teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -0,0 +1,887 @@
1
+ # ##################################################################
2
+ #
3
+ # Copyright 2024 Teradata. All rights reserved.
4
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
5
+ #
6
+ # Primary Owner: Sweta Shaw
7
+ # Email Id: Sweta.Shaw@Teradata.com
8
+ #
9
+ # Secondary Owner: Akhil Bisht
10
+ # Email Id: AKHIL.BISHT@Teradata.com
11
+ #
12
+ # Version: 1.1
13
+ # Function Version: 1.0
14
+ # ##################################################################
15
+
16
+ # Python libraries
17
+ import concurrent.futures
18
+ from concurrent.futures import ThreadPoolExecutor
19
+ import pandas as pd
20
+ from itertools import product
21
+
22
+ # Teradata libraries
23
+ from teradataml.context import context as tdmlctx
24
+ from teradataml.dataframe.copy_to import copy_to_sql
25
+ from teradataml.dataframe.dataframe import DataFrame
26
+ from teradataml import execute_sql, get_connection
27
+ from teradataml import SVM, GLM, DecisionForest, XGBoost, GridSearch, KNN
28
+
29
+
30
+ class _ModelTraining:
31
+
32
+ def __init__(self,
33
+ data,
34
+ target_column,
35
+ model_list,
36
+ verbose=0,
37
+ features=None,
38
+ task_type="Regression",
39
+ custom_data = None):
40
+ """
41
+ DESCRIPTION:
42
+ Function initializes the data, target column, features and models
43
+ for model training.
44
+
45
+ PARAMETERS:
46
+ data:
47
+ Required Argument.
48
+ Specifies the dataset for model training phase.
49
+ Types: teradataml Dataframe
50
+
51
+ target_column:
52
+ Required Arugment.
53
+ Specifies the target column present inside the dataset.
54
+ Types: str
55
+
56
+ model_list:
57
+ Required Arugment.
58
+ Specifies the list of models to be used for model training.
59
+ Types: list
60
+
61
+ verbose:
62
+ Optional Argument.
63
+ Specifies the detailed execution steps based on verbose level.
64
+ Default Value: 0
65
+ Permitted Values:
66
+ * 0: prints the progress bar and leaderboard
67
+ * 1: prints the execution steps of AutoML.
68
+ * 2: prints the intermediate data between the
69
+ execution of each step of AutoML.
70
+ Types: int
71
+
72
+ features:
73
+ Required Arugment.
74
+ Specifies the list of selected feature by rfe, lasso and pca
75
+ respectively in this order.
76
+ Types: list of list of strings (str)
77
+
78
+ task_type:
79
+ Required Arugment.
80
+ Specifies the task type for AutoML, whether to apply regresion
81
+ or classification on the provived dataset.
82
+ Default Value: "Regression"
83
+ Permitted Values: "Regression", "Classification"
84
+ Types: str
85
+
86
+ custom_data:
87
+ Optional Arugment.
88
+ Specifies json object containing user customized input.
89
+ Types: json object
90
+ """
91
+ self.data = data
92
+ self.target_column = target_column
93
+ self.model_list = model_list
94
+ self.verbose = verbose
95
+ self.features = (features[1], features[0], features[2])
96
+ self.task_type = task_type
97
+ self.custom_data = custom_data
98
+ self.labels = self.data.drop_duplicate(self.target_column).size
99
+
100
+ def model_training(self,
101
+ auto=True,
102
+ max_runtime_secs=None,
103
+ stopping_metric=None,
104
+ stopping_tolerance=0
105
+ ):
106
+ """
107
+ DESCRIPTION:
108
+ Function to perform following tasks:-
109
+ 1. Generates the hyperparameters for different ML models.
110
+ 2. Performs hyperparameter tunning for different ML models in parallel.
111
+ 3. Displays the leaderboard of trained ML models.
112
+
113
+ PARAMETERS:
114
+ auto:
115
+ Optional Arugment.
116
+ Specifies whether to run data preparation in auto mode or custom mode.
117
+ When set to True, runs automtically otherwise, it take user inputs.
118
+ Default Value: True
119
+ Types: boolean
120
+
121
+ max_runtime_secs:
122
+ Optional Arugment.
123
+ Specifies the time limit in seconds for model training.
124
+ Types: int
125
+
126
+ stopping_metric:
127
+ Required, when "stopping_tolerance" is set, otherwise optional.
128
+ Specifies the stopping mertics for stopping tolerance in model training.
129
+ Types: str
130
+
131
+ stopping_tolerance:
132
+ Required, when "stopping_metric" is set, otherwise optional.
