teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,548 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Abhinav Sahu (abhinav.sahu@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.8
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class NGramSplitter:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
text_column = None,
|
|
35
|
-
delimiter = "[\s]+",
|
|
36
|
-
grams = None,
|
|
37
|
-
overlapping = True,
|
|
38
|
-
to_lower_case = True,
|
|
39
|
-
punctuation = "`~#^&*()-",
|
|
40
|
-
reset = ".,?!",
|
|
41
|
-
total_gram_count = False,
|
|
42
|
-
total_count_column = "totalcnt",
|
|
43
|
-
accumulate = None,
|
|
44
|
-
n_gram_column = "ngram",
|
|
45
|
-
num_grams_column = "n",
|
|
46
|
-
frequency_column = "frequency",
|
|
47
|
-
data_order_column = None):
|
|
48
|
-
"""
|
|
49
|
-
DESCRIPTION:
|
|
50
|
-
The NGramSplitter function tokenizes (splits) an input stream of text and
|
|
51
|
-
outputs n multigrams (called n-grams) based on the specified
|
|
52
|
-
delimiter and reset parameters. NGramSplitter provides more flexibility than
|
|
53
|
-
standard tokenization when performing text analysis. Many two-word
|
|
54
|
-
phrases carry important meaning (for example, "machine learning")
|
|
55
|
-
that unigrams (single-word tokens) do not capture. This, combined
|
|
56
|
-
with additional analytical techniques, can be useful for performing
|
|
57
|
-
sentiment analysis, topic identification and document classification.
|
|
58
|
-
|
|
59
|
-
Note: This function is only available when teradataml is connected
|
|
60
|
-
to Vantage 1.1 or later versions.
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
PARAMETERS:
|
|
64
|
-
data:
|
|
65
|
-
Required Argument.
|
|
66
|
-
Specifies input teradataml DataFrame, where each row contains a document
|
|
67
|
-
to be tokenized. The input teradataml DataFrame can have additional rows,
|
|
68
|
-
some or all of which the function returns in the output table.
|
|
69
|
-
|
|
70
|
-
data_order_column:
|
|
71
|
-
Optional Argument.
|
|
72
|
-
Specifies Order By columns for data.
|
|
73
|
-
Values to this argument can be provided as a list, if multiple columns are
|
|
74
|
-
used for ordering.
|
|
75
|
-
Types: str OR list of Strings (str)
|
|
76
|
-
|
|
77
|
-
text_column:
|
|
78
|
-
Required Argument.
|
|
79
|
-
Specifies the name of the column that contains the input text. The column
|
|
80
|
-
must have a SQL string data type.
|
|
81
|
-
Types: str
|
|
82
|
-
|
|
83
|
-
delimiter:
|
|
84
|
-
Optional Argument.
|
|
85
|
-
Specifies a character or string that separates words in the input text. The
|
|
86
|
-
default value is the set of all whitespace characters which includes
|
|
87
|
-
the characters for space, tab, newline, carriage return and some others.
|
|
88
|
-
Default Value: "[\s]+"
|
|
89
|
-
Types: str
|
|
90
|
-
|
|
91
|
-
grams:
|
|
92
|
-
Required Argument.
|
|
93
|
-
Specifies a list of integers or ranges of integers that specify the length, in
|
|
94
|
-
words, of each n-gram (that is, the value of n). A range of values has
|
|
95
|
-
the syntax integer1 - integer2, where integer1 <= integer2. The values
|
|
96
|
-
of n, integer1, and integer2 must be positive.
|
|
97
|
-
Types: str OR list of strs
|
|
98
|
-
|
|
99
|
-
overlapping:
|
|
100
|
-
Optional Argument.
|
|
101
|
-
Specifies whether the function allows overlapping n-grams.
|
|
102
|
-
When this value is "True", each word in each sentence starts an n-gram, if
|
|
103
|
-
enough words follow it (in the same sentence) to form a whole n-gram of the
|
|
104
|
-
specified size. For information on sentences, see the description of the
|
|
105
|
-
reset argument.
|
|
106
|
-
Default Value: True
|
|
107
|
-
Types: bool
|
|
108
|
-
|
|
109
|
-
to_lower_case:
|
|
110
|
-
Optional Argument.
