teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,548 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Abhinav Sahu (abhinav.sahu@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.8
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class NGramSplitter:
31
-
32
- def __init__(self,
33
- data = None,
34
- text_column = None,
35
- delimiter = "[\s]+",
36
- grams = None,
37
- overlapping = True,
38
- to_lower_case = True,
39
- punctuation = "`~#^&*()-",
40
- reset = ".,?!",
41
- total_gram_count = False,
42
- total_count_column = "totalcnt",
43
- accumulate = None,
44
- n_gram_column = "ngram",
45
- num_grams_column = "n",
46
- frequency_column = "frequency",
47
- data_order_column = None):
48
- """
49
- DESCRIPTION:
50
- The NGramSplitter function tokenizes (splits) an input stream of text and
51
- outputs n multigrams (called n-grams) based on the specified
52
- delimiter and reset parameters. NGramSplitter provides more flexibility than
53
- standard tokenization when performing text analysis. Many two-word
54
- phrases carry important meaning (for example, "machine learning")
55
- that unigrams (single-word tokens) do not capture. This, combined
56
- with additional analytical techniques, can be useful for performing
57
- sentiment analysis, topic identification and document classification.
58
-
59
- Note: This function is only available when teradataml is connected
60
- to Vantage 1.1 or later versions.
61
-
62
-
63
- PARAMETERS:
64
- data:
65
- Required Argument.
66
- Specifies input teradataml DataFrame, where each row contains a document
67
- to be tokenized. The input teradataml DataFrame can have additional rows,
68
- some or all of which the function returns in the output table.
69
-
70
- data_order_column:
71
- Optional Argument.
72
- Specifies Order By columns for data.
73
- Values to this argument can be provided as a list, if multiple columns are
74
- used for ordering.
75
- Types: str OR list of Strings (str)
76
-
77
- text_column:
78
- Required Argument.
79
- Specifies the name of the column that contains the input text. The column
80
- must have a SQL string data type.
81
- Types: str
82
-
83
- delimiter:
84
- Optional Argument.
85
- Specifies a character or string that separates words in the input text. The
86
- default value is the set of all whitespace characters which includes
87
- the characters for space, tab, newline, carriage return and some others.
88
- Default Value: "[\s]+"
89
- Types: str
90
-
91
- grams:
92
- Required Argument.
93
- Specifies a list of integers or ranges of integers that specify the length, in
94
- words, of each n-gram (that is, the value of n). A range of values has
95
- the syntax integer1 - integer2, where integer1 <= integer2. The values
96
- of n, integer1, and integer2 must be positive.
97
- Types: str OR list of strs
98
-
99
- overlapping:
100
- Optional Argument.
101
- Specifies whether the function allows overlapping n-grams.
102
- When this value is "True", each word in each sentence starts an n-gram, if
103
- enough words follow it (in the same sentence) to form a whole n-gram of the
104
- specified size. For information on sentences, see the description of the
105
- reset argument.
106
- Default Value: True
107
- Types: bool
108
-
109
- to_lower_case:
110
- Optional Argument.
111
- Specifies whether the function converts all letters in the input text
112
- to lowercase.
113
- Default Value: True
114
- Types: bool
115
-
116
- punctuation:
117
- Optional Argument.
118
- Specifies the punctuation characters for the function to remove before
119
- evaluating the input text.
120
- Default Value: "`~#^&*()-"
121
- Types: str
122
-
123
- reset:
124
- Optional Argument.
125
- Specifies the character or string that ends a sentence.
126
- At the end of a sentence, the function discards any partial n-grams and
127
- searches for the next n-gram at the beginning of the next sentence.
128
- An n-gram cannot span two sentences.
129
- Default Value: ".,?!"
130
- Types: str
131
-
132
- total_gram_count:
133
- Optional Argument.
134
- Specifies whether the function returns the total number of n-grams in the
135
- document (that is, in the row). If you specify "True", then the name of the
136
- returned column is specified by the total_count_column argument.
