teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,627 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 2.8
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
- from teradataml.analytics.mle.XGBoost import XGBoost
30
-
31
- class XGBoostPredict:
32
-
33
- def __init__(self,
34
- object = None,
35
- newdata = None,
36
- id_column = None,
37
- terms = None,
38
- iter_num = None,
39
- num_boosted_trees = None,
40
- attribute_name_column = None,
41
- attribute_value_column = None,
42
- output_response_probdist = False,
43
- output_responses = None,
44
- newdata_sequence_column = None,
45
- object_sequence_column = None,
46
- newdata_partition_column = "ANY",
47
- newdata_order_column = None,
48
- object_order_column = None):
49
- """
50
- DESCRIPTION:
51
- The XGBoostPredict function applies the model output by the XGBoost
52
- function to a new data set, outputting predicted labels for each data
53
- point.
54
-
55
-
56
- PARAMETERS:
57
- object:
58
- Required Argument.
59
- Specifies the teradataml DataFrame containing the model data.
60
-
61
- object_order_column:
62
- Required Argument.
63
- Specifies Order By columns for object.
64
- Values to this argument can be provided as list, if multiple columns
65
- are used for ordering.
66
- Types: str OR list of Strings (str)
67
-
68
- newdata:
69
- Required Argument.
70
- Specifies the teradataml DataFrame containing the input test data.
71
-
72
- newdata_partition_column:
73
- Optional Argument.
74
- Specifies Partition By columns for newdata.
75
- Values to this argument can be provided as list, if multiple columns
76
- are used for partition.
77
- Default Value: ANY
78
- Types: str OR list of Strings (str)
79
-
80
- newdata_order_column:
81
- Optional Argument.
82
- Specifies Order By columns for newdata.
83
- Values to this argument can be provided as list, if multiple columns
84
- are used for ordering.
85
- Types: str OR list of Strings (str)
86
-
87
- id_column:
88
- Optional Argument.
89
- Specifies a column containing a unique identifier for each test point
90
- in the test set.
91
- Types: str
92
-
93
- terms:
94
- Optional Argument.
95
- Specifies the names of the input columns to copy to the output table.
96
- Types: str OR list of Strings (str)
97
-
98
- iter_num:
99
- Optional Argument.
100
- Specifies the number of iterations for each boosted tree to use for
101
- prediction. The lower bound is 1. If this argument is not specified,
102
- the value is the same as used for training model. The number of
103
- iterations used is upper bounded by the number of iterations used
104
- during training.
105
- Types: int
106
-
107
- num_boosted_trees:
108
- Optional Argument.
109
- Specifies the number of boosted trees to be used for prediction. If
110
- this argument is not specified, the value is the same as used for
111
- training model. The number of boosted trees used for prediction is
112
- upper bounded by the number of boosted trees used during training.
113
- Types: int
114
-
115
- attribute_name_column:
116
- Optional Argument.
117
- Required for sparse data format, if the data set is in sparse format,
118
- this argument indicates the column containing the attributes in the
119
- input teradataml DataFrame.
120
- Types: str
121
-
122
- attribute_value_column:
123
- Optional Argument.
124
- If the data is in the sparse format, this argument indicates the
125
- column containing the attribute values in the input teradataml DataFrame.
126
- Types: str
127
-
128
- output_response_probdist:
129
- Optional Argument.
130
- Specifies whether to output probabilities or not.
131
- Note: "output_response_probdist" argument support is only available
132
- when teradataml is connected to Vantage 1.1.1 or later.
133
- Default Value: False
134
- Types: bool
135
-
136
- output_responses:
137
- Optional Argument.
138
- Specifies the responses in the input teradataml DataFrame.
139
- output_response_probdist must be set to True in order to use this argument.
140
- Note: "output_responses" argument support is only available
141
- when teradataml is connected to Vantage 1.1.1 or later.
142
- Types: str OR list of Strings (str)
143
-
144
- newdata_sequence_column:
145
- Optional Argument.
146
- Specifies the list of column(s) that uniquely identifies each row of
147
- the input argument "newdata". The argument is used to ensure
148
- deterministic results for functions which produce results that vary
149
- from run to run.