133
+ Specifies the stopping tolerance for stopping metrics in model training.
134
+ Types: float
135
+
136
+ RETURNS:
137
+ pandas dataframes containing model information, leaderboard and target
138
+ column distinct count.
139
+ """
140
+ self.stopping_metric = stopping_metric
141
+ self.stopping_tolerance = stopping_tolerance
142
+ self.max_runtime_secs = max_runtime_secs
143
+
144
+ self._display_heading(phase=3, progress_bar=self.progress_bar)
145
+ self._display_msg(msg='Model Training started ...',
146
+ progress_bar=self.progress_bar,
147
+ show_data=True)
148
+ # Generates the hyperparameters for different ML models
149
+ parameters = self._generate_parameter()
150
+
151
+ # handles customized hyperparameters
152
+ if not auto:
153
+ parameters = self._custom_hyperparameters(parameters)
154
+
155
+ if self.verbose == 2:
156
+ self._display_hyperparameters(parameters)
157
+
158
+ # Parallel execution of hpt
159
+ trained_models_info = self._parallel_training(parameters)
160
+
161
+ # Displaying leaderboard
162
+ leader_board, models = self._display_leaderboard(trained_models_info)
163
+
164
+ self._display_heading(phase=4,
165
+ progress_bar=self.progress_bar)
166
+ self.progress_bar.update()
167
+
168
+ return models, leader_board, self.labels
169
+
170
+ def _display_hyperparameters(self,
171
+ hyperparameters_list):
172
+ """
173
+ DESCRIPTION:
174
+ Internal function to display the hyperparameters for different ML models.
175
+
176
+ PARAMETERS:
177
+ hyperparameters_list:
178
+ Required Arugment.
179
+ Specifies the hyperparameters for different ML models.
180
+ Types: list of dict
181
+
182
+ RETURNS:
183
+ None
184
+ """
185
+ self._display_msg(msg="\nHyperparameters used for model training: ",
186
+ progress_bar = self.progress_bar,
187
+ show_data=True)
188
+ print(" " *150, end='\r', flush=True)
189
+
190
+ # Iterating over hyperparameters_list
191
+ for hyperparameter_dct in hyperparameters_list:
192
+ # Extracting hyperparameter and thier value from hyperparameters dictionary
193
+ for key, val in hyperparameter_dct.items():
194
+ # Displaying hyperparameters
195
+ print(f"{key} : {str(val)}")
196
+
197
+ # Creating all possible combinations of hyperparameters
198
+ all_combinations = list(product(*[v if isinstance(v, tuple) else [v] for v in hyperparameter_dct.values()]))
199
+
200
+ # Displaying total number of models for each model
201
+ total_models = len(all_combinations)
202
+ print(f"Total number of models for {hyperparameter_dct['name']} : {total_models}")
203
+ print(f"--"*100+'\n')
204
+
205
+ def _display_leaderboard(self,
206
+ trained_models_info):
207
+ """
208
+ DESCRIPTION:
209
+ Internal function to display the trainined ML models.
210
+
211
+ PARAMETERS:
212
+ trained_models_info:
213
+ Required Arugment.
214
+ Specifies the trained models inforamtion to display.
215
+ Types: pandas Dataframe
216
+
217
+ RETURNS:
218
+ pandas Dataframe.
219
+ """
220
+ # Creating a copy to avoid use of same reference of memory
221
+ if self.task_type != "Regression":
222
+ sorted_model_df = trained_models_info.sort_values(by=['Micro-F1', 'Weighted-F1'],
223
+ ascending=[False, False]).reset_index(drop=True)
224
+ else:
225
+ sorted_model_df = trained_models_info.sort_values(by='R2-score',
226
+ ascending=False).reset_index(drop=True)
227
+
228
+ # Adding rank to leaderboard
229
+ sorted_model_df.insert(0, 'Rank', sorted_model_df.index + 1)
230
+
231
+ # Assuming 'sorted_df' is your DataFrame
232
+ # Excluding the "last_col"
233
+ leaderboard = sorted_model_df.drop("model-obj", axis=1)
234
+
235
+ self._display_msg(msg="Leaderboard",
236
+ progress_bar=self.progress_bar,
237
+ data=leaderboard,
238
+ show_data=True)
239
+
240
+ return leaderboard, sorted_model_df
241
+
242
+ def _update_hyperparameters(self,
243
+ existing_params,
244
+ new_params):
245
+ """
246
+ DESCRIPTION:
247
+ Function to update customized hyperparameters by performing addition or replacement
248
+ based on user input.
