teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,561 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.5
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class Histogram:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
auto_bin = None,
|
|
35
|
-
custom_bin_table = None,
|
|
36
|
-
custom_bin_column = None,
|
|
37
|
-
bin_size = None,
|
|
38
|
-
start_value = None,
|
|
39
|
-
end_value = None,
|
|
40
|
-
value_column = None,
|
|
41
|
-
inclusion = "left",
|
|
42
|
-
groupby_columns = None,
|
|
43
|
-
data_sequence_column = None,
|
|
44
|
-
custom_bin_table_sequence_column = None):
|
|
45
|
-
"""
|
|
46
|
-
DESCRIPTION:
|
|
47
|
-
Histograms are used to assess the shape of a data distribution.
|
|
48
|
-
The Histogram function calculates the frequency distribution of a
|
|
49
|
-
data set using sophisticated binning techniques that can
|
|
50
|
-
automatically calculate the bin width and number of bins. The
|
|
51
|
-
function maps each input row to one bin and returns the frequency
|
|
52
|
-
(row count) and proportion (percentage of rows) of each bin.
|
|
53
|
-
|
|
54
|
-
PARAMETERS:
|
|
55
|
-
data:
|
|
56
|
-
Required Argument.
|
|
57
|
-
Specifies the teradataml DataFrame containing the input data.
|
|
58
|
-
|
|
59
|
-
auto_bin:
|
|
60
|
-
Optional Argument.
|
|
61
|
-
Specifies either the algorithm to be used for selecting bin
|
|
62
|
-
boundaries or the approximate number of bins to be found. The
|
|
63
|
-
permitted values are STURGES, SCOTT, or a positive integer. If
|
|
64
|
-
this argument is present, the arguments custom_bin_table,
|
|
65
|
-
custom_bin_column, start_value, bin_size, and end_value cannot
|
|
66
|
-
be present.
|
|
67
|
-
Types: str
|
|
68
|
-
|
|
69
|
-
custom_bin_table:
|
|
70
|
-
Optional Argument.
|
|
71
|
-
Specifies a teradataml DataFrame containing the boundary
|
|
72
|
-
points between bins. If this argument is present, the argument
|
|
73
|
-
custom_bin_column must also be present and the arguments
|
|
74
|
-
auto_bin, start_value, bin_size, and end_value cannot be
|
|
75
|
-
present.
|
|
76
|
-
|
|
77
|
-
custom_bin_column:
|
|
78
|
-
Optional Argument.
|
|
79
|
-
Specifies the column, in the custom_bin_table, containing the
|
|
80
|
-
boundary values. Input columns must contain values with numeric
|
|
81
|
-
Python data types (int, float). If this argument is present, the
|
|
82
|
-
argument custom_bin_table must also be present and the
|
|
83
|
-
arguments auto_bin, start_value, bin_size, and end_value cannot
|
|
84
|
-
be present.
|
|
85
|
-
Types: str
|
|
86
|
-
|
|
87
|
-
bin_size:
|
|
88
|
-
Optional Argument.
|
|
89
|
-
For equally sized bins, a double value specifying the width of
|
|
90
|
-
the bin. Omit this argument if you are not using equally sized
|
|
91
|
-
bins. The input value must be greater than 0.0. If this
|
|
92
|
-
argument is present, the arguments start_value and end_value
|
|
93
|
-
must also be present and the arguments auto_bin,
|
|
94
|
-
custom_bin_table and custom_bin_column cannot be present.
|
|
95
|
-
Types: float
|
|
96
|
-
|
|
97
|
-
start_value:
|
|
98
|
-
Optional Argument.
|
|
99
|
-
Specifies the smallest value to be used in binning. If this
|
|
100
|
-
argument is present, the arguments bin_size and end_value must
|
|
101
|
-
also be present and the arguments auto_bin, custom_bin_table
|
|
102
|
-
and custom_bin_column cannot be present.
|
|
103
|
-
Types: float
|
|
104
|
-
|
|
105
|
-
end_value:
|
|
106
|
-
Optional Argument.
|
|
107
|
-
Specifies the largest value to be used in binning. If this
|
|
108
|
-
argument is present, the arguments start_value and bin_size
|
|
109
|
-
must also be present and the arguments auto_bin,
|
|
110
|
-
custom_bin_table and custom_bin_column cannot be present.
