teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,627 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 2.8
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.analytics.mle.XGBoost import XGBoost
|
|
30
|
-
|
|
31
|
-
class XGBoostPredict:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
object = None,
|
|
35
|
-
newdata = None,
|
|
36
|
-
id_column = None,
|
|
37
|
-
terms = None,
|
|
38
|
-
iter_num = None,
|
|
39
|
-
num_boosted_trees = None,
|
|
40
|
-
attribute_name_column = None,
|
|
41
|
-
attribute_value_column = None,
|
|
42
|
-
output_response_probdist = False,
|
|
43
|
-
output_responses = None,
|
|
44
|
-
newdata_sequence_column = None,
|
|
45
|
-
object_sequence_column = None,
|
|
46
|
-
newdata_partition_column = "ANY",
|
|
47
|
-
newdata_order_column = None,
|
|
48
|
-
object_order_column = None):
|
|
49
|
-
"""
|
|
50
|
-
DESCRIPTION:
|
|
51
|
-
The XGBoostPredict function applies the model output by the XGBoost
|
|
52
|
-
function to a new data set, outputting predicted labels for each data
|
|
53
|
-
point.
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
PARAMETERS:
|
|
57
|
-
object:
|
|
58
|
-
Required Argument.
|
|
59
|
-
Specifies the teradataml DataFrame containing the model data.
|
|
60
|
-
|
|
61
|
-
object_order_column:
|
|
62
|
-
Required Argument.
|
|
63
|
-
Specifies Order By columns for object.
|
|
64
|
-
Values to this argument can be provided as list, if multiple columns
|
|
65
|
-
are used for ordering.
|
|
66
|
-
Types: str OR list of Strings (str)
|
|
67
|
-
|
|
68
|
-
newdata:
|
|
69
|
-
Required Argument.
|
|
70
|
-
Specifies the teradataml DataFrame containing the input test data.
|
|
71
|
-
|
|
72
|
-
newdata_partition_column:
|
|
73
|
-
Optional Argument.
|
|
74
|
-
Specifies Partition By columns for newdata.
|
|
75
|
-
Values to this argument can be provided as list, if multiple columns
|
|
76
|
-
are used for partition.
|
|
77
|
-
Default Value: ANY
|
|
78
|
-
Types: str OR list of Strings (str)
|
|
79
|
-
|
|
80
|
-
newdata_order_column:
|
|
81
|
-
Optional Argument.
|
|
82
|
-
Specifies Order By columns for newdata.
|
|
83
|
-
Values to this argument can be provided as list, if multiple columns
|
|
84
|
-
are used for ordering.
|
|
85
|
-
Types: str OR list of Strings (str)
|
|
86
|
-
|
|
87
|
-
id_column:
|
|
88
|
-
Optional Argument.
|
|
89
|
-
Specifies a column containing a unique identifier for each test point
|
|
90
|
-
in the test set.
|
|
91
|
-
Types: str
|
|
92
|
-
|
|
93
|
-
terms:
|
|
94
|
-
Optional Argument.
|
|
95
|
-
Specifies the names of the input columns to copy to the output table.
|
|
96
|
-
Types: str OR list of Strings (str)
|
|
97
|
-
|
|
98
|
-
iter_num:
|
|
99
|
-
Optional Argument.
|
|
100
|
-
Specifies the number of iterations for each boosted tree to use for
|
|
101
|
-
prediction. The lower bound is 1. If this argument is not specified,
|
|
102
|
-
the value is the same as used for training model. The number of
|
|
103
|
-
iterations used is upper bounded by the number of iterations used
|
|
104
|
-
during training.
|
|
105
|
-
Types: int
|
|
106
|
-
|
|
107
|
-
num_boosted_trees:
|
|
108
|
-
Optional Argument.