150
- Types: str OR list of Strings (str)
151
-
152
- object_sequence_column:
153
- Optional Argument.
154
- Specifies the list of column(s) that uniquely identifies each row of
155
- the input argument "object". The argument is used to ensure
156
- deterministic results for functions which produce results that vary
157
- from run to run.
158
- Types: str OR list of Strings (str)
159
-
160
- RETURNS:
161
- Instance of XGBoostPredict.
162
- Output teradataml DataFrames can be accessed using attribute
163
- references, such as XGBoostPredictObj.<attribute_name>.
164
- Output teradataml DataFrame attribute name is:
165
- result
166
-
167
-
168
- RAISES:
169
- TeradataMlException
170
-
171
-
172
- EXAMPLES:
173
- # Load example data.
174
- load_example_data("xgboost", ["housing_train_binary","iris_train","sparse_iris_train","sparse_iris_attribute"])
175
- load_example_data("xgboostpredict", ["housing_test_binary", "iris_test", "sparse_iris_test"])
176
-
177
- # Example 1 - Binary Classification: Predict the housing style (classic or eclectic)
178
- # Create teradataml DataFrame objects.
179
- housing_train_binary = DataFrame.from_table("housing_train_binary")
180
- housing_test_binary = DataFrame.from_table("housing_test_binary")
181
-
182
- # Generate the XGBoost model, on the housing data, that contains couple of labels
183
- # classic and eclectic, which specify the housing style based on the 12 other
184
- # attributes of the house, such as bedrooms, stories, price etc.
185
- XGBoostOut1 = XGBoost(data=housing_train_binary,
186
- id_column='sn',
187
- formula="homestyle ~ driveway + recroom + fullbase + gashw + airco + prefarea + price + lotsize + bedrooms + bathrms + stories + garagepl",
188
- num_boosted_trees=2,
189
- loss_function='binomial',
190
- prediction_type='classification',
191
- reg_lambda=1.0,
192
- shrinkage_factor=0.1,
193
- iter_num=10,
194
- min_node_size=1,
195
- max_depth=10
196
- )
197
-
198
- # Use the generated model to find predict the house style, on the test data.
199
- XGBoostPredictOut1 = XGBoostPredict(newdata=housing_test_binary,
200
- object=XGBoostOut1,
201
- object_order_column=['tree_id', 'iter', 'class_num'],
202
- id_column='sn',
203
- terms='homestyle',
204
- num_boosted_trees=1
205
- )
206
-
207
- # Print the results
208
- print(XGBoostPredictOut1)
209
-
210
- # Example 2: Multiple-Class Classification: Predict the Iris flower species
211
- # (setosa, virginica or versicolor).
212
- iris_train = DataFrame.from_table("iris_train")
213
- iris_test = DataFrame.from_table("iris_test")
214
-
215
- # Generate the model on one of the famous dataset Iris Data set, that contains 50 samples
216
- # from three species of Iris flower setosa, virginica and versicolor. Each data point contains
217
- # measurements of length and width of sepals and petals.
218
- XGBoostOut2 = XGBoost(data=iris_train,
219
- id_column='id',
220
- formula="species ~ sepal_length + sepal_width + petal_length + petal_width ",
221
- num_boosted_trees=2,
222
- loss_function='softmax',
223
- reg_lambda=1.0,
224
- shrinkage_factor=0.1,
225
- iter_num=10,
226
- min_node_size=1,
227
- max_depth=10)
228
-
229
- # Use the generated model to predict the Iris flower type.
230
- XGBoostPredictOut2 = XGBoostPredict(newdata=iris_test,
231
- newdata_partition_column='id',
232
- object=XGBoostOut2,
233
- object_order_column=['tree_id', 'iter','class_num'],
234
- id_column='id',
235
- terms='species',
236
- num_boosted_trees=2
237
- )
238
-
239
- # Print the results
240
- print(XGBoostPredictOut2)
241
-
242
- # Example 3: Sparse Input Format. response_column argument is specified instead of formula.