|
|
111
|
-
Types: float
|
|
112
|
-
|
|
113
|
-
value_column:
|
|
114
|
-
Required Argument.
|
|
115
|
-
Specifies the column in the input teradataml DataFrame for
|
|
116
|
-
which statistics will be computed. Column must contain a values
|
|
117
|
-
with numeric Python data types (int, float).
|
|
118
|
-
Types: str
|
|
119
|
-
|
|
120
|
-
inclusion:
|
|
121
|
-
Optional Argument.
|
|
122
|
-
Indicates whether points on bin boundaries should be included
|
|
123
|
-
in the bin on the left or the bin on the right.
|
|
124
|
-
Default Value: "left"
|
|
125
|
-
Permitted Values: left, right
|
|
126
|
-
Types: str
|
|
127
|
-
|
|
128
|
-
groupby_columns:
|
|
129
|
-
Optional Argument.
|
|
130
|
-
Specifies the columns in the input teradataml DataFrame used to
|
|
131
|
-
group values for binning. These columns cannot contain values
|
|
132
|
-
with double or float data types.
|
|
133
|
-
Types: str OR list of Strings (str)
|
|
134
|
-
|
|
135
|
-
data_sequence_column:
|
|
136
|
-
Optional Argument.
|
|
137
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
138
|
-
the input argument "data". The argument is used to ensure
|
|
139
|
-
deterministic results for functions which produce results that vary
|
|
140
|
-
from run to run.
|
|
141
|
-
Types: str OR list of Strings (str)
|
|
142
|
-
|
|
143
|
-
custom_bin_table_sequence_column:
|
|
144
|
-
Optional Argument.
|
|
145
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
146
|
-
the input argument "custom_bin_table". The argument is used to ensure
|
|
147
|
-
deterministic results for functions which produce results that vary
|
|
148
|
-
from run to run.
|
|
149
|
-
Types: str OR list of Strings (str)
|
|
150
|
-
|
|
151
|
-
RETURNS:
|
|
152
|
-
Instance of Histogram.
|
|
153
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
154
|
-
references, such as HistogramObj.<attribute_name>.
|
|
155
|
-
Output teradataml DataFrame attribute name is:
|
|
156
|
-
1. output
|
|
157
|
-
2. output_table
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
RAISES:
|
|
161
|
-
TeradataMlException
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
EXAMPLES:
|
|
165
|
-
# Load the data to run the example.
|
|
166
|
-
load_example_data("histogram", ['bin_breaks', 'cars_hist'])
|
|
167
|
-
|
|
168
|
-
# The 'cars_hist' table has the cylinder (cyl) and horsepower (hp)
|
|
169
|
-
# data for different car models.
|
|
170
|
-
# The 'bin_breaks' table has the boundary values for the custom
|
|
171
|
-
# bins to be used while generating the histogram.
|
|
172
|
-
|
|
173
|
-
# Create TeradataML DataFrame objects.
|
|
174
|
-
cars_hist = DataFrame.from_table('cars_hist')
|
|
175
|
-
custom_bin = DataFrame.from_table('bin_breaks')
|
|
176
|
-
|
|
177
|
-
# Example 1: Using auto_bin.
|
|
178
|
-
result = Histogram( data = cars_hist,
|
|
179
|
-
value_column = 'hp',
|
|
180
|
-
auto_bin = 'Sturges'
|
|
181
|
-
)
|
|
182
|
-
# Print the results
|
|
183
|
-
print(result.output_table)
|
|
184
|
-
|
|
185
|
-
# Example 2: Using start_value, end_value and bin_size.
|
|
186
|
-
result = Histogram( data = cars_hist,
|
|
187
|
-
value_column = 'hp',
|
|
188
|
-
inclusion = 'left',
|
|
189
|
-
start_value = 100.0,
|
|
190
|
-
end_value = 400.0,
|
|
191
|
-
bin_size = 100.0
|
|
192
|
-
)
|
|
193
|
-
# Print the results
|
|
194
|
-
print(result.output_table)