249
+
250
+ PARAMETERS:
251
+ existing_params:
252
+ Required Argument.
253
+ Specifies the existing generated hyperparameters for specific model.
254
+ Types: dict
255
+
256
+ new_params:
257
+ Required Argument.
258
+ Specifies the newly passed hyperparameters from user input.
259
+ Types: dict
260
+
261
+ RETURNS:
262
+ Updated dictionary containing hyperparameters for specific model.
263
+ """
264
+ # Iterating over new hyperparameters and performing required operation
265
+ # based on passed method ADD or REPLACE
266
+ for feature, param_list in new_params.items():
267
+ if feature in existing_params.keys():
268
+ if param_list["Method"] == "ADD":
269
+ # Extending existing list
270
+ existing_params[feature] = list(existing_params[feature])
271
+ existing_params[feature].extend(param_list["Value"])
272
+ # Updating list with unique values.
273
+ existing_params[feature]=tuple(set(existing_params[feature]))
274
+ elif param_list["Method"] == "REPLACE":
275
+ # Replacing with entirely new value
276
+ existing_params[feature] = tuple(param_list["Value"])
277
+ else:
278
+ self._display_msg(inline_msg="Passed method is not valid.")
279
+ else:
280
+ self._display_msg(inline_msg="\nPassed model argument {} is not"
281
+ "available for model {}. Skipping it."
282
+ .format(feature,existing_params['name']))
283
+ continue
284
+ # Returning updated hyperparamter
285
+ return existing_params
286
+
287
+ def _custom_hyperparameters(self,
288
+ hyperparameters):
289
+ """
290
+ DESCRIPTION:
291
+ Function to extract and update hyperaparameters from user input for model training.
292
+
293
+ PARAMETERS:
294
+ hyperparameters:
295
+ Required Argument.
296
+ Specifies the existing generated hyperparameters for all models.
297
+ Types: list
298
+
299
+ RETURNS:
300
+ Updated list of dictionaries containing hyperparameterd for all models.
301
+ """
302
+ self._display_msg(msg="\nStarting customized hyperparameter update ...",
303
+ progress_bar=self.progress_bar,
304
+ show_data=True)
305
+
306
+ # Fetching user input for performing hyperparameter tuning
307
+ hyperparameter_tuning_input = self.custom_data.get("HyperparameterTuningIndicator", False)
308
+ if hyperparameter_tuning_input:
309
+ # Extracting models and its corresponding hyperparameters details
310
+ model_hyperparameters = self.custom_data.get("HyperparameterTuningParam", None)
311
+ # Getting model index for mapping
312
+ model_index_param = self.model_mapping
313
+ # Checking hyperparameters passed by user and mapping them according to model
314
+ if model_hyperparameters:
315
+ for model_name, hyp_list in model_hyperparameters.items():
316
+ if model_name in list(model_index_param.keys()):
317
+ model_index = model_index_param[model_name]
318
+ else:
319
+ self._display_msg(inline_msg="\nPassed model {} is not available for training.".format(model_name))
320
+ continue
321
+ # Updating existing hyperparameters with customized hyperparameters as per user input
322
+ hyperparameters[model_index]=self._update_hyperparameters(hyperparameters[model_index],hyp_list)
323
+ # Displaying it after update
324
+ self._display_msg(inline_msg="\nCompleted customized hyperparameter update.",
325
+ progress_bar=self.progress_bar)
326
+ else:
327
+ self._display_msg(inline_msg="No information provided for custom hyperparameters. AutoML will proceed with default values.",
328
+ progress_bar=self.progress_bar)
329
+ else:
330
+ self._display_msg(inline_msg="\nSkipping customized hyperparameter tuning",
331
+ progress_bar=self.progress_bar)
332
+ # Retunring updated hyperparameters for all models
333
+ return hyperparameters
334
+
335
+ # Hyperparameter generation for XGBoost or Decision Forest
336
+ def _get_tree_model_hyperparameters(self,
337
+ num_rows,
338
+ num_cols,
339
+ model_name):
340
+ """
341
+ DESCRIPTION:
342
+ Internal function to generate hyperparameters for tree based model i.e., XGBoost or Decision Forest.
343
+
344
+ PARAMETERS:
345
+ num_rows:
346
+ Required Arugment.
347
+ Specifies the number of rows in dataset.
348
+ Types: int
349
+
350
+ num_cols:
351
+ Required Arugment.
352
+ Specifies the number of columns in dataset.
