teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,572 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.6
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.configure import configure
|
|
29
|
-
from teradataml.options.display import display
|
|
30
|
-
|
|
31
|
-
class ChangePointDetection:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
data = None,
|
|
35
|
-
value_column = None,
|
|
36
|
-
accumulate = None,
|
|
37
|
-
segmentation_method = "normal_distribution",
|
|
38
|
-
search_method = "binary",
|
|
39
|
-
max_change_num = 10,
|
|
40
|
-
penalty = "BIC",
|
|
41
|
-
output_option = "changepoint",
|
|
42
|
-
data_sequence_column = None,
|
|
43
|
-
data_partition_column = None,
|
|
44
|
-
data_order_column = None,
|
|
45
|
-
granularity = 1):
|
|
46
|
-
"""
|
|
47
|
-
DESCRIPTION:
|
|
48
|
-
The ChangePointDetection function detects change points in a
|
|
49
|
-
stochastic process or time series, using retrospective change-point
|
|
50
|
-
detection, implemented with these algorithms:
|
|
51
|
-
* Search algorithm: binary search
|
|
52
|
-
* Segmentation algorithm: normal distribution and linear regression
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
PARAMETERS:
|
|
56
|
-
data:
|
|
57
|
-
Required Argument.
|
|
58
|
-
Specifies the teradataml DataFrame containing the input time
|
|
59
|
-
series data.
|
|
60
|
-
|
|
61
|
-
data_partition_column:
|
|
62
|
-
Required Argument.
|
|
63
|
-
Specifies Partition By columns for "data".
|
|
64
|
-
Values to this argument can be provided as a list, if multiple
|
|
65
|
-
columns are used for partition.
|
|
66
|
-
Types: str OR list of Strings (str)
|
|
67
|
-
|
|
68
|
-
data_order_column:
|
|
69
|
-
Required Argument.
|
|
70
|
-
Specifies Order By columns for "data".
|
|
71
|
-
Values to this argument can be provided as a list, if multiple
|
|
72
|
-
columns are used for ordering.
|
|
73
|
-
Types: str OR list of Strings (str)
|
|
74
|
-
|
|
75
|
-
value_column:
|
|
76
|
-
Required Argument.
|
|
77
|
-
Specifies the name of the input teradataml DataFrame column
|
|
78
|
-
that contains the time series data.
|
|
79
|
-
Types: str
|
|
80
|
-
|
|
81
|
-
accumulate:
|
|
82
|
-
Optional Argument. Required when teradataml is connected to
|
|
83
|
-
Vantage 1.0 Maintenance Update 2.
|
|
84
|
-
Specifies the names of the input teradataml DataFrame columns
|
|
85
|
-
to copy to the output table.
|
|
86
|
-
Tip: To identify change points in the output table, specify
|
|
87
|
-
the columns that appear in data_partition_column and
|
|
88
|
-
data_order_column.
|
|
89
|
-
Types: str OR list of Strings (str)
|
|
90
|
-
|
|
91
|
-
segmentation_method:
|
|
92
|
-
Optional Argument.
|
|
93
|
-
Specifies one of these segmentation methods:
|
|
94
|
-
* normal_distribution : In each segment, the data is in a
|
|
95
|
-
normal distribution.
|
|
96
|
-
* linear_regression: In each segment, the data is in linear
|
|
97
|
-
regression.
|
|
98
|
-
Default Value: normal_distribution
|
|
99
|
-
Permitted Values: normal_distribution, linear_regression
|
|
100
|
-
Types: str
|
|
101
|
-
|
|
102
|
-
search_method:
|
|
103
|
-
Optional Argument.
|
|
104
|
-
Specifies the search method, binary segmentation.
|
|
105
|
-
Default Value: binary
|
|
106
|
-
Permitted Values: binary
|
|
107
|
-
Types: str
|
|
108
|
-
|
|
109
|
-
max_change_num:
|
|
110
|
-
Optional Argument.
|
|
111
|
-
Specifies the maximum number of change points to detect.
|
|
112
|
-
Default Value: 10
|
|
113
|
-
Types: int
|
|
114
|
-
|
|
115
|
-
penalty:
|
|
116
|
-
Optional Argument.
|
|
117
|
-
Specifies the penalty function, which is used to avoid
|
|
118
|
-
over-fitting.