|
|
111
|
-
Specifies whether the function converts all letters in the input text
|
|
112
|
-
to lowercase.
|
|
113
|
-
Default Value: True
|
|
114
|
-
Types: bool
|
|
115
|
-
|
|
116
|
-
punctuation:
|
|
117
|
-
Optional Argument.
|
|
118
|
-
Specifies the punctuation characters for the function to remove before
|
|
119
|
-
evaluating the input text.
|
|
120
|
-
Default Value: "`~#^&*()-"
|
|
121
|
-
Types: str
|
|
122
|
-
|
|
123
|
-
reset:
|
|
124
|
-
Optional Argument.
|
|
125
|
-
Specifies the character or string that ends a sentence.
|
|
126
|
-
At the end of a sentence, the function discards any partial n-grams and
|
|
127
|
-
searches for the next n-gram at the beginning of the next sentence.
|
|
128
|
-
An n-gram cannot span two sentences.
|
|
129
|
-
Default Value: ".,?!"
|
|
130
|
-
Types: str
|
|
131
|
-
|
|
132
|
-
total_gram_count:
|
|
133
|
-
Optional Argument.
|
|
134
|
-
Specifies whether the function returns the total number of n-grams in the
|
|
135
|
-
document (that is, in the row). If you specify "True", then the name of the
|
|
136
|
-
returned column is specified by the total_count_column argument.
|
|
137
|
-
Note: The total number of n-grams is not necessarily the number of unique n-grams.
|
|
138
|
-
Default Value: False
|
|
139
|
-
Types: bool
|
|
140
|
-
|
|
141
|
-
total_count_column:
|
|
142
|
-
Optional Argument.
|
|
143
|
-
Specifies the name of the column to return if the value of the total_gram_count
|
|
144
|
-
argument is "True".
|
|
145
|
-
Default Value: "totalcnt"
|
|
146
|
-
Types: str
|
|
147
|
-
|
|
148
|
-
accumulate:
|
|
149
|
-
Optional Argument.
|
|
150
|
-
Specifies the names of the columns to return for each n-gram. These columns
|
|
151
|
-
cannot have the same names as those specified by the arguments n_gram_column,
|
|
152
|
-
num_grams_column, and total_count_column. By default, the function
|
|
153
|
-
returns all input columns for each n-gram.
|
|
154
|
-
Types: str OR list of Strings (str)
|
|
155
|
-
|
|
156
|
-
n_gram_column:
|
|
157
|
-
Optional Argument.
|
|
158
|
-
Specifies the name of the column that is to contain the generated n-grams.
|
|
159
|
-
Default Value: "ngram"
|
|
160
|
-
Types: str
|
|
161
|
-
|
|
162
|
-
num_grams_column:
|
|
163
|
-
Optional Argument.
|
|
164
|
-
Specifies the name of the column that is to contain the length of n-gram (in
|
|
165
|
-
words).
|
|
166
|
-
Default Value: "n"
|
|
167
|
-
Types: str
|
|
168
|
-
|
|
169
|
-
frequency_column:
|
|
170
|
-
Optional Argument.
|
|
171
|
-
Specifies the name of the column that is to contain the count of each unique
|
|
172
|
-
n-gram (that is, the number of times that each unique n-gram appears
|
|
173
|
-
in the document).
|
|
174
|
-
Default Value: "frequency"
|
|
175
|
-
Types: str
|
|
176
|
-
|
|
177
|
-
RETURNS:
|
|
178
|
-
Instance of NgramSplitter.
|
|
179
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
180
|
-
references, such as NgramSplitterObj.<attribute_name>.