137
- Note: The total number of n-grams is not necessarily the number of unique n-grams.
138
- Default Value: False
139
- Types: bool
140
-
141
- total_count_column:
142
- Optional Argument.
143
- Specifies the name of the column to return if the value of the total_gram_count
144
- argument is "True".
145
- Default Value: "totalcnt"
146
- Types: str
147
-
148
- accumulate:
149
- Optional Argument.
150
- Specifies the names of the columns to return for each n-gram. These columns
151
- cannot have the same names as those specified by the arguments n_gram_column,
152
- num_grams_column, and total_count_column. By default, the function
153
- returns all input columns for each n-gram.
154
- Types: str OR list of Strings (str)
155
-
156
- n_gram_column:
157
- Optional Argument.
158
- Specifies the name of the column that is to contain the generated n-grams.
159
- Default Value: "ngram"
160
- Types: str
161
-
162
- num_grams_column:
163
- Optional Argument.
164
- Specifies the name of the column that is to contain the length of n-gram (in
165
- words).
166
- Default Value: "n"
167
- Types: str
168
-
169
- frequency_column:
170
- Optional Argument.
171
- Specifies the name of the column that is to contain the count of each unique
172
- n-gram (that is, the number of times that each unique n-gram appears
173
- in the document).
174
- Default Value: "frequency"
175
- Types: str
176
-
177
- RETURNS:
178
- Instance of NgramSplitter.
179
- Output teradataml DataFrames can be accessed using attribute
180
- references, such as NgramSplitterObj.<attribute_name>.
181
- Output teradataml DataFrame attribute name is:
182
- result
183
-
184
-
185
- RAISES:
186
- TeradataMlException
187
-
188
-
189
- EXAMPLES:
190
- # Load example data.
191
- load_example_data("NGrams","paragraphs_input")
192
-
193
- # Create teradataml DataFrame
194
- paragraphs_input = DataFrame.from_table("paragraphs_input")
195
-
196
- # Example 1
197
- # Creates output for tokenized data on grams values
198
- NGramSplitter_out1 = NGramSplitter(data=paragraphs_input,
199
- text_column='paratext',
200
- delimiter = " ",
201
- grams = "4-6",
202
- overlapping=True,
203
- to_lower_case=True,
204
- total_gram_count=True,
205
- accumulate=['paraid','paratopic']
206
- )
207
-
208
- # Print the result DataFrame
209
- print(NGramSplitter_out1.result)
210
-
211
- # Example 2
212
- # Creates total count column with default column totalcnt if total_gram_count is specified as False
213
- NGramSplitter_out2 = NGramSplitter(data = paragraphs_input,
214
- text_column='paratext',
215
- delimiter = " ",
216
- grams = "4-6",
217
- overlapping=False,
218
- to_lower_case=True,
219
- total_gram_count=False,
220
- accumulate=['paraid','paratopic']
221
- )
222
-
223
- # Print the result DataFrame
224
- print(NGramSplitter_out2.result)
225
-
226
- """
227
-
228
- # Start the timer to get the build time
229
- _start_time = time.time()
230
-
231
- self.data = data
232
- self.text_column = text_column
233
- self.delimiter = delimiter
234
- self.grams = grams
235
- self.overlapping = overlapping
236
- self.to_lower_case = to_lower_case
237
- self.punctuation = punctuation
238
- self.reset = reset
239
- self.total_gram_count = total_gram_count
240
- self.total_count_column = total_count_column
241
- self.accumulate = accumulate
242
- self.n_gram_column = n_gram_column
243
- self.num_grams_column = num_grams_column
244
- self.frequency_column = frequency_column
245
- self.data_order_column = data_order_column
246
-
247
- # Create TeradataPyWrapperUtils instance which contains validation functions.