243
- sparse_iris_train = DataFrame.from_table("sparse_iris_train")
244
- sparse_iris_test = DataFrame.from_table("sparse_iris_test")
245
- sparse_iris_attribute = DataFrame.from_table("sparse_iris_attribute")
246
-
247
- # Generate the model
248
- XGBoostOut3 = XGBoost(data=sparse_iris_train,
249
- attribute_table=sparse_iris_attribute,
250
- id_column='id',
251
- response_column='species',
252
- prediction_type='classification',
253
- attribute_name_column='attribute',
254
- attribute_value_column='value_col',
255
- num_boosted_trees=2,
256
- loss_function='SOFTMAX',
257
- reg_lambda=1.0,
258
- shrinkage_factor=0.1,
259
- iter_num=10,
260
- min_node_size=1,
261
- max_depth=10)
262
-
263
- # Use the generated model to find prediction.
264
- XGBoostPredictOut3 = XGBoostPredict(object = XGBoostOut3,
265
- object_order_column = ["tree_id", "iter", "class_num"],
266
- newdata = sparse_iris_test,
267
- newdata_partition_column = ["id"],
268
- id_column = "id",
269
- terms = ["species"],
270
- num_boosted_trees = 2,
271
- attribute_name_column = "attribute",
272
- attribute_value_column = "value_col"
273
- )
274
-
275
- # Print the results
276
- print(XGBoostPredictOut3)
277
-
278
- """
279
-
280
- # Start the timer to get the build time
281
- _start_time = time.time()
282
-
283
- self.object = object
284
- self.newdata = newdata
285
- self.id_column = id_column
286
- self.terms = terms
287
- self.iter_num = iter_num
288
- self.num_boosted_trees = num_boosted_trees
289
- self.attribute_name_column = attribute_name_column
290
- self.attribute_value_column = attribute_value_column
291
- self.output_response_probdist = output_response_probdist
292
- self.output_responses = output_responses
293
- self.newdata_sequence_column = newdata_sequence_column
294
- self.object_sequence_column = object_sequence_column
295
- self.newdata_partition_column = newdata_partition_column
296
- self.newdata_order_column = newdata_order_column
297
- self.object_order_column = object_order_column
298
-
299
- # Create TeradataPyWrapperUtils instance which contains validation functions.
300
- self.__awu = AnalyticsWrapperUtils()
301
- self.__aed_utils = AedUtils()
302
-
303
- # Create argument information matrix to do parameter checking
304
- self.__arg_info_matrix = []
305
- self.__arg_info_matrix.append(["object", self.object, False, (DataFrame)])
306
- self.__arg_info_matrix.append(["object_order_column", self.object_order_column, False, (str,list)])
307
- self.__arg_info_matrix.append(["newdata", self.newdata, False, (DataFrame)])
308
- self.__arg_info_matrix.append(["newdata_partition_column", self.newdata_partition_column, True, (str,list)])
309
- self.__arg_info_matrix.append(["newdata_order_column", self.newdata_order_column, True, (str,list)])
310
- self.__arg_info_matrix.append(["id_column", self.id_column, True, (str)])
311
- self.__arg_info_matrix.append(["terms", self.terms, True, (str,list)])
312
- self.__arg_info_matrix.append(["iter_num", self.iter_num, True, (int)])
313
- self.__arg_info_matrix.append(["num_boosted_trees", self.num_boosted_trees, True, (int)])
314
- self.__arg_info_matrix.append(["attribute_name_column", self.attribute_name_column, True, (str)])
315
- self.__arg_info_matrix.append(["attribute_value_column", self.attribute_value_column, True, (str)])
316
- self.__arg_info_matrix.append(["output_response_probdist", self.output_response_probdist, True, (bool)])
317
- self.__arg_info_matrix.append(["output_responses", self.output_responses, True, (str,list)])
318
- self.__arg_info_matrix.append(["newdata_sequence_column", self.newdata_sequence_column, True, (str,list)])
319
- self.__arg_info_matrix.append(["object_sequence_column", self.object_sequence_column, True, (str,list)])
320
-
321
- if inspect.stack()[1][3] != '_from_model_catalog':
322
- # Perform the function validations
323
- self.__validate()
324
- # Generate the ML query
325
- self.__form_tdml_query()
326
- # Execute ML query
327
- self.__execute()
328
- # Get the prediction type
329
- self._prediction_type = self.__awu._get_function_prediction_type(self)
330
-
331
- # End the timer to get the build time
332
- _end_time = time.time()
333
-
334
- # Calculate the build time
335
- self._build_time = (int)(_end_time - _start_time)
336
-
337
- def __validate(self):
338
- """
339
- Function to validate sqlmr function arguments, which verifies missing
340
- arguments, input argument and table types. Also processes the
341
- argument values.