|
|
181
|
-
Output teradataml DataFrame attribute name is:
|
|
182
|
-
result
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
RAISES:
|
|
186
|
-
TeradataMlException
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
EXAMPLES:
|
|
190
|
-
# Load example data.
|
|
191
|
-
load_example_data("NGrams","paragraphs_input")
|
|
192
|
-
|
|
193
|
-
# Create teradataml DataFrame
|
|
194
|
-
paragraphs_input = DataFrame.from_table("paragraphs_input")
|
|
195
|
-
|
|
196
|
-
# Example 1
|
|
197
|
-
# Creates output for tokenized data on grams values
|
|
198
|
-
NGramSplitter_out1 = NGramSplitter(data=paragraphs_input,
|
|
199
|
-
text_column='paratext',
|
|
200
|
-
delimiter = " ",
|
|
201
|
-
grams = "4-6",
|
|
202
|
-
overlapping=True,
|
|
203
|
-
to_lower_case=True,
|
|
204
|
-
total_gram_count=True,
|
|
205
|
-
accumulate=['paraid','paratopic']
|
|
206
|
-
)
|
|
207
|
-
|
|
208
|
-
# Print the result DataFrame
|
|
209
|
-
print(NGramSplitter_out1.result)
|
|
210
|
-
|
|
211
|
-
# Example 2
|
|
212
|
-
# Creates total count column with default column totalcnt if total_gram_count is specified as False
|
|
213
|
-
NGramSplitter_out2 = NGramSplitter(data = paragraphs_input,
|
|
214
|
-
text_column='paratext',
|
|
215
|
-
delimiter = " ",
|
|
216
|
-
grams = "4-6",
|
|
217
|
-
overlapping=False,
|
|
218
|
-
to_lower_case=True,
|
|
219
|
-
total_gram_count=False,
|
|
220
|
-
accumulate=['paraid','paratopic']
|
|
221
|
-
)
|
|
222
|
-
|
|
223
|
-
# Print the result DataFrame
|
|
224
|
-
print(NGramSplitter_out2.result)
|
|
225
|
-
|
|
226
|
-
"""
|
|
227
|
-
|
|
228
|
-
# Start the timer to get the build time
|
|
229
|
-
_start_time = time.time()
|
|
230
|
-
|
|
231
|
-
self.data = data
|
|
232
|
-
self.text_column = text_column
|
|
233
|
-
self.delimiter = delimiter
|
|
234
|
-
self.grams = grams
|
|
235
|
-
self.overlapping = overlapping
|
|
236
|
-
self.to_lower_case = to_lower_case
|
|
237
|
-
self.punctuation = punctuation
|
|
238
|
-
self.reset = reset
|
|
239
|
-
self.total_gram_count = total_gram_count
|
|
240
|
-
self.total_count_column = total_count_column
|
|
241
|
-
self.accumulate = accumulate
|
|
242
|
-
self.n_gram_column = n_gram_column
|
|
243
|
-
self.num_grams_column = num_grams_column
|
|
244
|
-
self.frequency_column = frequency_column
|
|
245
|
-
self.data_order_column = data_order_column
|
|
246
|
-
|
|
247
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
248
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
249
|
-
self.__aed_utils = AedUtils()
|
|
250
|
-
|
|
251
|
-
# Create argument information matrix to do parameter checking
|
|
252
|
-
self.__arg_info_matrix = []
|
|
253
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
254
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
|
|
255
|
-
self.__arg_info_matrix.append(["text_column", self.text_column, False, (str)])
|
|
256
|
-
self.__arg_info_matrix.append(["delimiter", self.delimiter, True, (str)])
|
|
257
|
-
self.__arg_info_matrix.append(["grams", self.grams, False, (str,list)])
|
|
258
|
-
self.__arg_info_matrix.append(["overlapping", self.overlapping, True, (bool)])
|
|
259
|
-
self.__arg_info_matrix.append(["to_lower_case", self.to_lower_case, True, (bool)])
|
|
260
|
-
self.__arg_info_matrix.append(["punctuation", self.punctuation, True, (str)])
|
|
261
|
-
self.__arg_info_matrix.append(["reset", self.reset, True, (str)])
|
|
262
|
-
self.__arg_info_matrix.append(["total_gram_count", self.total_gram_count, True, (bool)])
|
|
263
|
-
self.__arg_info_matrix.append(["total_count_column", self.total_count_column, True, (str)])
|
|
264
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
|
|
265
|
-
self.__arg_info_matrix.append(["n_gram_column", self.n_gram_column, True, (str)])
|
|
266
|
-
self.__arg_info_matrix.append(["num_grams_column", self.num_grams_column, True, (str)])
|
|
267
|
-
self.__arg_info_matrix.append(["frequency_column", self.frequency_column, True, (str)])
|
|
268
|
-
|
|
269
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
270
|
-
# Perform the function validations
|
|
271
|
-
self.__validate()
|
|
272
|
-
# Generate the ML query
|
|
273
|
-
self.__form_tdml_query()
|
|
274
|
-
# Execute ML query
|
|
275
|
-
self.__execute()
|
|
276
|
-
# Get the prediction type
|
|
277
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
278
|
-
|
|
279
|
-
# End the timer to get the build time
|
|
280
|
-
_end_time = time.time()
|
|
281
|
-
|
|
282
|
-
# Calculate the build time
|
|
283
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
284
|
-
|
|
285
|
-
def __validate(self):
|
|
286
|
-
"""
|
|
287
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
288
|
-
arguments, input argument and table types. Also processes the
|
|
289
|
-
argument values.