|
|
195
|
-
|
|
196
|
-
# Example 3: Using custom_bin_table.
|
|
197
|
-
result = Histogram( data = cars_hist,
|
|
198
|
-
value_column = 'hp',
|
|
199
|
-
inclusion = 'left',
|
|
200
|
-
custom_bin_table = custom_bin,
|
|
201
|
-
custom_bin_column ='break'
|
|
202
|
-
)
|
|
203
|
-
# Print the results
|
|
204
|
-
print(result.output_table)
|
|
205
|
-
|
|
206
|
-
# Example 4: Using groupby_columns on auto_bin feature.
|
|
207
|
-
result = Histogram( data = cars_hist,
|
|
208
|
-
value_column = 'hp',
|
|
209
|
-
inclusion = 'left',
|
|
210
|
-
auto_bin = 'STURGES',
|
|
211
|
-
groupby_columns = 'cyl'
|
|
212
|
-
)
|
|
213
|
-
# Print the results
|
|
214
|
-
print(result.output_table)
|
|
215
|
-
|
|
216
|
-
# Example 5: Using right 'inclusion' feature.
|
|
217
|
-
result = Histogram( data = cars_hist,
|
|
218
|
-
bin_size = 50.0,
|
|
219
|
-
start_value = 20.0,
|
|
220
|
-
end_value = 400.0,
|
|
221
|
-
value_column = 'hp',
|
|
222
|
-
inclusion = 'right'
|
|
223
|
-
)
|
|
224
|
-
# Print the results
|
|
225
|
-
print(result.output_table)
|
|
226
|
-
|
|
227
|
-
"""
|
|
228
|
-
|
|
229
|
-
# Start the timer to get the build time
|
|
230
|
-
_start_time = time.time()
|
|
231
|
-
|
|
232
|
-
self.data = data
|
|
233
|
-
self.auto_bin = auto_bin
|
|
234
|
-
self.custom_bin_table = custom_bin_table
|
|
235
|
-
self.custom_bin_column = custom_bin_column
|
|
236
|
-
self.bin_size = bin_size
|
|
237
|
-
self.start_value = start_value
|
|
238
|
-
self.end_value = end_value
|
|
239
|
-
self.value_column = value_column
|
|
240
|
-
self.inclusion = inclusion
|
|
241
|
-
self.groupby_columns = groupby_columns
|
|
242
|
-
self.data_sequence_column = data_sequence_column
|
|
243
|
-
self.custom_bin_table_sequence_column = custom_bin_table_sequence_column
|
|
244
|
-
|
|
245
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
246
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
247
|
-
self.__aed_utils = AedUtils()
|
|
248
|
-
|
|
249
|
-
# Create argument information matrix to do parameter checking
|
|
250
|
-
self.__arg_info_matrix = []
|
|
251
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
252
|
-
self.__arg_info_matrix.append(["auto_bin", self.auto_bin, True, (str)])
|
|
253
|
-
self.__arg_info_matrix.append(["custom_bin_table", self.custom_bin_table, True, (DataFrame)])
|
|
254
|
-
self.__arg_info_matrix.append(["custom_bin_column", self.custom_bin_column, True, (str)])
|
|
255
|
-
self.__arg_info_matrix.append(["bin_size", self.bin_size, True, (float)])
|
|
256
|
-
self.__arg_info_matrix.append(["start_value", self.start_value, True, (float)])
|
|
257
|
-
self.__arg_info_matrix.append(["end_value", self.end_value, True, (float)])
|
|
258
|
-
self.__arg_info_matrix.append(["value_column", self.value_column, False, (str)])
|
|
259
|
-
self.__arg_info_matrix.append(["inclusion", self.inclusion, True, (str)])
|
|
260
|
-
self.__arg_info_matrix.append(["groupby_columns", self.groupby_columns, True, (str,list)])
|
|
261
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
262
|
-
self.__arg_info_matrix.append(["custom_bin_table_sequence_column", self.custom_bin_table_sequence_column, True, (str,list)])
|
|
263
|
-
|
|
264
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
265
|
-
# Perform the function validations
|
|
266
|
-
self.__validate()
|
|
267
|
-
# Generate the ML query
|
|
268
|
-
self.__form_tdml_query()
|
|
269
|
-
# Execute ML query
|
|
270
|
-
self.__execute()
|
|
271
|
-
# Get the prediction type
|
|
272
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
273
|
-
|
|
274
|
-
# End the timer to get the build time
|
|
275
|
-
_end_time = time.time()
|
|
276
|
-
|
|
277
|
-
# Calculate the build time
|
|
278
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
279
|
-
|
|
280
|
-
def __validate(self):
|
|
281
|
-
"""
|
|
282
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
283
|
-
arguments, input argument and table types. Also processes the
|
|
284
|
-
argument values.