248
- self.__awu = AnalyticsWrapperUtils()
249
- self.__aed_utils = AedUtils()
250
-
251
- # Create argument information matrix to do parameter checking
252
- self.__arg_info_matrix = []
253
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
254
- self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
255
- self.__arg_info_matrix.append(["text_column", self.text_column, False, (str)])
256
- self.__arg_info_matrix.append(["delimiter", self.delimiter, True, (str)])
257
- self.__arg_info_matrix.append(["grams", self.grams, False, (str,list)])
258
- self.__arg_info_matrix.append(["overlapping", self.overlapping, True, (bool)])
259
- self.__arg_info_matrix.append(["to_lower_case", self.to_lower_case, True, (bool)])
260
- self.__arg_info_matrix.append(["punctuation", self.punctuation, True, (str)])
261
- self.__arg_info_matrix.append(["reset", self.reset, True, (str)])
262
- self.__arg_info_matrix.append(["total_gram_count", self.total_gram_count, True, (bool)])
263
- self.__arg_info_matrix.append(["total_count_column", self.total_count_column, True, (str)])
264
- self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
265
- self.__arg_info_matrix.append(["n_gram_column", self.n_gram_column, True, (str)])
266
- self.__arg_info_matrix.append(["num_grams_column", self.num_grams_column, True, (str)])
267
- self.__arg_info_matrix.append(["frequency_column", self.frequency_column, True, (str)])
268
-
269
- if inspect.stack()[1][3] != '_from_model_catalog':
270
- # Perform the function validations
271
- self.__validate()
272
- # Generate the ML query
273
- self.__form_tdml_query()
274
- # Execute ML query
275
- self.__execute()
276
- # Get the prediction type
277
- self._prediction_type = self.__awu._get_function_prediction_type(self)
278
-
279
- # End the timer to get the build time
280
- _end_time = time.time()
281
-
282
- # Calculate the build time
283
- self._build_time = (int)(_end_time - _start_time)
284
-
285
- def __validate(self):
286
- """
287
- Function to validate sqlmr function arguments, which verifies missing
288
- arguments, input argument and table types. Also processes the
289
- argument values.
290
- """
291
-
292
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
293
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
294
-
295
- # Make sure that a non-NULL value has been supplied correct type of argument
296
- self.__awu._validate_argument_types(self.__arg_info_matrix)
297
-
298
- # Check to make sure input table types are strings or data frame objects or of valid type.
299
- self.__awu._validate_input_table_datatype(self.data, "data", None)
300
-
301
- # Check whether the input columns passed to the argument are not empty.
302
- # Also check whether the input columns passed to the argument valid or not.
303
- self.__awu._validate_input_columns_not_empty(self.text_column, "text_column")
304
- self.__awu._validate_dataframe_has_argument_columns(self.text_column, "text_column", self.data, "data", False)
305
-
306
- self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
307
- self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.data, "data", False)
308
-
309
- self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
310
- self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
311
-
312
- # Validate that value passed to the output column argument is not empty.
313
- self.__awu._validate_input_columns_not_empty(self.n_gram_column, "n_gram_column")
314
- self.__awu._validate_input_columns_not_empty(self.num_grams_column, "num_grams_column")
315
- self.__awu._validate_input_columns_not_empty(self.frequency_column, "frequency_column")
316
- self.__awu._validate_input_columns_not_empty(self.total_count_column, "total_count_column")
317
-
318
- def __form_tdml_query(self):
319
- """
320
- Function to generate the analytical function queries. The function defines
321
- variables and list of arguments required to form the query.
322
- """
323
-
324
- # Output table arguments list
325
- self.__func_output_args_sql_names = []
326
- self.__func_output_args = []
327
-
328
- # Model Cataloging related attributes.