|
|
290
|
-
"""
|
|
291
|
-
|
|
292
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
293
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
294
|
-
|
|
295
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
296
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
297
|
-
|
|
298
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
299
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
300
|
-
|
|
301
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
302
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
303
|
-
self.__awu._validate_input_columns_not_empty(self.text_column, "text_column")
|
|
304
|
-
self.__awu._validate_dataframe_has_argument_columns(self.text_column, "text_column", self.data, "data", False)
|
|
305
|
-
|
|
306
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
307
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.data, "data", False)
|
|
308
|
-
|
|
309
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
310
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
311
|
-
|
|
312
|
-
# Validate that value passed to the output column argument is not empty.
|
|
313
|
-
self.__awu._validate_input_columns_not_empty(self.n_gram_column, "n_gram_column")
|
|
314
|
-
self.__awu._validate_input_columns_not_empty(self.num_grams_column, "num_grams_column")
|
|
315
|
-
self.__awu._validate_input_columns_not_empty(self.frequency_column, "frequency_column")
|
|
316
|
-
self.__awu._validate_input_columns_not_empty(self.total_count_column, "total_count_column")
|
|
317
|
-
|
|
318
|
-
def __form_tdml_query(self):
|
|
319
|
-
"""
|
|
320
|
-
Function to generate the analytical function queries. The function defines
|
|
321
|
-
variables and list of arguments required to form the query.
|
|
322
|
-
"""
|
|
323
|
-
|
|
324
|
-
# Output table arguments list
|
|
325
|
-
self.__func_output_args_sql_names = []
|
|
326
|
-
self.__func_output_args = []
|
|
327
|
-
|
|
328
|
-
# Model Cataloging related attributes.
|
|
329
|
-
self._sql_specific_attributes = {}
|
|
330
|
-
self._sql_formula_attribute_mapper = {}
|
|
331
|
-
self._target_column = None
|
|
332
|
-
self._algorithm_name = None
|
|
333
|
-
|
|
334
|
-
# Generate lists for rest of the function arguments
|
|
335
|
-
self.__func_other_arg_sql_names = []
|
|
336
|
-
self.__func_other_args = []
|
|
337
|
-
self.__func_other_arg_json_datatypes = []
|
|
338
|
-
|
|
339
|
-
self.__func_other_arg_sql_names.append("TextColumn")
|
|
340
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.text_column, "'"))
|
|
341
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
342
|
-
|
|
343
|
-
if self.accumulate is not None:
|
|
344
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
345
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.accumulate, "'"))
|
|
346
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
347
|
-
|
|
348
|
-
self.__func_other_arg_sql_names.append("Grams")
|
|
349
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.grams, "'"))
|
|
350
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
351
|
-
|
|
352
|
-
if self.overlapping is not None and self.overlapping != True:
|
|
353
|
-
self.__func_other_arg_sql_names.append("OverLapping")
|
|
354
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.overlapping, "'"))
|
|
355
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
356
|
-
|
|
357
|
-
if self.to_lower_case is not None and self.to_lower_case != True:
|
|
358
|
-
self.__func_other_arg_sql_names.append("ConvertToLowerCase")
|
|
359
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.to_lower_case, "'"))
|
|
360
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
361
|
-
|
|
362
|
-
if self.delimiter is not None and self.delimiter != " ":
|
|
363
|
-
self.__func_other_arg_sql_names.append("Delimiter")
|
|
364
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.delimiter, "'"))
|
|
365
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
366
|
-
|
|
367
|
-
if self.punctuation is not None and self.punctuation != "`~#^&*()-":
|
|
368
|
-