353
+ Types: int
354
+
355
+ model_name:
356
+ Required Argument.
357
+ Specifies which linear model is getting used for generating hyperparameters.
358
+ Types: Str
359
+
360
+ RETURNS:
361
+ dict containing, hyperparameters for XGBoost or Decision Forest.
362
+ """
363
+ # Initializing hyperparameters based on default value
364
+ min_impurity = [0.0]
365
+ shrinkage_factor = [0.5]
366
+ max_depth = [5]
367
+ min_node_size = [1]
368
+ iter_num = [10]
369
+ num_trees = [-1]
370
+
371
+ # Extending values for hyperparameters based on dataset size, i.e., number of rows and columns
372
+ if num_rows < 1000 and num_cols < 10:
373
+ min_impurity.extend([0.1])
374
+ shrinkage_factor.extend([0.1, 0.2])
375
+ max_depth.extend([6, 7, 8])
376
+ min_node_size.extend([2])
377
+ iter_num.extend([20])
378
+ num_trees.extend([10, 20])
379
+ elif num_rows < 10000 and num_cols < 15:
380
+ min_impurity.extend([0.1, 0.2])
381
+ shrinkage_factor.extend([0.1, 0.3])
382
+ max_depth.extend([6, 8, 10])
383
+ min_node_size.extend([2, 3])
384
+ iter_num.extend([20, 30])
385
+ num_trees.extend([20, 30])
386
+ elif num_rows < 100000 and num_cols < 20:
387
+ min_impurity.extend([0.2, 0.3])
388
+ shrinkage_factor.extend([0.01, 0.1, 0.2])
389
+ max_depth.extend([4, 6, 7])
390
+ min_node_size.extend([3, 4])
391
+ iter_num.extend([30, 40])
392
+ num_trees.extend([30, 40])
393
+ else:
394
+ min_impurity.extend([0.1, 0.2, 0.3])
395
+ shrinkage_factor.extend([0.01, 0.05, 0.1])
396
+ max_depth.extend([3, 4, 7, 8])
397
+ min_node_size.extend([2, 3, 4])
398
+ iter_num.extend([20, 30, 40])
399
+ num_trees.extend([20, 30, 40])
400
+
401
+ # Hyperparameters for XGBoost model
402
+ xgb_params = {
403
+ 'response_column': self.target_column,
404
+ 'name':'xgboost',
405
+ 'model_type': 'Regression',
406
+ 'column_sampling': (1, .6),
407
+ 'min_impurity': tuple(min_impurity),
408
+ 'lambda1': (0.01, 0.1, 1, 10),
409
+ 'shrinkage_factor': tuple(shrinkage_factor),
410
+ 'max_depth': tuple(max_depth),
411
+ 'min_node_size': tuple(min_node_size),
412
+ 'iter_num': tuple(iter_num)
413
+ }
414
+ # Hyperparameters for Decision Forest model
415
+ df_params = {
416
+ 'response_column': self.target_column,
417
+ 'name': 'decision_forest',
418
+ 'tree_type': 'Regression',
419
+ 'min_impurity': tuple(min_impurity),
420
+ 'max_depth': tuple(max_depth),
421
+ 'min_node_size': tuple(min_node_size),
422
+ 'num_trees': tuple(num_trees)
423
+ }
424
+
425
+ # Updating model type in case of classification
426
+ if self.task_type == "Classification":
427
+ xgb_params['model_type'] = 'Classification'
428
+ df_params['tree_type'] = 'Classification'
429
+
430
+ # Returning hyperparameters based on passed model
431
+ if model_name == 'xgboost':
432
+ return xgb_params
433
+ elif model_name == 'decision_forest':
434
+ return df_params
435
+ else:
436
+ return None
437
+
438
+ # Hyperparameter generation for KNN
439
+ def _get_knn_hyperparameters(self,
440
+ num_rows=None,
441
+ num_cols=None):
442
+ """
443
+ DESCRIPTION:
444
+ Internal function to generate hyperparameters for KNN.
445
+
446
+ PARAMETERS:
447
+ num_rows
448
+ Required Arugment.
449
+ Specifies the number of rows in dataset.
450
+ Types: int
451
+
452
+ num_cols:
453
+ Required Arugment.
454
+ Specifies the number of columns in dataset.
455
+ Types: int
456
+
457
+ RETURNS:
458
+ dict containing, hyperparameters for KNN.