|
|
119
|
-
Possible values are: BIC , AIC and threshold (a float value).
|
|
120
|
-
* For BIC, the condition for the existence of a change point
|
|
121
|
-
is: ln(L1) - ln(L0) > (p1 - p0) * ln(n)/2.
|
|
122
|
-
For normal distribution and linear regression, the condition
|
|
123
|
-
is: (p1 - p0) * ln(n)/2 = ln(n).
|
|
124
|
-
* For AIC, the condition for the existence of a change point
|
|
125
|
-
is: ln(L1) - ln(L0) > p1 - p0.
|
|
126
|
-
For normal distribution and linear regression, the condition
|
|
127
|
-
is: p1 - p0 = 2.
|
|
128
|
-
* For threshold, the specified value is compared to:
|
|
129
|
-
ln(L1) - ln(L0).
|
|
130
|
-
L1 and L0 are the maximum likelihood estimation of hypotheses
|
|
131
|
-
H1 and H0. For normal distribution, the definition of
|
|
132
|
-
Log(L1) and Log(L0) are in "Background". 'p' is the number of
|
|
133
|
-
additional parameters introduced by adding a change point. 'p'
|
|
134
|
-
is used in the information criterion BIC or AIC. p1 and p0
|
|
135
|
-
represent this parameter in hypotheses H1 and H0 separately.
|
|
136
|
-
Default Value: BIC
|
|
137
|
-
Types: str
|
|
138
|
-
|
|
139
|
-
output_option:
|
|
140
|
-
Optional Argument.
|
|
141
|
-
Specifies the output teradataml DataFrame columns.
|
|
142
|
-
Default Value: changepoint
|
|
143
|
-
Permitted Values: changepoint, segment, verbose
|
|
144
|
-
Types: str
|
|
145
|
-
|
|
146
|
-
data_sequence_column:
|
|
147
|
-
Optional Argument.
|
|
148
|
-
Specifies the list of column(s) that uniquely identifies each
|
|
149
|
-
row of the input argument "data". The argument is used to
|
|
150
|
-
ensure deterministic results for functions which produce
|
|
151
|
-
results that vary from run to run.
|
|
152
|
-
Types: str OR list of Strings (str)
|
|
153
|
-
|
|
154
|
-
granularity:
|
|
155
|
-
Optional Argument.
|
|
156
|
-
Specifies the difference between index of consecutive candidate
|
|
157
|
-
change points.
|
|
158
|
-
Note:
|
|
159
|
-
"granularity" argument support is only available when teradataml
|
|
160
|
-
is connected to Vantage 1.3 version.
|
|
161
|
-
Default Value: 1
|
|
162
|
-
Types: int
|
|
163
|
-
|
|
164
|
-
RETURNS:
|
|
165
|
-
Instance of ChangePointDetection.
|
|
166
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
167
|
-
references, such as ChangePointDetectionObj.<attribute_name>.
|
|
168
|
-
Output teradataml DataFrame attribute name is:
|
|
169
|
-
result
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
RAISES:
|
|
173
|
-
TeradataMlException, TypeError, ValueError
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
EXAMPLES:
|
|
177
|
-
# Load the data to run the example.
|
|
178
|
-
load_example_data('changepointdetection', ['cpt', 'finance_data2'])