self.__func_other_arg_sql_names.append("Punctuation")
|
|
369
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.punctuation, "'"))
|
|
370
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
371
|
-
|
|
372
|
-
if self.reset is not None and self.reset != ".,?!":
|
|
373
|
-
self.__func_other_arg_sql_names.append("Reset")
|
|
374
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.reset, "'"))
|
|
375
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
376
|
-
|
|
377
|
-
if self.total_gram_count is not None and self.total_gram_count != False:
|
|
378
|
-
self.__func_other_arg_sql_names.append("OutputTotalGramCount")
|
|
379
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.total_gram_count, "'"))
|
|
380
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
381
|
-
|
|
382
|
-
if self.n_gram_column is not None and self.n_gram_column != "ngram":
|
|
383
|
-
self.__func_other_arg_sql_names.append("NGramColName")
|
|
384
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.n_gram_column, "'"))
|
|
385
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
386
|
-
|
|
387
|
-
if self.num_grams_column is not None and self.num_grams_column != "n":
|
|
388
|
-
self.__func_other_arg_sql_names.append("GramLengthColName")
|
|
389
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.num_grams_column, "'"))
|
|
390
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
391
|
-
|
|
392
|
-
if self.frequency_column is not None and self.frequency_column != "frequency":
|
|
393
|
-
self.__func_other_arg_sql_names.append("FrequencyColName")
|
|
394
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.frequency_column, "'"))
|
|
395
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
396
|
-
|
|
397
|
-
if self.total_count_column is not None and self.total_count_column != "totalcnt":
|
|
398
|
-
self.__func_other_arg_sql_names.append("TotalCountColName")
|
|
399
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.total_count_column, "'"))
|
|
400
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
401
|
-
|
|
402
|
-
|
|
403
|
-
# Declare empty lists to hold input table information.
|
|
404
|
-
self.__func_input_arg_sql_names = []
|
|
405
|
-
self.__func_input_table_view_query = []
|
|
406
|
-
self.__func_input_dataframe_type = []
|
|
407
|
-
self.__func_input_distribution = []
|
|
408
|
-
self.__func_input_partition_by_cols = []
|
|
409
|
-
self.__func_input_order_by_cols = []
|
|
410
|
-
|
|
411
|
-
# Process data
|
|
412
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
413
|
-
self.__func_input_distribution.append("FACT")
|
|
414
|
-
self.__func_input_arg_sql_names.append("input")
|
|
415
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
416
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
417
|
-
self.__func_input_partition_by_cols.append("ANY")
|
|
418
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
419
|
-
|
|
420
|
-
function_name = "ngramsplitter"
|
|
421
|
-
# Create instance to generate SQLMR.
|
|
422
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
423
|
-
self.__func_input_arg_sql_names,
|
|
424
|
-
self.__func_input_table_view_query,
|
|
425
|
-
self.__func_input_dataframe_type,
|
|
426
|
-
self.__func_input_distribution,
|
|
427
|
-
self.__func_input_partition_by_cols,
|
|
428
|
-
self.__func_input_order_by_cols,
|
|
429
|
-
self.__func_other_arg_sql_names,
|
|
430
|
-
self.__func_other_args,
|
|
431
|
-
self.__func_other_arg_json_datatypes,
|
|
432
|
-
self.__func_output_args_sql_names,
|
|
433
|
-
self.__func_output_args,
|
|
434
|
-
engine="ENGINE_SQL")
|
|
435
|
-
# Invoke call to SQL-MR generation.
|
|
436
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
437
|
-
|
|
438
|
-
# Print SQL-MR query if requested to do so.
|
|
439
|
-
if display.print_sqlmr_query:
|
|
440
|
-
print(self.sqlmr_query)
|
|
441
|
-
|
|
442
|
-
# Set the algorithm name for Model Cataloging.
|
|
443
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
444
|
-
|
|
445
|
-
def __execute(self):
|
|
446
|
-
"""
|
|
447
|
-
Function to execute SQL-MR queries.