|
|
109
|
-
Specifies the number of boosted trees to be used for prediction. If
|
|
110
|
-
this argument is not specified, the value is the same as used for
|
|
111
|
-
training model. The number of boosted trees used for prediction is
|
|
112
|
-
upper bounded by the number of boosted trees used during training.
|
|
113
|
-
Types: int
|
|
114
|
-
|
|
115
|
-
attribute_name_column:
|
|
116
|
-
Optional Argument.
|
|
117
|
-
Required for sparse data format, if the data set is in sparse format,
|
|
118
|
-
this argument indicates the column containing the attributes in the
|
|
119
|
-
input teradataml DataFrame.
|
|
120
|
-
Types: str
|
|
121
|
-
|
|
122
|
-
attribute_value_column:
|
|
123
|
-
Optional Argument.
|
|
124
|
-
If the data is in the sparse format, this argument indicates the
|
|
125
|
-
column containing the attribute values in the input teradataml DataFrame.
|
|
126
|
-
Types: str
|
|
127
|
-
|
|
128
|
-
output_response_probdist:
|
|
129
|
-
Optional Argument.
|
|
130
|
-
Specifies whether to output probabilities or not.
|
|
131
|
-
Note: "output_response_probdist" argument support is only available
|
|
132
|
-
when teradataml is connected to Vantage 1.1.1 or later.
|
|
133
|
-
Default Value: False
|
|
134
|
-
Types: bool
|
|
135
|
-
|
|
136
|
-
output_responses:
|
|
137
|
-
Optional Argument.
|
|
138
|
-
Specifies the responses in the input teradataml DataFrame.
|
|
139
|
-
output_response_probdist must be set to True in order to use this argument.
|
|
140
|
-
Note: "output_responses" argument support is only available
|
|
141
|
-
when teradataml is connected to Vantage 1.1.1 or later.
|
|
142
|
-
Types: str OR list of Strings (str)
|
|
143
|
-
|
|
144
|
-
newdata_sequence_column:
|
|
145
|
-
Optional Argument.
|
|
146
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
147
|
-
the input argument "newdata". The argument is used to ensure
|
|
148
|
-
deterministic results for functions which produce results that vary
|
|
149
|
-
from run to run.
|
|
150
|
-
Types: str OR list of Strings (str)
|
|
151
|
-
|
|
152
|
-
object_sequence_column:
|
|
153
|
-
Optional Argument.
|
|
154
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
155
|
-
the input argument "object". The argument is used to ensure
|
|
156
|
-
deterministic results for functions which produce results that vary
|
|
157
|
-
from run to run.
|
|
158
|
-
Types: str OR list of Strings (str)
|
|
159
|
-
|
|
160
|
-
RETURNS:
|
|
161
|
-
Instance of XGBoostPredict.
|
|
162
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
163
|
-
references, such as XGBoostPredictObj.<attribute_name>.
|
|
164
|
-
Output teradataml DataFrame attribute name is:
|
|
165
|
-
result
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
RAISES:
|
|
169
|
-
TeradataMlException
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
EXAMPLES:
|
|
173
|
-
# Load example data.
|
|
174
|
-
load_example_data("xgboost", ["housing_train_binary","iris_train","sparse_iris_train","sparse_iris_attribute"])
|
|
175
|
-
load_example_data("xgboostpredict", ["housing_test_binary", "iris_test", "sparse_iris_test"])
|
|
176
|
-
|
|
177
|
-
# Example 1 - Binary Classification: Predict the housing style (classic or eclectic)
|
|
178
|
-
# Create teradataml DataFrame objects.
|
|
179
|
-
housing_train_binary = DataFrame.from_table("housing_train_binary")
|
|
180
|
-
housing_test_binary = DataFrame.from_table("housing_test_binary")