342
- """
343
- if isinstance(self.object, XGBoost):
344
- self.object = self.object._mlresults[0]
345
-
346
- # To use output_responses, output_response_probdist must be set to True
347
- if self.output_response_probdist is False and self.output_responses is not None:
348
- raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
349
- 'output_response_probdist=True',
350
- 'output_responses'),
351
- MessageCodes.DEPENDENT_ARG_MISSING)
352
-
353
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
354
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
355
-
356
- # Make sure that a non-NULL value has been supplied correct type of argument
357
- self.__awu._validate_argument_types(self.__arg_info_matrix)
358
-
359
- # Check to make sure input table types are strings or data frame objects or of valid type.
360
- self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
361
- self.__awu._validate_input_table_datatype(self.object, "object", XGBoost)
362
-
363
- # Check whether the input columns passed to the argument are not empty.
364
- # Also check whether the input columns passed to the argument valid or not.
365
- self.__awu._validate_input_columns_not_empty(self.id_column, "id_column")
366
- self.__awu._validate_dataframe_has_argument_columns(self.id_column, "id_column", self.newdata, "newdata", False)
367
-
368
- self.__awu._validate_input_columns_not_empty(self.terms, "terms")
369
- self.__awu._validate_dataframe_has_argument_columns(self.terms, "terms", self.newdata, "newdata", False)
370
-
371
- self.__awu._validate_input_columns_not_empty(self.attribute_name_column, "attribute_name_column")
372
- self.__awu._validate_dataframe_has_argument_columns(self.attribute_name_column, "attribute_name_column", self.newdata, "newdata", False)
373
-
374
- self.__awu._validate_input_columns_not_empty(self.attribute_value_column, "attribute_value_column")
375
- self.__awu._validate_dataframe_has_argument_columns(self.attribute_value_column, "attribute_value_column", self.newdata, "newdata", False)
376
-
377
- self.__awu._validate_input_columns_not_empty(self.newdata_sequence_column, "newdata_sequence_column")
378
- self.__awu._validate_dataframe_has_argument_columns(self.newdata_sequence_column, "newdata_sequence_column", self.newdata, "newdata", False)
379
-
380
- self.__awu._validate_input_columns_not_empty(self.object_sequence_column, "object_sequence_column")
381
- self.__awu._validate_dataframe_has_argument_columns(self.object_sequence_column, "object_sequence_column", self.object, "object", False)
382
-
383
- self.__awu._validate_input_columns_not_empty(self.newdata_partition_column, "newdata_partition_column")
384
- if self.__awu._is_default_or_not(self.newdata_partition_column, "ANY"):
385
- self.__awu._validate_dataframe_has_argument_columns(self.newdata_partition_column, "newdata_partition_column", self.newdata, "newdata", True)
386
- self.__awu._validate_input_columns_not_empty(self.newdata_order_column, "newdata_order_column")
387
- self.__awu._validate_dataframe_has_argument_columns(self.newdata_order_column, "newdata_order_column", self.newdata, "newdata", False)
388
-
389
- self.__awu._validate_input_columns_not_empty(self.object_order_column, "object_order_column")
390
- self.__awu._validate_dataframe_has_argument_columns(self.object_order_column, "object_order_column", self.object, "object", False)
391
-
392
-
393
- def __form_tdml_query(self):
394
- """
395
- Function to generate the analytical function queries. The function defines
396
- variables and list of arguments required to form the query.
397
- """
398
-
399
- # Output table arguments list
400
- self.__func_output_args_sql_names = []
401
- self.__func_output_args = []
402
-
403
- # Model Cataloging related attributes.