459
+ """
460
+ params = {
461
+ 'response_column': self.target_column,
462
+ 'name': 'knn',
463
+ 'model_type': 'Regression',
464
+ 'k': (3, 5, 6, 8, 10, 12),
465
+ "id_column":"id",
466
+ "voting_weight": 1.0
467
+ }
468
+
469
+ if self.task_type == "Classification":
470
+ params['model_type'] = 'Classification'
471
+
472
+ return params
473
+
474
+ # Hyperparameter generation for SVM/GLM
475
+ def _get_linear_model_hyperparameters(self,
476
+ num_rows,
477
+ num_cols,
478
+ model_name):
479
+ """
480
+ DESCRIPTION:
481
+ Internal function to generate hyperparameters for linear models i.e., SVM or GLM.
482
+
483
+ PARAMETERS:
484
+ num_rows:
485
+ Required Arugment.
486
+ Specifies the number of rows in dataset.
487
+ Types: int
488
+
489
+ num_cols:
490
+ Required Arugment.
491
+ Specifies the number of columns in dataset.
492
+ Types: int
493
+
494
+ model_name:
495
+ Required Argument.
496
+ Specifies which tree model is getting used for generating hyperparameters.
497
+ Types: Str
498
+
499
+ RETURNS:
500
+ dict containing, hyperparameters for SVM or GLM.
501
+ """
502
+ # Initializing hyperparameters based on default value
503
+ iter_max = [300]
504
+ batch_size = [10]
505
+
506
+ # Extending values for hyperparameters based on dataset size i.e., number of rows and columns
507
+ if num_rows < 1000 and num_cols < 10:
508
+ iter_max.extend([100, 200])
509
+ batch_size.extend([20, 40, 50])
510
+ elif num_rows < 10000 and num_cols < 15:
511
+ iter_max.extend([200, 400])
512
+ batch_size.extend([50, 60, 80])
513
+ elif num_rows < 100000 and num_cols < 20:
514
+ iter_max.extend([400])
515
+ batch_size.extend([100, 150])
516
+ else:
517
+ iter_max.extend([200, 400, 500])
518
+ batch_size.extend([80, 100, 150])
519
+
520
+ # Hyperparameters for SVM model
521
+ svm_params = {
522
+ 'response_column': self.target_column,
523
+ 'name':'svm',
524
+ 'model_type':'regression',
525
+ 'lambda1':(0.001, 0.02, 0.1),
526
+ 'alpha':(.15, .85),
527
+ 'tolerance':(0.001, 0.01),
528
+ 'learning_rate':('Invtime','Adaptive','constant'),
529
+ 'initial_eta' : (0.05, 0.1),
530
+ 'momentum':(0.65, 0.8, 0.95),
531
+ 'nesterov': True,
532
+ 'intercept': True,
533
+ 'iter_num_no_change':(5, 10, 50),
534
+ 'local_sgd_iterations ': (10, 20),
535
+ 'iter_max' : tuple(iter_max),
536
+ 'batch_size' : tuple(batch_size)
537
+ }
538
+ # Hyperparameters for GLM model
539
+ glm_params={
540
+ 'response_column': self.target_column,
541
+ 'name': 'glm',
542
+ 'family': 'GAUSSIAN',
543
+ 'lambda1':(0.001, 0.02, 0.1),
544
+ 'alpha': (0.15, 0.85),
545
+ 'learning_rate': ('invtime', 'constant', 'adaptive'),
546
+ 'initial_eta': (0.05, 0.1),
547
+ 'momentum': (0.65, 0.8, 0.95),
548
+ 'iter_num_no_change':(5, 10, 50),
549
+ 'iter_max' : tuple(iter_max),
550
+ 'batch_size' : tuple(batch_size)
551
+ }
552
+
553
+ # Updating model type in case of classification
554
+ if self.task_type == "Classification":
555
+ svm_params['model_type'] = 'Classification'
556
+ svm_params['learning_rate'] = 'OPTIMAL'
557
+ glm_params['family'] = 'BINOMIAL'
558
+ glm_params['learning_rate'] = 'OPTIMAL'
559
+
560
+ # Returning hyperparameters based on passed model
561
+ if model_name == 'svm':
562
+ return svm_params
563
+ elif model_name == 'glm':
564
+ return glm_params
565
+ else:
566
+ return None
567
+
568
+ def _generate_parameter(self):
569
+ """
570
+ DESCRIPTION:
571
+ Internal function to generate hyperparameters for ML models.
572
+
573
+ RETURNS:
574
+ list containing, dict of hyperparameters for different ML models.