|
|
181
|
-
|
|
182
|
-
# Generate the XGBoost model, on the housing data, that contains couple of labels
|
|
183
|
-
# classic and eclectic, which specify the housing style based on the 12 other
|
|
184
|
-
# attributes of the house, such as bedrooms, stories, price etc.
|
|
185
|
-
XGBoostOut1 = XGBoost(data=housing_train_binary,
|
|
186
|
-
id_column='sn',
|
|
187
|
-
formula="homestyle ~ driveway + recroom + fullbase + gashw + airco + prefarea + price + lotsize + bedrooms + bathrms + stories + garagepl",
|
|
188
|
-
num_boosted_trees=2,
|
|
189
|
-
loss_function='binomial',
|
|
190
|
-
prediction_type='classification',
|
|
191
|
-
reg_lambda=1.0,
|
|
192
|
-
shrinkage_factor=0.1,
|
|
193
|
-
iter_num=10,
|
|
194
|
-
min_node_size=1,
|
|
195
|
-
max_depth=10
|
|
196
|
-
)
|
|
197
|
-
|
|
198
|
-
# Use the generated model to find predict the house style, on the test data.
|
|
199
|
-
XGBoostPredictOut1 = XGBoostPredict(newdata=housing_test_binary,
|
|
200
|
-
object=XGBoostOut1,
|
|
201
|
-
object_order_column=['tree_id', 'iter', 'class_num'],
|
|
202
|
-
id_column='sn',
|
|
203
|
-
terms='homestyle',
|
|
204
|
-
num_boosted_trees=1
|
|
205
|
-
)
|
|
206
|
-
|
|
207
|
-
# Print the results
|
|
208
|
-
print(XGBoostPredictOut1)
|
|
209
|
-
|
|
210
|
-
# Example 2: Multiple-Class Classification: Predict the Iris flower species
|
|
211
|
-
# (setosa, virginica or versicolor).
|
|
212
|
-
iris_train = DataFrame.from_table("iris_train")
|
|
213
|
-
iris_test = DataFrame.from_table("iris_test")
|
|
214
|
-
|
|
215
|
-
# Generate the model on one of the famous dataset Iris Data set, that contains 50 samples
|
|
216
|
-
# from three species of Iris flower setosa, virginica and versicolor. Each data point contains
|
|
217
|
-
# measurements of length and width of sepals and petals.
|
|
218
|
-
XGBoostOut2 = XGBoost(data=iris_train,
|
|
219
|
-
id_column='id',
|
|
220
|
-
formula="species ~ sepal_length + sepal_width + petal_length + petal_width ",
|
|
221
|
-
num_boosted_trees=2,
|
|
222
|
-
loss_function='softmax',
|
|
223
|
-
reg_lambda=1.0,
|
|
224
|
-
shrinkage_factor=0.1,
|
|
225
|
-
iter_num=10,
|
|
226
|
-
min_node_size=1,
|
|
227
|
-
max_depth=10)
|
|
228
|
-
|
|
229
|
-
# Use the generated model to predict the Iris flower type.
|
|
230
|
-
XGBoostPredictOut2 = XGBoostPredict(newdata=iris_test,
|
|
231
|
-
newdata_partition_column='id',
|
|
232
|
-
object=XGBoostOut2,
|
|
233
|
-
object_order_column=['tree_id', 'iter','class_num'],
|
|
234
|
-
id_column='id',
|
|
235
|
-
terms='species',
|
|
236
|
-
num_boosted_trees=2
|
|
237
|
-
)
|
|
238
|
-
|
|
239
|
-
# Print the results
|
|
240
|
-
print(XGBoostPredictOut2)