329
- self._sql_specific_attributes = {}
330
- self._sql_formula_attribute_mapper = {}
331
- self._target_column = None
332
- self._algorithm_name = None
333
-
334
- # Generate lists for rest of the function arguments
335
- self.__func_other_arg_sql_names = []
336
- self.__func_other_args = []
337
- self.__func_other_arg_json_datatypes = []
338
-
339
- self.__func_other_arg_sql_names.append("TextColumn")
340
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.text_column, "'"))
341
- self.__func_other_arg_json_datatypes.append("COLUMNS")
342
-
343
- if self.accumulate is not None:
344
- self.__func_other_arg_sql_names.append("Accumulate")
345
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.accumulate, "'"))
346
- self.__func_other_arg_json_datatypes.append("COLUMNS")
347
-
348
- self.__func_other_arg_sql_names.append("Grams")
349
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.grams, "'"))
350
- self.__func_other_arg_json_datatypes.append("STRING")
351
-
352
- if self.overlapping is not None and self.overlapping != True:
353
- self.__func_other_arg_sql_names.append("OverLapping")
354
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.overlapping, "'"))
355
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
356
-
357
- if self.to_lower_case is not None and self.to_lower_case != True:
358
- self.__func_other_arg_sql_names.append("ConvertToLowerCase")
359
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.to_lower_case, "'"))
360
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
361
-
362
- if self.delimiter is not None and self.delimiter != " ":
363
- self.__func_other_arg_sql_names.append("Delimiter")
364
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.delimiter, "'"))
365
- self.__func_other_arg_json_datatypes.append("STRING")
366
-
367
- if self.punctuation is not None and self.punctuation != "`~#^&*()-":
368
- self.__func_other_arg_sql_names.append("Punctuation")
369
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.punctuation, "'"))
370
- self.__func_other_arg_json_datatypes.append("STRING")
371
-
372
- if self.reset is not None and self.reset != ".,?!":
373
- self.__func_other_arg_sql_names.append("Reset")
374
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.reset, "'"))
375
- self.__func_other_arg_json_datatypes.append("STRING")
376
-
377
- if self.total_gram_count is not None and self.total_gram_count != False:
378
- self.__func_other_arg_sql_names.append("OutputTotalGramCount")
379
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.total_gram_count, "'"))
380
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
381
-
382
- if self.n_gram_column is not None and self.n_gram_column != "ngram":
383
- self.__func_other_arg_sql_names.append("NGramColName")
384
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.n_gram_column, "'"))
385
- self.__func_other_arg_json_datatypes.append("STRING")
386
-
387
- if self.num_grams_column is not None and self.num_grams_column != "n":
388
- self.__func_other_arg_sql_names.append("GramLengthColName")
389
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.num_grams_column, "'"))
390
- self.__func_other_arg_json_datatypes.append("STRING")
391
-
392
- if self.frequency_column is not None and self.frequency_column != "frequency":
393
- self.__func_other_arg_sql_names.append("FrequencyColName")
394
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.frequency_column, "'"))
395
- self.__func_other_arg_json_datatypes.append("STRING")
396
-
397
- if self.total_count_column is not None and self.total_count_column != "totalcnt":
398
- self.__func_other_arg_sql_names.append("TotalCountColName")
399
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.total_count_column, "'"))
400
- self.__func_other_arg_json_datatypes.append("STRING")
401
-
402
-
403
- # Declare empty lists to hold input table information.
404
- self.__func_input_arg_sql_names = []
405
- self.__func_input_table_view_query = []
406
- self.__func_input_dataframe_type = []
407
- self.__func_input_distribution = []
408
- self.__func_input_partition_by_cols = []
409
- self.__func_input_order_by_cols = []
410
-
411
- # Process data
412
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
413
- self.__func_input_distribution.append("FACT")
414
- self.__func_input_arg_sql_names.append("input")
415
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
416
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
417
- self.__func_input_partition_by_cols.append("ANY")
418
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
419
-
420
- function_name = "ngramsplitter"
421
- # Create instance to generate SQLMR.