575
+ """
576
+ # list for storing hyperparameters
577
+ parameters=[]
578
+ # Index for model mapping
579
+ model_index=0
580
+ # Dictionary for mapping model with index
581
+ self.model_mapping={}
582
+
583
+ # Getting number of rows and columns
584
+ num_rows = self.data.shape[0]
585
+ num_cols = self.data.shape[1]
586
+
587
+ # Updating model list for multi-class classification
588
+ if self.task_type.casefold() == "classification" and self.labels > 2:
589
+ for model in ['glm','svm']:
590
+ if model in self.model_list:
591
+ self._display_msg(inline_msg="\nMulti-class classification is "
592
+ "not supported by {} model. Skipping {} model."
593
+ .format(model, model),
594
+ progress_bar=self.progress_bar)
595
+ self.model_list.remove(model)
596
+
597
+ # Model functions mapping for hyperparameter generation
598
+ model_functions = {
599
+ 'decision_forest': self._get_tree_model_hyperparameters,
600
+ 'xgboost': self._get_tree_model_hyperparameters,
601
+ 'knn': self._get_knn_hyperparameters,
602
+ 'glm': self._get_linear_model_hyperparameters,
603
+ 'svm': self._get_linear_model_hyperparameters,
604
+ }
605
+
606
+ # Generating hyperparameters for each model
607
+ if self.model_list:
608
+ for model in self.model_list:
609
+ self.model_mapping[model] = model_index
610
+ if model == 'knn':
611
+ parameters.append(model_functions[model](num_rows, num_cols))
612
+ else:
613
+ parameters.append(model_functions[model](num_rows, num_cols, model))
614
+ model_index += 1
615
+ else:
616
+ raise ValueError("No model is selected for training.")
617
+
618
+ return parameters
619
+
620
+ def _parallel_training(self, parameters):
621
+ """
622
+ DESCRIPTION:
623
+ Internal function initiates the threadpool executor
624
+ for hyperparameter tunning of ML models.
625
+
626
+ PARAMETERS:
627
+ parameters:
628
+ Required Argument.
629
+ Specifies the hyperparamters for ML models.
630
+ Types: list of dict
631
+
632
+ RETURNS:
633
+ Pandas DataFrame containing, trained models information.
634
+ """
635
+
636
+ # Hyperparameters for each model
637
+ model_params = parameters[:min(len(parameters), 5)]
638
+ self._display_msg(msg="\nPerforming hyperParameter tuning ...", progress_bar=self.progress_bar)
639
+
640
+ # Defining training and testing data
641
+ data_types = ['lasso', 'rfe', 'pca']
642
+ trainng_datas = tuple(DataFrame(self.table_name_mapping[f'{data_type}_train']) for data_type in data_types)
643
+ testing_datas = tuple(DataFrame(self.table_name_mapping[f'{data_type}_test']) for data_type in data_types)
644
+
645
+ if self.stopping_metric is None:
646
+ self.stopping_tolerance, self.stopping_metric = 1.0, 'MICRO-F1' \
647
+ if self.is_classification_type() else 'R2'
648
+
649
+ self.max_runtime_secs = self.max_runtime_secs/len(model_params) \
650
+ if self.max_runtime_secs is not None else None
651
+
652
+ trained_models = []
653
+ for param in model_params:
654
+ result = self._hyperparameter_tunning(param, trainng_datas, testing_datas)
655
+ trained_models.append(result)
656
+
657
+ models_df = pd.concat(trained_models, ignore_index=True)
658
+
659
+ # Score the model and combine the results into a single DataFrame
660
+ trained_models_info = self._model_scoring(testing_datas, models_df)
661
+ trained_models_info = trained_models_info.reset_index(drop=True)
662
+
663
+ return trained_models_info
664
+
665
+ def _model_scoring(self,
666
+ test_data,
667
+ model_info):
668
+ """
669
+ DESCRIPTION:
670
+ Internal function generates the performance metrics for
671
+ trained ML models using testing dataset.
672
+
673
+ PARAMETERS:
674
+ test_data
675
+ Required Argument.
676
+ Specifies the testing datasets
677
+ Types: tuple of Teradataml DataFrame
678
+
679
+ model_info
680
+ Required Arugment.
681
+ Specifies the trained models information.
682
+ Types: Pandas DataFrame
683
+
684
+ RETURNS:
685
+ Pandas DataFrame containing, trained models with thier performance metrics.