|
|
179
|
-
|
|
180
|
-
# Provided example tables are 'cpt' and 'finance_data2'.
|
|
181
|
-
# These input tables contain time series data like expenditure,
|
|
182
|
-
# income between time periods or power consumption at certain
|
|
183
|
-
# periods or sequence or pulserate etc
|
|
184
|
-
|
|
185
|
-
# Create teradataml DataFrame objects.
|
|
186
|
-
cpt_table = DataFrame.from_table('cpt')
|
|
187
|
-
print(cpt_table) # Only 10 rows are displayed by default
|
|
188
|
-
|
|
189
|
-
# Example 1: (Using default parameters)
|
|
190
|
-
cpt_out = ChangePointDetection( data = cpt_table,
|
|
191
|
-
data_partition_column = 'sid',
|
|
192
|
-
data_order_column = 'id',
|
|
193
|
-
value_column = 'val',
|
|
194
|
-
accumulate = ['sid','id']
|
|
195
|
-
)
|
|
196
|
-
# Print the results
|
|
197
|
-
print(cpt_out.result)
|
|
198
|
-
|
|
199
|
-
# Example 2: (Using 'VERBOSE' output_option)
|
|
200
|
-
cpt_out = ChangePointDetection( data = cpt_table,
|
|
201
|
-
data_partition_column = 'sid',
|
|
202
|
-
data_order_column = 'id',
|
|
203
|
-
value_column = 'val',
|
|
204
|
-
accumulate = ['sid', 'id'],
|
|
205
|
-
output_option = 'verbose'
|
|
206
|
-
)
|
|
207
|
-
# Print the results
|
|
208
|
-
print(cpt_out.result)
|
|
209
|
-
|
|
210
|
-
# Example 3: (Using 'AIC' penalty)
|
|
211
|
-
cpt_out = ChangePointDetection( data = cpt_table,
|
|
212
|
-
data_partition_column = 'sid',
|
|
213
|
-
data_order_column = 'id',
|
|
214
|
-
value_column = 'val',
|
|
215
|
-
accumulate = ['sid', 'id'],
|
|
216
|
-
penalty = 'AIC'
|
|
217
|
-
)
|
|
218
|
-
# Print the results
|
|
219
|
-
print(cpt_out.result)
|
|
220
|
-
|
|
221
|
-
# Example 4: (Using 'threshold' penalty of 20)
|
|
222
|
-
cpt_out = ChangePointDetection( data = cpt_table,
|
|
223
|
-
data_partition_column = 'sid',
|
|
224
|
-
data_order_column = 'id',
|
|
225
|
-
value_column = 'val',
|
|
226
|
-
accumulate = ['sid', 'id'],
|
|
227
|
-
penalty = '20.0'
|
|
228
|
-
)
|
|
229
|
-
# Print the results
|
|
230
|
-
print(cpt_out.result)
|
|
231
|
-
|
|
232
|
-
# Example 5: (Using 'linear_regression' segmentation_method)
|
|
233
|
-
cpt_out = ChangePointDetection( data = cpt_table,
|
|
234
|
-
data_partition_column = 'sid',
|
|
235
|
-
data_order_column = 'id',
|
|
236
|
-
value_column = 'val',
|
|
237
|
-
accumulate = ['sid', 'id'],
|
|
238
|
-
segmentation_method = 'linear_regression'
|
|
239
|
-
)
|
|
240
|
-
# Print the results
|
|
241
|
-
print(cpt_out.result)
|
|
242
|
-
|
|
243
|
-
# Example 6 : (Using 'linear_regression' segmentation_method and 'SEGMENT'
|
|
244
|
-
# output_option)
|
|
245
|
-
cpt_out = ChangePointDetection( data = cpt_table,
|
|
246
|
-
data_partition_column = 'sid',
|
|
247
|
-
data_order_column = 'id',
|
|
248
|
-
value_column = 'val',
|
|
249
|
-
accumulate = ['sid', 'id'],
|
|
250
|
-
segmentation_method = 'linear_regression',
|
|
251
|
-
output_option = 'segment'
|
|
252
|
-
)
|
|
253
|
-
# Print the results
|
|
254
|
-
print(cpt_out.result)
|
|
255
|
-
|
|
256
|
-
"""
|
|
257
|
-
|
|
258
|
-
# Start the timer to get the build time
|
|
259
|
-
_start_time = time.time()
|
|
260
|
-
|
|
261
|
-
self.data = data
|
|
262
|
-
self.value_column = value_column
|
|
263
|
-
self.accumulate = accumulate
|
|
264
|
-
self.segmentation_method = segmentation_method
|
|
265
|
-
self.search_method = search_method
|
|
266
|
-
self.max_change_num = max_change_num
|
|
267
|
-
self.penalty = penalty
|
|
268
|
-
self.output_option = output_option
|
|
269
|
-
self.data_sequence_column = data_sequence_column
|
|
270
|
-
self.data_partition_column = data_partition_column
|
|
271
|
-
self.data_order_column = data_order_column
|
|
272
|
-
self.granularity = granularity
|
|
273
|
-
|
|
274
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
275
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
276
|
-
self.__aed_utils = AedUtils()
|
|
277
|
-
|
|
278
|
-
# Create argument information matrix to do parameter checking
|
|
279
|
-
self.__arg_info_matrix = []
|
|
280
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
281
|
-
self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, False, (str,list)])