404
- self._sql_specific_attributes = {}
405
- self._sql_formula_attribute_mapper = {}
406
- self._target_column = None
407
- self._algorithm_name = None
408
-
409
- # Generate lists for rest of the function arguments
410
- self.__func_other_arg_sql_names = []
411
- self.__func_other_args = []
412
- self.__func_other_arg_json_datatypes = []
413
-
414
- if self.id_column is not None:
415
- self.__func_other_arg_sql_names.append("IdColumn")
416
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.id_column, "\""), "'"))
417
- self.__func_other_arg_json_datatypes.append("COLUMNS")
418
-
419
- if self.terms is not None:
420
- self.__func_other_arg_sql_names.append("Accumulate")
421
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.terms, "\""), "'"))
422
- self.__func_other_arg_json_datatypes.append("COLUMNS")
423
-
424
- if self.attribute_name_column is not None:
425
- self.__func_other_arg_sql_names.append("AttributeNameColumn")
426
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attribute_name_column, "\""), "'"))
427
- self.__func_other_arg_json_datatypes.append("COLUMNS")
428
-
429
- if self.attribute_value_column is not None:
430
- self.__func_other_arg_sql_names.append("AttributeValueColumn")
431
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attribute_value_column, "\""), "'"))
432
- self.__func_other_arg_json_datatypes.append("COLUMNS")
433
-
434
- if self.iter_num is not None:
435
- self.__func_other_arg_sql_names.append("IterNum")
436
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.iter_num, "'"))
437
- self.__func_other_arg_json_datatypes.append("INTEGER")
438
-
439
- if self.num_boosted_trees is not None:
440
- self.__func_other_arg_sql_names.append("NumBoostedTrees")
441
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.num_boosted_trees, "'"))
442
- self.__func_other_arg_json_datatypes.append("INTEGER")
443
-
444
- if self.output_response_probdist is not None and self.output_response_probdist != False:
445
- self.__func_other_arg_sql_names.append("OutputProb")
446
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_response_probdist, "'"))
447
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
448
-
449
- if self.output_responses is not None:
450
- self.__func_other_arg_sql_names.append("Responses")
451
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_responses, "'"))
452
- self.__func_other_arg_json_datatypes.append("STRING")
453
-
454
- # Generate lists for rest of the function arguments
455
- sequence_input_by_list = []
456
- if self.newdata_sequence_column is not None:
457
- sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.newdata_sequence_column, ""))
458
-
459
- if self.object_sequence_column is not None:
460
- sequence_input_by_list.append("ModelTable:" + UtilFuncs._teradata_collapse_arglist(self.object_sequence_column, ""))
461
-
462
- if len(sequence_input_by_list) > 0:
463
- self.__func_other_arg_sql_names.append("SequenceInputBy")
464
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
465
- self.__func_other_args.append(sequence_input_by_arg_value)
466
- self.__func_other_arg_json_datatypes.append("STRING")
467
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
468
-
469
-
470
- # Declare empty lists to hold input table information.
471
- self.__func_input_arg_sql_names = []
472
- self.__func_input_table_view_query = []
473
- self.__func_input_dataframe_type = []
474
- self.__func_input_distribution = []
475
- self.__func_input_partition_by_cols = []
476
- self.__func_input_order_by_cols = []
477
-
478
- # Process newdata
479
- if self.__awu._is_default_or_not(self.newdata_partition_column, "ANY"):
480
- self.newdata_partition_column = UtilFuncs._teradata_collapse_arglist(self.newdata_partition_column, "\"")
481
-
482
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.newdata, False)
483
- self.__func_input_distribution.append("FACT")
484
- self.__func_input_arg_sql_names.append("input")
485
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
486
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
487
- self.__func_input_partition_by_cols.append(self.newdata_partition_column)
488
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.newdata_order_column, "\""))
489
-
490
- # Process object
491
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.object, False)
492
- self.__func_input_distribution.append("DIMENSION")
493
- self.__func_input_arg_sql_names.append("ModelTable")
494
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
495
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
496
- self.__func_input_partition_by_cols.append("NA_character_")
497
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.object_order_column, "\""))
498
-
499
- function_name = "XGBoostPredict"
500
- # Create instance to generate SQLMR.