686
+ """
687
+ self._display_msg(msg="Evaluating models performance ...",
688
+ progress_bar = self.progress_bar,
689
+ show_data=True)
690
+ # Empty list for storing model performance metrics
691
+ model_performance_data = []
692
+
693
+ # Mapping feature selection methods to corresponding test data
694
+ feature_selection_to_test_data = {"lasso": test_data[0],
695
+ "rfe": test_data[1],
696
+ "pca": test_data[2]}
697
+
698
+ # Iterating over models
699
+ for index, model_row in model_info.iterrows():
700
+ # Extracting model name, feature selection method, and model object
701
+ model_name, feature_selection, model_object = model_row['Name'], \
702
+ model_row['Feature selection'], model_row['obj']
703
+
704
+ # Selecting test data based on feature selection method
705
+ test_set = feature_selection_to_test_data[feature_selection]
706
+
707
+ # Model evaluation
708
+ if model_name == 'knn':
709
+ performance_metrics = model_object.evaluate(test_data=test_set)
710
+ else:
711
+ eval_params = self._eval_params_generation(model_name)
712
+ performance_metrics = model_object.evaluate(newdata=test_set, **eval_params)
713
+
714
+ # Extracting performance metrics
715
+ if self.is_classification_type():
716
+ # Classification
717
+ # Extract performance metrics from the output data
718
+ performance_metrics_list = [metric[2] for metric in performance_metrics.output_data.itertuples()]
719
+
720
+ # Combine all the elements to form a new row
721
+ new_row = [model_name, feature_selection] + performance_metrics_list + [model_object]
722
+ else:
723
+ # Regression
724
+ regression_metrics = next(performance_metrics.result.itertuples())
725
+ sample_size = test_set.select('id').size
726
+ feature_count = len(test_set.columns) - 2
727
+ r2_score = regression_metrics[8]
728
+ adjusted_r2_score = 1 - ((1 - r2_score) * (sample_size - 1) / (sample_size - feature_count - 1))
729
+ new_row = [model_name, feature_selection, regression_metrics[0], regression_metrics[1], regression_metrics[2],
730
+ regression_metrics[5], regression_metrics[6], r2_score, adjusted_r2_score, model_object]
731
+
732
+ model_performance_data.append(new_row)
733
+
734
+ if self.is_classification_type():
735
+ model_metrics_df = pd.DataFrame(model_performance_data, columns=['Name','Feature selection',
736
+ 'Accuracy','Micro-Precision',
737
+ 'Micro-Recall','Micro-F1',
738
+ 'Macro-Precision','Macro-Recall',
739
+ 'Macro-F1','Weighted-Precision',
740
+ 'Weighted-Recall','Weighted-F1',
741
+ 'model-obj'])
742
+ else:
743
+ model_metrics_df = pd.DataFrame(model_performance_data, columns=['Name',
744
+ 'Feature selection',
745
+ 'MAE', 'MSE', 'MSLE',
746
+ 'RMSE', 'RMSLE',
747
+ 'R2-score',
748
+ 'Adjusted R2-score',
749
+ 'model-obj'])
750
+ self._display_msg(msg="Evaluation completed.",
751
+ progress_bar = self.progress_bar,
752
+ show_data=True)
753
+
754
+ return model_metrics_df
755
+
756
+ def _hyperparameter_tunning(self,
757
+ model_param,
758
+ train_data,
759
+ test_data):
760
+ """
761
+ DESCRIPTION:
762
+ Internal function performs hyperparameter tuning on
763
+ ML models for regression/classification problems.
764
+
765
+ PARAMETERS:
766
+ model_param
767
+ Required Arugment.
768
+ Specifies the eval_params argument for GridSearch.
769
+ Types: dict
770
+
771
+ train_data:
772
+ Required Arugment.
773
+ Specifies the training datasets.
774
+ Types: tuple of Teradataml DataFrame
775
+
776
+ test_data
777
+ Required Argument.
778
+ Specifies the testing datasets
779
+ Types: tuple of Teradataml DataFrame
780
+
781
+ RETURNS:
782
+ pandas DataFrame containing, trained models information.
783
+ """
784
+ # Mapping model names to functions
785
+ model_to_func = {"glm": GLM, "svm": SVM,
786
+ "xgboost": XGBoost, "decision_forest": DecisionForest, "knn": KNN}
787
+
788
+ # Setting eval_params for hpt.