|
|
241
|
-
|
|
242
|
-
# Example 3: Sparse Input Format. response_column argument is specified instead of formula.
|
|
243
|
-
sparse_iris_train = DataFrame.from_table("sparse_iris_train")
|
|
244
|
-
sparse_iris_test = DataFrame.from_table("sparse_iris_test")
|
|
245
|
-
sparse_iris_attribute = DataFrame.from_table("sparse_iris_attribute")
|
|
246
|
-
|
|
247
|
-
# Generate the model
|
|
248
|
-
XGBoostOut3 = XGBoost(data=sparse_iris_train,
|
|
249
|
-
attribute_table=sparse_iris_attribute,
|
|
250
|
-
id_column='id',
|
|
251
|
-
response_column='species',
|
|
252
|
-
prediction_type='classification',
|
|
253
|
-
attribute_name_column='attribute',
|
|
254
|
-
attribute_value_column='value_col',
|
|
255
|
-
num_boosted_trees=2,
|
|
256
|
-
loss_function='SOFTMAX',
|
|
257
|
-
reg_lambda=1.0,
|
|
258
|
-
shrinkage_factor=0.1,
|
|
259
|
-
iter_num=10,
|
|
260
|
-
min_node_size=1,
|
|
261
|
-
max_depth=10)
|
|
262
|
-
|
|
263
|
-
# Use the generated model to find prediction.
|
|
264
|
-
XGBoostPredictOut3 = XGBoostPredict(object = XGBoostOut3,
|
|
265
|
-
object_order_column = ["tree_id", "iter", "class_num"],
|
|
266
|
-
newdata = sparse_iris_test,
|
|
267
|
-
newdata_partition_column = ["id"],
|
|
268
|
-
id_column = "id",
|
|
269
|
-
terms = ["species"],
|
|
270
|
-
num_boosted_trees = 2,
|
|
271
|
-
attribute_name_column = "attribute",
|
|
272
|
-
attribute_value_column = "value_col"
|
|
273
|
-
)
|
|
274
|
-
|
|
275
|
-
# Print the results
|
|
276
|
-
print(XGBoostPredictOut3)
|
|
277
|
-
|
|
278
|
-
"""
|
|
279
|
-
|
|
280
|
-
# Start the timer to get the build time
|
|
281
|
-
_start_time = time.time()
|
|
282
|
-
|
|
283
|
-
self.object = object
|
|
284
|
-
self.newdata = newdata
|
|
285
|
-
self.id_column = id_column
|
|
286
|
-
self.terms = terms
|
|
287
|
-
self.iter_num = iter_num
|
|
288
|
-
self.num_boosted_trees = num_boosted_trees
|
|
289
|
-
self.attribute_name_column = attribute_name_column
|
|
290
|
-
self.attribute_value_column = attribute_value_column
|
|
291
|
-
self.output_response_probdist = output_response_probdist
|
|
292
|
-
self.output_responses = output_responses
|
|
293
|
-
self.newdata_sequence_column = newdata_sequence_column
|
|
294
|
-
self.object_sequence_column = object_sequence_column
|
|
295
|
-
self.newdata_partition_column = newdata_partition_column
|
|
296
|
-
self.newdata_order_column = newdata_order_column
|
|
297
|
-
self.object_order_column = object_order_column
|
|
298
|
-
|
|
299
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
300
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
301
|
-
self.__aed_utils = AedUtils()
|
|
302
|
-
|
|
303
|
-
# Create argument information matrix to do parameter checking
|
|
304
|
-
self.__arg_info_matrix = []
|
|
305
|
-
self.__arg_info_matrix.append(["object", self.object, False, (DataFrame)])
|
|
306
|
-
self.__arg_info_matrix.append(["object_order_column", self.object_order_column, False, (str,list)])
|
|
307
|
-
self.__arg_info_matrix.append(["newdata", self.newdata, False, (DataFrame)])
|
|
308
|
-
self.__arg_info_matrix.append(["newdata_partition_column", self.newdata_partition_column, True, (str,list)])
|
|
309
|
-
self.__arg_info_matrix.append(["newdata_order_column", self.newdata_order_column, True, (str,list)])
|
|
310
|
-
self.__arg_info_matrix.append(["id_column", self.id_column, True, (str)])
|
|
311
|
-
self.__arg_info_matrix.append(["terms", self.terms, True, (str,list)])
|
|
312
|
-
self.__arg_info_matrix.append(["iter_num", self.iter_num, True, (int)])
|
|
313
|
-
self.__arg_info_matrix.append(["num_boosted_trees", self.num_boosted_trees, True, (int)])
|
|
314
|
-
self.__arg_info_matrix.append(["attribute_name_column", self.attribute_name_column, True, (str)])
|
|
315
|
-
self.__arg_info_matrix.append(["attribute_value_column", self.attribute_value_column, True, (str)])
|
|
316
|
-
self.__arg_info_matrix.append(["output_response_probdist", self.output_response_probdist, True, (bool)])
|
|
317
|
-
self.__arg_info_matrix.append(["output_responses", self.output_responses, True, (str,list)])