|
|
282
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, False, (str,list)])
|
|
283
|
-
self.__arg_info_matrix.append(["value_column", self.value_column, False, (str)])
|
|
284
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, configure._vantage_version!="vantage1.0", (str,list)])
|
|
285
|
-
self.__arg_info_matrix.append(["segmentation_method", self.segmentation_method, True, (str)])
|
|
286
|
-
self.__arg_info_matrix.append(["search_method", self.search_method, True, (str)])
|
|
287
|
-
self.__arg_info_matrix.append(["max_change_num", self.max_change_num, True, (int)])
|
|
288
|
-
self.__arg_info_matrix.append(["penalty", self.penalty, True, (str)])
|
|
289
|
-
self.__arg_info_matrix.append(["output_option", self.output_option, True, (str)])
|
|
290
|
-
self.__arg_info_matrix.append(["granularity", self.granularity, True, (int)])
|
|
291
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
292
|
-
|
|
293
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
294
|
-
# Perform the function validations
|
|
295
|
-
self.__validate()
|
|
296
|
-
# Generate the ML query
|
|
297
|
-
self.__form_tdml_query()
|
|
298
|
-
# Execute ML query
|
|
299
|
-
self.__execute()
|
|
300
|
-
# Get the prediction type
|
|
301
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
302
|
-
|
|
303
|
-
# End the timer to get the build time
|
|
304
|
-
_end_time = time.time()
|
|
305
|
-
|
|
306
|
-
# Calculate the build time
|
|
307
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
308
|
-
|
|
309
|
-
def __validate(self):
|
|
310
|
-
"""
|
|
311
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
312
|
-
arguments, input argument and table types. Also processes the
|
|
313
|
-
argument values.
|
|
314
|
-
"""
|
|
315
|
-
|
|
316
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
317
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
318
|
-
|
|
319
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
320
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
321
|
-
|
|
322
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
323
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
324
|
-
|
|
325
|
-
# Check for permitted values
|
|
326
|
-
segmentation_method_permitted_values = ["NORMAL_DISTRIBUTION", "LINEAR_REGRESSION"]
|
|
327
|
-
self.__awu._validate_permitted_values(self.segmentation_method, segmentation_method_permitted_values, "segmentation_method")
|
|
328
|
-
|
|
329
|
-
search_method_permitted_values = ["BINARY"]
|
|
330
|
-
self.__awu._validate_permitted_values(self.search_method, search_method_permitted_values, "search_method")
|
|
331
|
-
|
|
332
|
-
output_option_permitted_values = ["CHANGEPOINT", "SEGMENT", "VERBOSE"]
|
|
333
|
-
self.__awu._validate_permitted_values(self.output_option, output_option_permitted_values, "output_option")
|
|
334
|
-
|
|
335
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
336
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
337
|
-
self.__awu._validate_input_columns_not_empty(self.value_column, "value_column")
|
|
338
|
-
self.__awu._validate_dataframe_has_argument_columns(self.value_column, "value_column", self.data, "data", False)
|
|
339
|
-
|
|
340
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
341
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.data, "data", False)
|
|
342
|
-
|
|
343
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
344
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
345
|
-
|
|
346
|
-
self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
|
|
347
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
|
|
348
|
-
|
|
349
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
350
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
351
|
-
|
|
352
|
-
|
|
353
|
-
def __form_tdml_query(self):
|
|
354
|
-
"""
|
|
355
|
-
Function to generate the analytical function queries. The function defines
|
|
356
|
-
variables and list of arguments required to form the query.
|
|
357
|
-
"""
|
|
358
|
-
|
|
359
|
-
# Output table arguments list
|
|
360
|
-
self.__func_output_args_sql_names = []
|
|
361
|
-
self.__func_output_args = []