|
|
285
|
-
"""
|
|
286
|
-
|
|
287
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
288
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
289
|
-
|
|
290
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
291
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
292
|
-
|
|
293
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
294
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
295
|
-
self.__awu._validate_input_table_datatype(self.custom_bin_table, "custom_bin_table", None)
|
|
296
|
-
|
|
297
|
-
# Check for permitted values
|
|
298
|
-
inclusion_permitted_values = ["LEFT", "RIGHT"]
|
|
299
|
-
self.__awu._validate_permitted_values(self.inclusion, inclusion_permitted_values, "inclusion")
|
|
300
|
-
|
|
301
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
302
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
303
|
-
self.__awu._validate_input_columns_not_empty(self.value_column, "value_column")
|
|
304
|
-
self.__awu._validate_dataframe_has_argument_columns(self.value_column, "value_column", self.data, "data", False)
|
|
305
|
-
|
|
306
|
-
self.__awu._validate_input_columns_not_empty(self.custom_bin_column, "custom_bin_column")
|
|
307
|
-
self.__awu._validate_dataframe_has_argument_columns(self.custom_bin_column, "custom_bin_column", self.custom_bin_table, "custom_bin_table", False)
|
|
308
|
-
|
|
309
|
-
self.__awu._validate_input_columns_not_empty(self.groupby_columns, "groupby_columns")
|
|
310
|
-
self.__awu._validate_dataframe_has_argument_columns(self.groupby_columns, "groupby_columns", self.data, "data", False)
|
|
311
|
-
|
|
312
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
313
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
314
|
-
|
|
315
|
-
self.__awu._validate_input_columns_not_empty(self.custom_bin_table_sequence_column, "custom_bin_table_sequence_column")
|
|
316
|
-
self.__awu._validate_dataframe_has_argument_columns(self.custom_bin_table_sequence_column, "custom_bin_table_sequence_column", self.custom_bin_table, "custom_bin_table", False)
|
|
317
|
-
|
|
318
|
-
|
|
319
|
-
def __form_tdml_query(self):
|
|
320
|
-
"""
|
|
321
|
-
Function to generate the analytical function queries. The function defines
|
|
322
|
-
variables and list of arguments required to form the query.
|
|
323
|
-
"""
|
|
324
|
-
# Generate temp table names for output table parameters if any.
|
|
325
|
-
self.__output_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_histogram0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
326
|
-
|
|
327
|
-
# Output table arguments list
|
|
328
|
-
self.__func_output_args_sql_names = ["OutputTable"]
|
|
329
|
-
self.__func_output_args = [self.__output_table_temp_tablename]
|
|
330
|
-
|
|
331
|
-
# Model Cataloging related attributes.
|
|
332
|
-
self._sql_specific_attributes = {}
|
|
333
|
-
self._sql_formula_attribute_mapper = {}
|
|
334
|
-
self._target_column = None
|
|
335
|
-
self._algorithm_name = None
|
|
336
|
-
|
|
337
|
-
# Generate lists for rest of the function arguments
|
|
338
|
-
self.__func_other_arg_sql_names = []
|
|
339
|
-
self.__func_other_args = []
|
|
340
|
-
self.__func_other_arg_json_datatypes = []
|
|
341
|
-
|
|
342
|
-
self.__func_other_arg_sql_names.append("TargetColumn")
|
|
343
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.value_column, "\""), "'"))
|
|
344
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
345
|
-
|
|
346
|
-
if self.custom_bin_column is not None:
|
|
347
|
-
self.__func_other_arg_sql_names.append("CustomBinColumn")
|
|
348
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.custom_bin_column, "\""), "'"))
|
|
349
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
350
|
-
|
|
351
|
-
if self.groupby_columns is not None:
|
|
352
|
-
self.__func_other_arg_sql_names.append("GroupbyColumns")
|
|
353
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.groupby_columns, "\""), "'"))
|
|
354
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
355
|
-
|
|
356
|
-
if self.inclusion is not None and self.inclusion != "left":
|
|
357
|
-
self.__func_other_arg_sql_names.append("Inclusion")
|
|
358
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.inclusion, "'"))
|
|
359
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
360
|
-
|
|
361
|
-
if self.auto_bin is not None:
|
|
362
|
-