422
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
423
- self.__func_input_arg_sql_names,
424
- self.__func_input_table_view_query,
425
- self.__func_input_dataframe_type,
426
- self.__func_input_distribution,
427
- self.__func_input_partition_by_cols,
428
- self.__func_input_order_by_cols,
429
- self.__func_other_arg_sql_names,
430
- self.__func_other_args,
431
- self.__func_other_arg_json_datatypes,
432
- self.__func_output_args_sql_names,
433
- self.__func_output_args,
434
- engine="ENGINE_SQL")
435
- # Invoke call to SQL-MR generation.
436
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
437
-
438
- # Print SQL-MR query if requested to do so.
439
- if display.print_sqlmr_query:
440
- print(self.sqlmr_query)
441
-
442
- # Set the algorithm name for Model Cataloging.
443
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
444
-
445
- def __execute(self):
446
- """
447
- Function to execute SQL-MR queries.
448
- Create DataFrames for the required SQL-MR outputs.
449
- """
450
- # Generate STDOUT table name and add it to the output table list.
451
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
452
- try:
453
- # Generate the output.
454
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
455
- except Exception as emsg:
456
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
457
-
458
- # Update output table data frames.
459
- self._mlresults = []
460
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
461
- self._mlresults.append(self.result)
462
-
463
- def show_query(self):
464
- """
465
- Function to return the underlying SQL query.
466
- When model object is created using retrieve_model(), then None is returned.
467
- """
468
- return self.sqlmr_query
469
-
470
- def get_prediction_type(self):
471
- """
472
- Function to return the Prediction type of the algorithm.
473
- When model object is created using retrieve_model(), then the value returned is
474
- as saved in the Model Catalog.
475
- """
476
- return self._prediction_type
477
-
478
- def get_target_column(self):
479
- """
480
- Function to return the Target Column of the algorithm.
481
- When model object is created using retrieve_model(), then the value returned is
482
- as saved in the Model Catalog.
483
- """
484
- return self._target_column
485
-
486
- def get_build_time(self):
487
- """
488
- Function to return the build time of the algorithm in seconds.
489
- When model object is created using retrieve_model(), then the value returned is
490
- as saved in the Model Catalog.
491
- """
492
- return self._build_time
493
-
494
- def _get_algorithm_name(self):
495
- """
496
- Function to return the name of the algorithm.
497
- """
498
- return self._algorithm_name
499
-
500
- def _get_sql_specific_attributes(self):
501
- """
502
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
503
- """
504
- return self._sql_specific_attributes
505
-
506
- @classmethod
507
- def _from_model_catalog(cls,
508
- result = None,
509
- **kwargs):
510
- """
511
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
512
- """
513
- kwargs.pop("result", None)
514
-
515
- # Model Cataloging related attributes.
516
- target_column = kwargs.pop("__target_column", None)
517
- prediction_type = kwargs.pop("__prediction_type", None)
518
- algorithm_name = kwargs.pop("__algorithm_name", None)
519
- build_time = kwargs.pop("__build_time", None)
520
-
521
- # Let's create an object of this class.
522
- obj = cls(**kwargs)
523
- obj.result = result
524
-
525
- # Initialize the sqlmr_query class attribute.
526
- obj.sqlmr_query = None
527
-
528
- # Initialize the SQL specific Model Cataloging attributes.
529
- obj._sql_specific_attributes = None
530
- obj._target_column = target_column
531
- obj._prediction_type = prediction_type
532
- obj._algorithm_name = algorithm_name
533
- obj._build_time = build_time
534
-
535
- # Update output table data frames.
536
- obj._mlresults = []
537
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
538
- obj._mlresults.append(obj.result)
539
- return obj
540
-
541
- def __repr__(self):
542
- """
543
- Returns the string representation for a NgramSplitter class instance.
544
- """
545
- repr_string="############ STDOUT Output ############"
546
- repr_string = "{}\n\n{}".format(repr_string,self.result)
547
- return repr_string
548
-