|
|
362
|
-
|
|
363
|
-
# Model Cataloging related attributes.
|
|
364
|
-
self._sql_specific_attributes = {}
|
|
365
|
-
self._sql_formula_attribute_mapper = {}
|
|
366
|
-
self._target_column = None
|
|
367
|
-
self._algorithm_name = None
|
|
368
|
-
|
|
369
|
-
# Generate lists for rest of the function arguments
|
|
370
|
-
self.__func_other_arg_sql_names = []
|
|
371
|
-
self.__func_other_args = []
|
|
372
|
-
self.__func_other_arg_json_datatypes = []
|
|
373
|
-
|
|
374
|
-
self.__func_other_arg_sql_names.append("ValueColumn")
|
|
375
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.value_column, "\""), "'"))
|
|
376
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
377
|
-
|
|
378
|
-
if self.accumulate is not None:
|
|
379
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
380
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
381
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
382
|
-
|
|
383
|
-
if self.segmentation_method is not None and self.segmentation_method != "normal_distribution":
|
|
384
|
-
self.__func_other_arg_sql_names.append("SegmentationMethod")
|
|
385
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.segmentation_method, "'"))
|
|
386
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
387
|
-
|
|
388
|
-
if self.search_method is not None and self.search_method != "binary":
|
|
389
|
-
self.__func_other_arg_sql_names.append("SearchMethod")
|
|
390
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.search_method, "'"))
|
|
391
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
392
|
-
|
|
393
|
-
if self.max_change_num is not None and self.max_change_num != 10:
|
|
394
|
-
self.__func_other_arg_sql_names.append("MaxChangeNum")
|
|
395
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_change_num, "'"))
|
|
396
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
397
|
-
|
|
398
|
-
if self.penalty is not None and self.penalty != "BIC":
|
|
399
|
-
self.__func_other_arg_sql_names.append("Penalty")
|
|
400
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.penalty, "'"))
|
|
401
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
402
|
-
|
|
403
|
-
if self.output_option is not None and self.output_option != "changepoint":
|
|
404
|
-
self.__func_other_arg_sql_names.append("OutputOption")
|
|
405
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_option, "'"))
|
|
406
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
407
|
-
|
|
408
|
-
if self.granularity is not None and self.granularity != 1:
|
|
409
|
-
self.__func_other_arg_sql_names.append("Granularity")
|
|
410
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.granularity, "'"))
|
|
411
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
412
|
-
|
|
413
|
-
# Generate lists for rest of the function arguments
|
|
414
|
-
sequence_input_by_list = []
|
|
415
|
-
if self.data_sequence_column is not None:
|
|
416
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
417
|
-
|
|
418
|
-
if len(sequence_input_by_list) > 0:
|
|
419
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
420
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
421
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
422
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
423
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
424
|
-
|
|
425
|
-
|
|
426
|
-
# Declare empty lists to hold input table information.
|
|
427
|
-
self.__func_input_arg_sql_names = []
|
|
428
|
-
self.__func_input_table_view_query = []
|
|
429
|
-
self.__func_input_dataframe_type = []
|
|
430
|
-
self.__func_input_distribution = []
|
|
431
|
-
self.__func_input_partition_by_cols = []
|
|
432
|
-
self.__func_input_order_by_cols = []
|
|
433
|
-
|
|
434
|
-
# Process data
|
|
435
|
-
self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
|
|
436
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
437
|
-
self.__func_input_distribution.append("FACT")
|
|
438
|
-
self.__func_input_arg_sql_names.append("input")
|
|
439
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
440
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
441
|
-
self.__func_input_partition_by_cols.append(self.data_partition_column)
|
|
442
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
443
|
-
|
|
444
|
-
function_name = "ChangePointDetection"
|
|
445
|
-
# Create instance to generate SQLMR.
|
|
446
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
447
|
-
self.__func_input_arg_sql_names,
|
|
448
|
-
self.__func_input_table_view_query,
|
|
449
|
-
self.__func_input_dataframe_type,
|
|
450
|
-
self.__func_input_distribution,
|
|
451
|
-
self.__func_input_partition_by_cols,
|
|
452
|
-
self.__func_input_order_by_cols,
|
|
453
|
-
self.__func_other_arg_sql_names,
|
|
454
|
-
self.__func_other_args,
|
|
455
|
-
self.__func_other_arg_json_datatypes,
|
|
456
|
-
self.__func_output_args_sql_names,
|
|
457
|
-
self.__func_output_args,
|
|
458
|
-
engine="ENGINE_ML")
|
|
459
|
-
# Invoke call to SQL-MR generation.
|
|
460
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
461
|
-
|
|
462
|
-
# Print SQL-MR query if requested to do so.
|
|
463
|
-
if display.print_sqlmr_query:
|
|
464
|
-
print(self.sqlmr_query)
|
|
465
|
-
|
|
466
|
-
# Set the algorithm name for Model Cataloging.
|
|
467
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
468
|
-
|
|
469
|
-
def __execute(self):
|
|
470
|
-
"""
|
|
471
|
-
Function to execute SQL-MR queries.
