
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
# Declare empty lists to hold input table information.
|
|
376
|
-
self.__func_input_arg_sql_names = []
|
|
377
|
-
self.__func_input_table_view_query = []
|
|
378
|
-
self.__func_input_dataframe_type = []
|
|
379
|
-
self.__func_input_distribution = []
|
|
380
|
-
self.__func_input_partition_by_cols = []
|
|
381
|
-
self.__func_input_order_by_cols = []
|
|
382
|
-
|
|
383
|
-
# Process data
|
|
384
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
385
|
-
self.__func_input_distribution.append("FACT")
|
|
386
|
-
self.__func_input_arg_sql_names.append("input")
|
|
387
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
388
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
389
|
-
self.__func_input_partition_by_cols.append("ANY")
|
|
390
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
391
|
-
|
|
392
|
-
# Process rules_data
|
|
393
|
-
if self.rules_data is not None:
|
|
394
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.rules_data, False)
|
|
395
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
396
|
-
self.__func_input_arg_sql_names.append("rules")
|
|
397
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
398
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
399
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
400
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.rules_data_order_column, "\""))
|
|
401
|
-
|
|
402
|
-
function_name = "TextTagger"
|
|
403
|
-
# Create instance to generate SQLMR.
|
|
404
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
405
|
-
self.__func_input_arg_sql_names,
|
|
406
|
-
self.__func_input_table_view_query,
|
|
407
|
-
self.__func_input_dataframe_type,
|
|
408
|
-
self.__func_input_distribution,
|
|
409
|
-
self.__func_input_partition_by_cols,
|
|
410
|
-
self.__func_input_order_by_cols,
|
|
411
|
-
self.__func_other_arg_sql_names,
|
|
412
|
-
self.__func_other_args,
|
|
413
|
-
self.__func_other_arg_json_datatypes,
|
|
414
|
-
self.__func_output_args_sql_names,
|
|
415
|
-
self.__func_output_args,
|
|
416
|
-
engine="ENGINE_ML")
|
|
417
|
-
# Invoke call to SQL-MR generation.
|
|
418
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
419
|
-
|
|
420
|
-
# Print SQL-MR query if requested to do so.
|
|
421
|
-
if display.print_sqlmr_query:
|
|
422
|
-
print(self.sqlmr_query)
|
|
423
|
-
|
|
424
|
-
# Set the algorithm name for Model Cataloging.
|
|
425
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
426
|
-
|
|
427
|
-
def __execute(self):
|
|
428
|
-
"""
|
|
429
|
-
Function to execute SQL-MR queries.
|
|
430
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
431
|
-
"""
|
|
432
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
433
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
434
|
-
try:
|
|
435
|
-
# Generate the output.
|
|
436
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
437
|
-
except Exception as emsg:
|
|
438
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
439
|
-
|
|
440
|
-
# Update output table data frames.
|
|
441
|
-
self._mlresults = []
|
|
442
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
443
|
-
self._mlresults.append(self.result)
|
|
444
|
-
|
|
445
|
-
def show_query(self):
|
|
446
|
-
"""
|
|
447
|
-
Function to return the underlying SQL query.
|
|
448
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
449
|
-
"""
|
|
450
|
-
return self.sqlmr_query
|
|
451
|
-
|
|
452
|
-
def get_prediction_type(self):
|
|
453
|
-
"""
|
|
454
|
-
Function to return the Prediction type of the algorithm.
|
|
455
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
456
|
-
as saved in the Model Catalog.
|
|
457
|
-
"""
|
|
458
|
-
return self._prediction_type
|
|
459
|
-
|
|
460
|
-
def get_target_column(self):
|
|
461
|
-
"""
|
|
462
|
-
Function to return the Target Column of the algorithm.
|
|
463
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
464
|
-
as saved in the Model Catalog.
|
|
465
|
-
"""
|
|
466
|
-
return self._target_column
|
|
467
|
-
|
|
468
|
-
def get_build_time(self):
|
|
469
|
-
"""
|
|
470
|
-
Function to return the build time of the algorithm in seconds.
|
|
471
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
472
|
-
as saved in the Model Catalog.
|
|
473
|
-
"""
|
|
474
|
-
return self._build_time
|
|
475
|
-
|
|
476
|
-
def _get_algorithm_name(self):
|
|
477
|
-
"""
|
|
478
|
-
Function to return the name of the algorithm.
|
|
479
|
-
"""
|
|
480
|
-
return self._algorithm_name
|
|
481
|
-
|
|
482
|
-
def _get_sql_specific_attributes(self):
|
|
483
|
-
"""
|
|
484
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
485
|
-
"""
|
|
486
|
-
return self._sql_specific_attributes
|
|
487
|
-
|
|
488
|
-
@classmethod
|
|
489
|
-
def _from_model_catalog(cls,
|
|
490
|
-
result = None,
|
|
491
|
-
**kwargs):
|
|
492
|
-
"""
|
|
493
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
494
|
-
"""
|
|
495
|
-
kwargs.pop("result", None)
|
|
496
|
-
|
|
497
|
-
# Model Cataloging related attributes.
|
|
498
|
-
target_column = kwargs.pop("__target_column", None)
|
|
499
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
500
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
501
|
-
build_time = kwargs.pop("__build_time", None)
|
|
502
|
-
|
|
503
|
-
# Let's create an object of this class.
|
|
504
|
-
obj = cls(**kwargs)
|
|
505
|
-
obj.result = result
|
|
506
|
-
|
|
507
|
-
# Initialize the sqlmr_query class attribute.
|
|
508
|
-
obj.sqlmr_query = None
|
|
509
|
-
|
|
510
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
511
|
-
obj._sql_specific_attributes = None
|
|
512
|
-
obj._target_column = target_column
|
|
513
|
-
obj._prediction_type = prediction_type
|
|
514
|
-
obj._algorithm_name = algorithm_name
|
|
515
|
-
obj._build_time = build_time
|
|
516
|
-
|
|
517
|
-
# Update output table data frames.
|
|
518
|
-
obj._mlresults = []
|
|
519
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
520
|
-
obj._mlresults.append(obj.result)
|
|
521
|
-
return obj
|
|
522
|
-
|
|
523
|
-
def __repr__(self):
|
|
524
|
-
"""
|
|
525
|
-
Returns the string representation for a TextTagger class instance.
|
|
526
|
-
"""
|
|
527
|
-
repr_string="############ STDOUT Output ############"
|
|
528
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
529
|
-
return repr_string
|
|
530
|
-
|