|
|
318
|
-
self.__arg_info_matrix.append(["newdata_sequence_column", self.newdata_sequence_column, True, (str,list)])
|
|
319
|
-
self.__arg_info_matrix.append(["object_sequence_column", self.object_sequence_column, True, (str,list)])
|
|
320
|
-
|
|
321
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
322
|
-
# Perform the function validations
|
|
323
|
-
self.__validate()
|
|
324
|
-
# Generate the ML query
|
|
325
|
-
self.__form_tdml_query()
|
|
326
|
-
# Execute ML query
|
|
327
|
-
self.__execute()
|
|
328
|
-
# Get the prediction type
|
|
329
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
330
|
-
|
|
331
|
-
# End the timer to get the build time
|
|
332
|
-
_end_time = time.time()
|
|
333
|
-
|
|
334
|
-
# Calculate the build time
|
|
335
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
336
|
-
|
|
337
|
-
def __validate(self):
|
|
338
|
-
"""
|
|
339
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
340
|
-
arguments, input argument and table types. Also processes the
|
|
341
|
-
argument values.
|
|
342
|
-
"""
|
|
343
|
-
if isinstance(self.object, XGBoost):
|
|
344
|
-
self.object = self.object._mlresults[0]
|
|
345
|
-
|
|
346
|
-
# To use output_responses, output_response_probdist must be set to True
|
|
347
|
-
if self.output_response_probdist is False and self.output_responses is not None:
|
|
348
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
|
|
349
|
-
'output_response_probdist=True',
|
|
350
|
-
'output_responses'),
|
|
351
|
-
MessageCodes.DEPENDENT_ARG_MISSING)
|
|
352
|
-
|
|
353
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
354
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
355
|
-
|
|
356
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
357
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
358
|
-
|
|
359
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
360
|
-
self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
|
|
361
|
-
self.__awu._validate_input_table_datatype(self.object, "object", XGBoost)
|
|
362
|
-
|
|
363
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
364
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
365
|
-
self.__awu._validate_input_columns_not_empty(self.id_column, "id_column")
|
|
366
|
-
self.__awu._validate_dataframe_has_argument_columns(self.id_column, "id_column", self.newdata, "newdata", False)
|
|
367
|
-
|
|
368
|
-
self.__awu._validate_input_columns_not_empty(self.terms, "terms")
|
|
369
|
-
self.__awu._validate_dataframe_has_argument_columns(self.terms, "terms", self.newdata, "newdata", False)
|
|
370
|
-
|
|
371
|
-
self.__awu._validate_input_columns_not_empty(self.attribute_name_column, "attribute_name_column")
|
|
372
|
-
self.__awu._validate_dataframe_has_argument_columns(self.attribute_name_column, "attribute_name_column", self.newdata, "newdata", False)
|
|
373
|
-
|
|
374
|
-
self.__awu._validate_input_columns_not_empty(self.attribute_value_column, "attribute_value_column")
|
|
375
|
-
self.__awu._validate_dataframe_has_argument_columns(self.attribute_value_column, "attribute_value_column", self.newdata, "newdata", False)
|
|
376
|
-
|
|
377
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_sequence_column, "newdata_sequence_column")
|
|
378
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_sequence_column, "newdata_sequence_column", self.newdata, "newdata", False)
|
|
379
|
-
|
|
380
|
-
self.__awu._validate_input_columns_not_empty(self.object_sequence_column, "object_sequence_column")
|
|
381
|
-
self.__awu._validate_dataframe_has_argument_columns(self.object_sequence_column, "object_sequence_column", self.object, "object", False)
|
|
382
|
-
|
|
383
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_partition_column, "newdata_partition_column")
|
|
384
|
-
if self.__awu._is_default_or_not(self.newdata_partition_column, "ANY"):
|
|
385
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_partition_column, "newdata_partition_column", self.newdata, "newdata", True)
|
|
386