self.__func_other_arg_sql_names.append("AutoBin")
|
|
363
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.auto_bin, "'"))
|
|
364
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
365
|
-
|
|
366
|
-
if self.start_value is not None:
|
|
367
|
-
self.__func_other_arg_sql_names.append("StartValue")
|
|
368
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.start_value, "'"))
|
|
369
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
370
|
-
|
|
371
|
-
if self.end_value is not None:
|
|
372
|
-
self.__func_other_arg_sql_names.append("EndValue")
|
|
373
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.end_value, "'"))
|
|
374
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
375
|
-
|
|
376
|
-
if self.bin_size is not None:
|
|
377
|
-
self.__func_other_arg_sql_names.append("BinSize")
|
|
378
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.bin_size, "'"))
|
|
379
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
380
|
-
|
|
381
|
-
# Generate lists for rest of the function arguments
|
|
382
|
-
sequence_input_by_list = []
|
|
383
|
-
if self.data_sequence_column is not None:
|
|
384
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
385
|
-
|
|
386
|
-
if self.custom_bin_table_sequence_column is not None:
|
|
387
|
-
sequence_input_by_list.append("CustomBinTable:" + UtilFuncs._teradata_collapse_arglist(self.custom_bin_table_sequence_column, ""))
|
|
388
|
-
|
|
389
|
-
if len(sequence_input_by_list) > 0:
|
|
390
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
391
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
392
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
393
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
394
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
395
|
-
|
|
396
|
-
|
|
397
|
-
# Declare empty lists to hold input table information.
|
|
398
|
-
self.__func_input_arg_sql_names = []
|
|
399
|
-
self.__func_input_table_view_query = []
|
|
400
|
-
self.__func_input_dataframe_type = []
|
|
401
|
-
self.__func_input_distribution = []
|
|
402
|
-
self.__func_input_partition_by_cols = []
|
|
403
|
-
self.__func_input_order_by_cols = []
|
|
404
|
-
|
|
405
|
-
# Process data
|
|
406
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
407
|
-
self.__func_input_distribution.append("NONE")
|
|
408
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
409
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
410
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
411
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
412
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
413
|
-
|
|
414
|
-
# Process custom_bin_table
|
|
415
|
-
if self.custom_bin_table is not None:
|
|
416
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.custom_bin_table, False)
|
|
417
|
-
self.__func_input_distribution.append("NONE")
|
|
418
|
-
self.__func_input_arg_sql_names.append("CustomBinTable")
|
|
419
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
420
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
421
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
422
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
423
|
-
|
|
424
|
-
function_name = "Histogram"
|
|
425
|
-
# Create instance to generate SQLMR.
|
|
426
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
427
|
-
self.__func_input_arg_sql_names,
|
|
428
|
-
self.__func_input_table_view_query,
|
|
429
|
-
self.__func_input_dataframe_type,
|
|
430
|
-
self.__func_input_distribution,
|
|
431
|
-
self.__func_input_partition_by_cols,
|
|
432
|
-
self.__func_input_order_by_cols,
|
|
433
|
-
self.__func_other_arg_sql_names,
|
|
434
|
-
self.__func_other_args,
|
|
435
|
-
self.__func_other_arg_json_datatypes,
|
|
436
|
-
self.__func_output_args_sql_names,
|
|
437
|
-
self.__func_output_args,
|
|
438
|
-
engine="ENGINE_ML")
|
|
439
|
-
# Invoke call to SQL-MR generation.
|
|
440
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
441
|
-
|
|
442
|
-
# Print SQL-MR query if requested to do so.
|
|
443
|
-
if display.print_sqlmr_query:
|
|
444
|
-
print(self.sqlmr_query)
|
|
445
|
-
|
|
446
|
-
# Set the algorithm name for Model Cataloging.
|
|
447
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
448
|
-
|
|
449
|
-
def __execute(self):
|
|
450
|
-
"""
|
|
451
|
-
Function to execute SQL-MR queries.