|
|
448
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
449
|
-
"""
|
|
450
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
451
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
452
|
-
try:
|
|
453
|
-
# Generate the output.
|
|
454
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
455
|
-
except Exception as emsg:
|
|
456
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
457
|
-
|
|
458
|
-
# Update output table data frames.
|
|
459
|
-
self._mlresults = []
|
|
460
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
461
|
-
self._mlresults.append(self.result)
|
|
462
|
-
|
|
463
|
-
def show_query(self):
|
|
464
|
-
"""
|
|
465
|
-
Function to return the underlying SQL query.
|
|
466
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
467
|
-
"""
|
|
468
|
-
return self.sqlmr_query
|
|
469
|
-
|
|
470
|
-
def get_prediction_type(self):
|
|
471
|
-
"""
|
|
472
|
-
Function to return the Prediction type of the algorithm.
|
|
473
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
474
|
-
as saved in the Model Catalog.
|
|
475
|
-
"""
|
|
476
|
-
return self._prediction_type
|
|
477
|
-
|
|
478
|
-
def get_target_column(self):
|
|
479
|
-
"""
|
|
480
|
-
Function to return the Target Column of the algorithm.
|
|
481
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
482
|
-
as saved in the Model Catalog.
|
|
483
|
-
"""
|
|
484
|
-
return self._target_column
|
|
485
|
-
|
|
486
|
-
def get_build_time(self):
|
|
487
|
-
"""
|
|
488
|
-
Function to return the build time of the algorithm in seconds.
|
|
489
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
490
|
-
as saved in the Model Catalog.
|
|
491
|
-
"""
|
|
492
|
-
return self._build_time
|
|
493
|
-
|
|
494
|
-
def _get_algorithm_name(self):
|
|
495
|
-
"""
|
|
496
|
-
Function to return the name of the algorithm.
|
|
497
|
-
"""
|
|
498
|
-
return self._algorithm_name
|
|
499
|
-
|
|
500
|
-
def _get_sql_specific_attributes(self):
|
|
501
|
-
"""
|
|
502
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
503
|
-
"""
|
|
504
|
-
return self._sql_specific_attributes
|
|
505
|
-
|
|
506
|
-
@classmethod
|
|
507
|
-
def _from_model_catalog(cls,
|
|
508
|
-
result = None,
|
|
509
|
-
**kwargs):
|
|
510
|
-
"""
|
|
511
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
512
|
-
"""
|
|
513
|
-
kwargs.pop("result", None)
|
|
514
|
-
|
|
515
|
-
# Model Cataloging related attributes.
|
|
516
|
-
target_column = kwargs.pop("__target_column", None)
|
|
517
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
518
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
519
|
-
build_time = kwargs.pop("__build_time", None)
|
|
520
|
-
|
|
521
|
-
# Let's create an object of this class.
|
|
522
|
-
obj = cls(**kwargs)
|
|
523
|
-
obj.result = result
|
|
524
|
-
|
|
525
|
-
# Initialize the sqlmr_query class attribute.
|
|
526
|
-
obj.sqlmr_query = None
|
|
527
|
-
|
|
528
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
529
|
-
obj._sql_specific_attributes = None
|
|
530
|
-
obj._target_column = target_column
|
|
531
|
-
obj._prediction_type = prediction_type
|
|
532
|
-
obj._algorithm_name = algorithm_name
|
|
533
|
-
obj._build_time = build_time
|
|
534
|
-
|
|
535
|
-
# Update output table data frames.
|
|
536
|
-
obj._mlresults = []
|
|
537
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
538
|
-
obj._mlresults.append(obj.result)
|
|
539
|
-
return obj
|
|
540
|
-
|
|
541
|
-
def __repr__(self):
|
|
542
|
-
"""
|
|
543
|
-
Returns the string representation for a NgramSplitter class instance.
|
|
544
|
-
"""
|
|
545
|
-
repr_string="############ STDOUT Output ############"
|
|
546
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
547
|
-
return repr_string
|
|
548
|
-
|