501
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
502
- self.__func_input_arg_sql_names,
503
- self.__func_input_table_view_query,
504
- self.__func_input_dataframe_type,
505
- self.__func_input_distribution,
506
- self.__func_input_partition_by_cols,
507
- self.__func_input_order_by_cols,
508
- self.__func_other_arg_sql_names,
509
- self.__func_other_args,
510
- self.__func_other_arg_json_datatypes,
511
- self.__func_output_args_sql_names,
512
- self.__func_output_args,
513
- engine="ENGINE_ML")
514
- # Invoke call to SQL-MR generation.
515
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
516
-
517
- # Print SQL-MR query if requested to do so.
518
- if display.print_sqlmr_query:
519
- print(self.sqlmr_query)
520
-
521
- # Set the algorithm name for Model Cataloging.
522
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
523
-
524
- def __execute(self):
525
- """
526
- Function to execute SQL-MR queries.
527
- Create DataFrames for the required SQL-MR outputs.
528
- """
529
- # Generate STDOUT table name and add it to the output table list.
530
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
531
- try:
532
- # Generate the output.
533
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
534
- except Exception as emsg:
535
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
536
-
537
- # Update output table data frames.
538
- self._mlresults = []
539
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
540
- self._mlresults.append(self.result)
541
-
542
- def show_query(self):
543
- """
544
- Function to return the underlying SQL query.
545
- When model object is created using retrieve_model(), then None is returned.
546
- """
547
- return self.sqlmr_query
548
-
549
- def get_prediction_type(self):
550
- """
551
- Function to return the Prediction type of the algorithm.
552
- When model object is created using retrieve_model(), then the value returned is
553
- as saved in the Model Catalog.
554
- """
555
- return self._prediction_type
556
-
557
- def get_target_column(self):
558
- """
559
- Function to return the Target Column of the algorithm.
560
- When model object is created using retrieve_model(), then the value returned is
561
- as saved in the Model Catalog.
562
- """
563
- return self._target_column
564
-
565
- def get_build_time(self):
566
- """
567
- Function to return the build time of the algorithm in seconds.
568
- When model object is created using retrieve_model(), then the value returned is
569
- as saved in the Model Catalog.
570
- """
571
- return self._build_time
572
-
573
- def _get_algorithm_name(self):
574
- """
575
- Function to return the name of the algorithm.
576
- """
577
- return self._algorithm_name
578
-
579
- def _get_sql_specific_attributes(self):
580
- """
581
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
582
- """
583
- return self._sql_specific_attributes
584
-
585
- @classmethod
586
- def _from_model_catalog(cls,
587
- result = None,
588
- **kwargs):
589
- """
590
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
591
- """
592
- kwargs.pop("result", None)
593
-
594
- # Model Cataloging related attributes.
595
- target_column = kwargs.pop("__target_column", None)
596
- prediction_type = kwargs.pop("__prediction_type", None)
597
- algorithm_name = kwargs.pop("__algorithm_name", None)
598
- build_time = kwargs.pop("__build_time", None)
599
-
600
- # Let's create an object of this class.
601
- obj = cls(**kwargs)
602
- obj.result = result
603
-
604
- # Initialize the sqlmr_query class attribute.
605
- obj.sqlmr_query = None
606
-
607
- # Initialize the SQL specific Model Cataloging attributes.
608
- obj._sql_specific_attributes = None
609
- obj._target_column = target_column
610
- obj._prediction_type = prediction_type
611
- obj._algorithm_name = algorithm_name
612
- obj._build_time = build_time
613
-
614
- # Update output table data frames.
615
- obj._mlresults = []
616
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
617
- obj._mlresults.append(obj.result)
618
- return obj
619
-
620
- def __repr__(self):
621
- """
622
- Returns the string representation for a XGBoostPredict class instance.
623
- """
624
- repr_string="############ STDOUT Output ############"
625
- repr_string = "{}\n\n{}".format(repr_string,self.result)
626
- return repr_string
627
-