|
|
452
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
453
|
-
"""
|
|
454
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
455
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
456
|
-
try:
|
|
457
|
-
# Generate the output.
|
|
458
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
459
|
-
except Exception as emsg:
|
|
460
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
461
|
-
|
|
462
|
-
# Update output table data frames.
|
|
463
|
-
self._mlresults = []
|
|
464
|
-
self.output_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__output_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__output_table_temp_tablename))
|
|
465
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
466
|
-
self._mlresults.append(self.output_table)
|
|
467
|
-
self._mlresults.append(self.output)
|
|
468
|
-
|
|
469
|
-
def show_query(self):
|
|
470
|
-
"""
|
|
471
|
-
Function to return the underlying SQL query.
|
|
472
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
473
|
-
"""
|
|
474
|
-
return self.sqlmr_query
|
|
475
|
-
|
|
476
|
-
def get_prediction_type(self):
|
|
477
|
-
"""
|
|
478
|
-
Function to return the Prediction type of the algorithm.
|
|
479
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
480
|
-
as saved in the Model Catalog.
|
|
481
|
-
"""
|
|
482
|
-
return self._prediction_type
|
|
483
|
-
|
|
484
|
-
def get_target_column(self):
|
|
485
|
-
"""
|
|
486
|
-
Function to return the Target Column of the algorithm.
|
|
487
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
488
|
-
as saved in the Model Catalog.
|
|
489
|
-
"""
|
|
490
|
-
return self._target_column
|
|
491
|
-
|
|
492
|
-
def get_build_time(self):
|
|
493
|
-
"""
|
|
494
|
-
Function to return the build time of the algorithm in seconds.
|
|
495
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
496
|
-
as saved in the Model Catalog.
|
|
497
|
-
"""
|
|
498
|
-
return self._build_time
|
|
499
|
-
|
|
500
|
-
def _get_algorithm_name(self):
|
|
501
|
-
"""
|
|
502
|
-
Function to return the name of the algorithm.
|
|
503
|
-
"""
|
|
504
|
-
return self._algorithm_name
|
|
505
|
-
|
|
506
|
-
def _get_sql_specific_attributes(self):
|
|
507
|
-
"""
|
|
508
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
509
|
-
"""
|
|
510
|
-
return self._sql_specific_attributes
|
|
511
|
-
|
|
512
|
-
@classmethod
|
|
513
|
-
def _from_model_catalog(cls,
|
|
514
|
-
output_table = None,
|
|
515
|
-
output = None,
|
|
516
|
-
**kwargs):
|
|
517
|
-
"""
|
|
518
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
519
|
-
"""
|
|
520
|
-
kwargs.pop("output_table", None)
|
|
521
|
-
kwargs.pop("output", None)
|
|
522
|
-
|
|
523
|
-
# Model Cataloging related attributes.
|
|
524
|
-
target_column = kwargs.pop("__target_column", None)
|
|
525
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
526
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
527
|
-
build_time = kwargs.pop("__build_time", None)
|
|
528
|
-
|
|
529
|
-
# Let's create an object of this class.
|
|
530
|
-
obj = cls(**kwargs)
|
|
531
|
-
obj.output_table = output_table
|
|
532
|
-
obj.output = output
|
|
533
|
-
|
|
534
|
-
# Initialize the sqlmr_query class attribute.
|
|
535
|
-
obj.sqlmr_query = None
|
|
536
|
-
|
|
537
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
538
|
-
obj._sql_specific_attributes = None
|
|
539
|
-
obj._target_column = target_column
|
|
540
|
-
obj._prediction_type = prediction_type
|
|
541
|
-
obj._algorithm_name = algorithm_name
|
|
542
|
-
obj._build_time = build_time
|
|
543
|
-
|
|
544
|
-
# Update output table data frames.
|
|
545
|
-
obj._mlresults = []
|
|
546
|
-
obj.output_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_table))
|
|
547
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
548
|
-
obj._mlresults.append(obj.output_table)
|
|
549
|
-
obj._mlresults.append(obj.output)
|
|
550
|
-
return obj
|
|
551
|
-
|
|
552
|
-
def __repr__(self):
|
|
553
|
-
"""
|
|
554
|
-
Returns the string representation for a Histogram class instance.
|
|
555
|
-
"""
|
|
556
|
-
repr_string="############ STDOUT Output ############"
|
|
557
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
558
|
-
repr_string="{}\n\n\n############ output_table Output ############".format(repr_string)
|
|
559
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output_table)
|
|
560
|
-
return repr_string
|
|
561
|
-
|