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_order_column, "newdata_order_column")
|
|
387
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_order_column, "newdata_order_column", self.newdata, "newdata", False)
|
|
388
|
-
|
|
389
|
-
self.__awu._validate_input_columns_not_empty(self.object_order_column, "object_order_column")
|
|
390
|
-
self.__awu._validate_dataframe_has_argument_columns(self.object_order_column, "object_order_column", self.object, "object", False)
|
|
391
|
-
|
|
392
|
-
|
|
393
|
-
def __form_tdml_query(self):
|
|
394
|
-
"""
|
|
395
|
-
Function to generate the analytical function queries. The function defines
|
|
396
|
-
variables and list of arguments required to form the query.
|
|
397
|
-
"""
|
|
398
|
-
|
|
399
|
-
# Output table arguments list
|
|
400
|
-
self.__func_output_args_sql_names = []
|
|
401
|
-
self.__func_output_args = []
|
|
402
|
-
|
|
403
|
-
# Model Cataloging related attributes.
|
|
404
|
-
self._sql_specific_attributes = {}
|
|
405
|
-
self._sql_formula_attribute_mapper = {}
|
|
406
|
-
self._target_column = None
|
|
407
|
-
self._algorithm_name = None
|
|
408
|
-
|
|
409
|
-
# Generate lists for rest of the function arguments
|
|
410
|
-
self.__func_other_arg_sql_names = []
|
|
411
|
-
self.__func_other_args = []
|
|
412
|
-
self.__func_other_arg_json_datatypes = []
|
|
413
|
-
|
|
414
|
-
if self.id_column is not None:
|
|
415
|
-
self.__func_other_arg_sql_names.append("IdColumn")
|
|
416
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.id_column, "\""), "'"))
|
|
417
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
418
|
-
|
|
419
|
-
if self.terms is not None:
|
|
420
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
421
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.terms, "\""), "'"))
|
|
422
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
423
|
-
|
|
424
|
-
if self.attribute_name_column is not None:
|
|
425
|
-
self.__func_other_arg_sql_names.append("AttributeNameColumn")
|
|
426
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attribute_name_column, "\""), "'"))
|
|
427
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
428
|
-
|
|
429
|
-
if self.attribute_value_column is not None:
|
|
430
|
-
self.__func_other_arg_sql_names.append("AttributeValueColumn")
|
|
431
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attribute_value_column, "\""), "'"))
|
|
432
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
433
|
-
|
|
434
|
-
if self.iter_num is not None:
|
|
435
|
-
self.__func_other_arg_sql_names.append("IterNum")
|
|
436
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.iter_num, "'"))
|
|
437
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
438
|
-
|
|
439
|
-
if self.num_boosted_trees is not None:
|
|
440
|
-
self.__func_other_arg_sql_names.append("NumBoostedTrees")
|
|
441
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.num_boosted_trees, "'"))
|
|
442
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
443
|
-
|
|
444
|
-
if self.output_response_probdist is not None and self.output_response_probdist != False:
|
|
445
|
-
self.__func_other_arg_sql_names.append("OutputProb")
|
|
446
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_response_probdist, "'"))
|
|
447
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
448
|
-
|
|
449
|
-
if self.output_responses is not None:
|
|
450
|
-
self.__func_other_arg_sql_names.append("Responses")
|
|
451
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_responses, "'"))
|
|
452
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
453
|
-
|
|
454
|
-
# Generate lists for rest of the function arguments
|
|
455
|
-
sequence_input_by_list = []
|
|
456
|
-
if self.newdata_sequence_column is not None:
|
|
457
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.newdata_sequence_column, ""))
|
|
458
|
-
|
|
459
|
-
if self.object_sequence_column is not None:
|
|
460
|
-
sequence_input_by_list.append("ModelTable:" + UtilFuncs._teradata_collapse_arglist(self.object_sequence_column, ""))
|
|
461
|
-
|
|
462
|
-
if len(sequence_input_by_list) > 0:
|
|
463
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
464
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
465
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
466
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
467
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
468
|
-
|
|
469
|
-
|
|
470
|
-
# Declare empty lists to hold input table information.
|
|
471
|
-
self.__func_input_arg_sql_names = []
|
|
472
|
-
self.__func_input_table_view_query = []
|
|
473
|
-
self.__func_input_dataframe_type = []
|
|
474
|
-
self.__func_input_distribution = []
|
|
475
|
-
self.__func_input_partition_by_cols = []
|
|
476
|
-
self.__func_input_order_by_cols = []
|
|
477
|
-
|
|
478
|
-
# Process newdata
|
|
479
|
-
if self.__awu._is_default_or_not(self.newdata_partition_column, "ANY"):
|
|
480
|
-
self.newdata_partition_column = UtilFuncs._teradata_collapse_arglist(self.newdata_partition_column, "\"")
|
|
481
|
-
|
|
482
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.newdata, False)
|
|
483
|
-
self.__func_input_distribution.append("FACT")
|
|
484
|
-
self.__func_input_arg_sql_names.append("input")
|
|
485
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
486
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
487
|
-
self.__func_input_partition_by_cols.append(self.newdata_partition_column)
|
|
488
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.newdata_order_column, "\""))
|
|
489
|
-
|
|
490
|
-
# Process object
|
|
491
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.object, False)
|
|
492
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
493
|
-
self.__func_input_arg_sql_names.append("ModelTable")
|
|
494
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
495
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
496
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
497
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.object_order_column, "\""))
|
|
498
|
-
|
|
499
|
-
function_name = "XGBoostPredict"
|
|
500
|
-
# Create instance to generate SQLMR.
|
|
501
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
502
|
-
self.__func_input_arg_sql_names,
|
|
503
|
-
self.__func_input_table_view_query,
|
|
504
|
-
self.__func_input_dataframe_type,
|
|
505
|
-
self.__func_input_distribution,
|
|
506
|
-
self.__func_input_partition_by_cols,
|
|
507
|
-
self.__func_input_order_by_cols,
|
|
508
|
-
self.__func_other_arg_sql_names,
|
|
509
|
-
self.__func_other_args,
|
|
510
|
-
self.__func_other_arg_json_datatypes,
|
|
511
|
-
self.__func_output_args_sql_names,
|
|
512
|
-
self.__func_output_args,
|
|
513
|
-
engine="ENGINE_ML")
|
|
514
|
-
# Invoke call to SQL-MR generation.
|
|
515
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
516
|
-
|
|
517
|
-
# Print SQL-MR query if requested to do so.
|
|
518
|
-
if display.print_sqlmr_query:
|
|
519
|
-
print(self.sqlmr_query)
|
|
520
|
-
|
|
521
|
-
# Set the algorithm name for Model Cataloging.
|
|
522
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
523
|
-
|
|
524
|
-
def __execute(self):
|
|
525
|
-
"""
|
|
526
|
-
Function to execute SQL-MR queries.