|
|
472
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
473
|
-
"""
|
|
474
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
475
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
476
|
-
try:
|
|
477
|
-
# Generate the output.
|
|
478
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
479
|
-
except Exception as emsg:
|
|
480
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
481
|
-
|
|
482
|
-
# Update output table data frames.
|
|
483
|
-
self._mlresults = []
|
|
484
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
485
|
-
self._mlresults.append(self.result)
|
|
486
|
-
|
|
487
|
-
def show_query(self):
|
|
488
|
-
"""
|
|
489
|
-
Function to return the underlying SQL query.
|
|
490
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
491
|
-
"""
|
|
492
|
-
return self.sqlmr_query
|
|
493
|
-
|
|
494
|
-
def get_prediction_type(self):
|
|
495
|
-
"""
|
|
496
|
-
Function to return the Prediction type of the algorithm.
|
|
497
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
498
|
-
as saved in the Model Catalog.
|
|
499
|
-
"""
|
|
500
|
-
return self._prediction_type
|
|
501
|
-
|
|
502
|
-
def get_target_column(self):
|
|
503
|
-
"""
|
|
504
|
-
Function to return the Target Column of the algorithm.
|
|
505
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
506
|
-
as saved in the Model Catalog.
|
|
507
|
-
"""
|
|
508
|
-
return self._target_column
|
|
509
|
-
|
|
510
|
-
def get_build_time(self):
|
|
511
|
-
"""
|
|
512
|
-
Function to return the build time of the algorithm in seconds.
|
|
513
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
514
|
-
as saved in the Model Catalog.
|
|
515
|
-
"""
|
|
516
|
-
return self._build_time
|
|
517
|
-
|
|
518
|
-
def _get_algorithm_name(self):
|
|
519
|
-
"""
|
|
520
|
-
Function to return the name of the algorithm.
|
|
521
|
-
"""
|
|
522
|
-
return self._algorithm_name
|
|
523
|
-
|
|
524
|
-
def _get_sql_specific_attributes(self):
|
|
525
|
-
"""
|
|
526
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
527
|
-
"""
|
|
528
|
-
return self._sql_specific_attributes
|
|
529
|
-
|
|
530
|
-
@classmethod
|
|
531
|
-
def _from_model_catalog(cls,
|
|
532
|
-
result = None,
|
|
533
|
-
**kwargs):
|
|
534
|
-
"""
|
|
535
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
536
|
-
"""
|
|
537
|
-
kwargs.pop("result", None)
|
|
538
|
-
|
|
539
|
-
# Model Cataloging related attributes.
|
|
540
|
-
target_column = kwargs.pop("__target_column", None)
|
|
541
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
542
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
543
|
-
build_time = kwargs.pop("__build_time", None)
|
|
544
|
-
|
|
545
|
-
# Let's create an object of this class.
|
|
546
|
-
obj = cls(**kwargs)
|
|
547
|
-
obj.result = result
|
|
548
|
-
|
|
549
|
-
# Initialize the sqlmr_query class attribute.
|
|
550
|
-
obj.sqlmr_query = None
|
|
551
|
-
|
|
552
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
553
|
-
obj._sql_specific_attributes = None
|
|
554
|
-
obj._target_column = target_column
|
|
555
|
-
obj._prediction_type = prediction_type
|
|
556
|
-
obj._algorithm_name = algorithm_name
|
|
557
|
-
obj._build_time = build_time
|
|
558
|
-
|
|
559
|
-
# Update output table data frames.
|
|
560
|
-
obj._mlresults = []
|
|
561
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
562
|
-
obj._mlresults.append(obj.result)
|
|
563
|
-
return obj
|
|
564
|
-
|
|
565
|
-
def __repr__(self):
|
|
566
|
-
"""
|
|
567
|
-
Returns the string representation for a ChangePointDetection class instance.
|
|
568
|
-
"""
|
|
569
|
-
repr_string="############ STDOUT Output ############"
|
|
570
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
571
|
-
return repr_string
|
|
572
|
-
|