789
+ eval_params = self._eval_params_generation(model_param['name'])
790
+
791
+ # Input columns for model
792
+ model_param['input_columns'] = self.features
793
+
794
+ self._display_msg(msg=model_param['name'],
795
+ progress_bar=self.progress_bar,
796
+ show_data=True)
797
+
798
+ # Defining test data for KNN
799
+ if model_param['name'] == 'knn':
800
+ model_param['test_data'] = test_data
801
+
802
+ # Defining Gridsearch with ML model based on Name
803
+ _obj = GridSearch(func=model_to_func[model_param['name']], params=model_param)
804
+
805
+ if self.verbose > 0:
806
+ print(" " *200, end='\r', flush=True)
807
+ verbose = 1
808
+ else:
809
+ verbose = 0
810
+
811
+ # Hyperparameter tunning
812
+ if model_param['name'] == 'knn':
813
+ _obj.fit(data=train_data, evaluation_metric=self.stopping_metric,
814
+ early_stop=self.stopping_tolerance, run_parallel=True,
815
+ sample_seed=42, sample_id_column='id', discard_invalid_column_params=True,
816
+ verbose=verbose, max_time=self.max_runtime_secs)
817
+ else:
818
+ _obj.fit(data=train_data, evaluation_metric=self.stopping_metric,
819
+ early_stop=self.stopping_tolerance, **eval_params,
820
+ run_parallel=True, discard_invalid_column_params=True, sample_seed=42,
821
+ sample_id_column='id', verbose=verbose, max_time=self.max_runtime_secs)
822
+
823
+ # Getting all passed models
824
+ _df = _obj.model_stats.merge(_obj.models[_obj.models['STATUS']=='PASS'][['MODEL_ID', 'DATA_ID']], on='MODEL_ID', how='inner')
825
+
826
+ # Mapping data ID to DataFrame
827
+ data_id_to_df = {"DF_0": _df[_df['DATA_ID']=='DF_0'],
828
+ "DF_1": _df[_df['DATA_ID']=='DF_1'],
829
+ "DF_2": _df[_df['DATA_ID']=='DF_2']}
830
+
831
+ # Returns best model within a Data_ID group
832
+ # get_best_model = lambda df: df.sort_values(by=['MICRO-F1', 'WEIGHTED-F1'], ascending=[False, False]).iloc[0]['MODEL_ID']\
833
+ # if self.task_type != 'Regression' else df.sort_values(by=['R2', 'MAE'], ascending=[False, False]).iloc[0]['MODEL_ID']
834
+ get_best_model = lambda df, stats: df.sort_values(by=stats, ascending=[False, False]).iloc[0]['MODEL_ID']
835
+
836
+ # best_model = get_best_model(data_id_to_df[data_id], stats)
837
+ stats = ['MICRO-F1', 'WEIGHTED-F1'] if self.task_type != 'Regression' else ['R2', 'MAE']
838
+ model_info_data = []
839
+ # Extracting best model
840
+ for data_id, df_name in zip(["DF_0", "DF_1", "DF_2"], ["lasso", "rfe", "pca"]):
841
+ if not data_id_to_df[data_id].empty:
842
+ best_model = get_best_model(data_id_to_df[data_id], stats)
843
+ model_info_data.append([model_param['name'], df_name, _obj.get_model(best_model)])
844
+ self._display_msg(inline_msg=best_model, progress_bar=self.progress_bar)
845
+
846
+ model_info = pd.DataFrame(data=model_info_data, columns=["Name",'Feature selection', "obj"])
847
+ self._display_msg(msg="-"*100,
848
+ progress_bar=self.progress_bar,
849
+ show_data=True)
850
+ self.progress_bar.update()
851
+
852
+ return model_info
853
+
854
+ def _eval_params_generation(self,
855
+ ml_name):
856
+ """
857
+ DESCRIPTION:
858
+ Internal function generates the eval_params for
859
+ different ML models.
860
+
861
+ PARAMETERS:
862
+ ml_name
863
+ Required Arugment.
864
+ Specifies the ML name for eval_params generation.
865
+ Types: str
866
+
867
+ RETURNS:
868
+ dict containing, eval_params for ML model.
869
+ """
870
+ # Setting the eval_params
871
+ eval_params = {"id_column": "id",
872
+ "accumulate": self.target_column}
873
+
874
+ # For Classification
875
+ if self.task_type != "Regression":
876
+ if ml_name == 'xgboost':
877
+ eval_params['model_type'] = 'Classification'
878
+ eval_params['object_order_column'] = ['task_index', 'tree_num', 'iter','class_num', 'tree_order']
879
+ else:
880
+ eval_params['output_prob'] = True
881
+ else:
882
+ # For Regression
883
+ if ml_name == 'xgboost':
884
+ eval_params['model_type'] = 'Regression'
885
+ eval_params['object_order_column'] = ['task_index', 'tree_num', 'iter', 'tree_order']
886
+
887
+ return eval_params