|
|
527
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
528
|
-
"""
|
|
529
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
530
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
531
|
-
try:
|
|
532
|
-
# Generate the output.
|
|
533
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
534
|
-
except Exception as emsg:
|
|
535
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
536
|
-
|
|
537
|
-
# Update output table data frames.
|
|
538
|
-
self._mlresults = []
|
|
539
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
540
|
-
self._mlresults.append(self.result)
|
|
541
|
-
|
|
542
|
-
def show_query(self):
|
|
543
|
-
"""
|
|
544
|
-
Function to return the underlying SQL query.
|
|
545
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
546
|
-
"""
|
|
547
|
-
return self.sqlmr_query
|
|
548
|
-
|
|
549
|
-
def get_prediction_type(self):
|
|
550
|
-
"""
|
|
551
|
-
Function to return the Prediction type of the algorithm.
|
|
552
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
553
|
-
as saved in the Model Catalog.
|
|
554
|
-
"""
|
|
555
|
-
return self._prediction_type
|
|
556
|
-
|
|
557
|
-
def get_target_column(self):
|
|
558
|
-
"""
|
|
559
|
-
Function to return the Target Column of the algorithm.
|
|
560
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
561
|
-
as saved in the Model Catalog.
|
|
562
|
-
"""
|
|
563
|
-
return self._target_column
|
|
564
|
-
|
|
565
|
-
def get_build_time(self):
|
|
566
|
-
"""
|
|
567
|
-
Function to return the build time of the algorithm in seconds.
|
|
568
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
569
|
-
as saved in the Model Catalog.
|
|
570
|
-
"""
|
|
571
|
-
return self._build_time
|
|
572
|
-
|
|
573
|
-
def _get_algorithm_name(self):
|
|
574
|
-
"""
|
|
575
|
-
Function to return the name of the algorithm.
|
|
576
|
-
"""
|
|
577
|
-
return self._algorithm_name
|
|
578
|
-
|
|
579
|
-
def _get_sql_specific_attributes(self):
|
|
580
|
-
"""
|
|
581
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
582
|
-
"""
|
|
583
|
-
return self._sql_specific_attributes
|
|
584
|
-
|
|
585
|
-
@classmethod
|
|
586
|
-
def _from_model_catalog(cls,
|
|
587
|
-
result = None,
|
|
588
|
-
**kwargs):
|
|
589
|
-
"""
|
|
590
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
591
|
-
"""
|
|
592
|
-
kwargs.pop("result", None)
|
|
593
|
-
|
|
594
|
-
# Model Cataloging related attributes.
|
|
595
|
-
target_column = kwargs.pop("__target_column", None)
|
|
596
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
597
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
598
|
-
build_time = kwargs.pop("__build_time", None)
|
|
599
|
-
|
|
600
|
-
# Let's create an object of this class.
|
|
601
|
-
obj = cls(**kwargs)
|
|
602
|
-
obj.result = result
|
|
603
|
-
|
|
604
|
-
# Initialize the sqlmr_query class attribute.
|
|
605
|
-
obj.sqlmr_query = None
|
|
606
|
-
|
|
607
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
608
|
-
obj._sql_specific_attributes = None
|
|
609
|
-
obj._target_column = target_column
|
|
610
|
-
obj._prediction_type = prediction_type
|
|
611
|
-
obj._algorithm_name = algorithm_name
|
|
612
|
-
obj._build_time = build_time
|
|
613
|
-
|
|
614
|
-
# Update output table data frames.
|
|
615
|
-
obj._mlresults = []
|
|
616
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
617
|
-
obj._mlresults.append(obj.result)
|
|
618
|
-
return obj
|
|
619
|
-
|
|
620
|
-
def __repr__(self):
|
|
621
|
-
"""
|
|
622
|
-
Returns the string representation for a XGBoostPredict class instance.
|
|
623
|
-
"""
|
|
624
|
-
repr_string="############ STDOUT Output ############"
|
|
625
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
626
|
-
return repr_string
|
|
627
|
-
|