teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,572 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.6
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.configure import configure
29
- from teradataml.options.display import display
30
-
31
- class ChangePointDetection:
32
-
33
- def __init__(self,
34
- data = None,
35
- value_column = None,
36
- accumulate = None,
37
- segmentation_method = "normal_distribution",
38
- search_method = "binary",
39
- max_change_num = 10,
40
- penalty = "BIC",
41
- output_option = "changepoint",
42
- data_sequence_column = None,
43
- data_partition_column = None,
44
- data_order_column = None,
45
- granularity = 1):
46
- """
47
- DESCRIPTION:
48
- The ChangePointDetection function detects change points in a
49
- stochastic process or time series, using retrospective change-point
50
- detection, implemented with these algorithms:
51
- * Search algorithm: binary search
52
- * Segmentation algorithm: normal distribution and linear regression
53
-
54
-
55
- PARAMETERS:
56
- data:
57
- Required Argument.
58
- Specifies the teradataml DataFrame containing the input time
59
- series data.
60
-
61
- data_partition_column:
62
- Required Argument.
63
- Specifies Partition By columns for "data".
64
- Values to this argument can be provided as a list, if multiple
65
- columns are used for partition.
66
- Types: str OR list of Strings (str)
67
-
68
- data_order_column:
69
- Required Argument.
70
- Specifies Order By columns for "data".
71
- Values to this argument can be provided as a list, if multiple
72
- columns are used for ordering.
73
- Types: str OR list of Strings (str)
74
-
75
- value_column:
76
- Required Argument.
77
- Specifies the name of the input teradataml DataFrame column
78
- that contains the time series data.
79
- Types: str
80
-
81
- accumulate:
82
- Optional Argument. Required when teradataml is connected to
83
- Vantage 1.0 Maintenance Update 2.
84
- Specifies the names of the input teradataml DataFrame columns
85
- to copy to the output table.
86
- Tip: To identify change points in the output table, specify
87
- the columns that appear in data_partition_column and
88
- data_order_column.
89
- Types: str OR list of Strings (str)
90
-
91
- segmentation_method:
92
- Optional Argument.
93
- Specifies one of these segmentation methods:
94
- * normal_distribution : In each segment, the data is in a
95
- normal distribution.
96
- * linear_regression: In each segment, the data is in linear
97
- regression.
98
- Default Value: normal_distribution
99
- Permitted Values: normal_distribution, linear_regression
100
- Types: str
101
-
102
- search_method:
103
- Optional Argument.
104
- Specifies the search method, binary segmentation.
105
- Default Value: binary
106
- Permitted Values: binary
107
- Types: str
108
-
109
- max_change_num:
110
- Optional Argument.
111
- Specifies the maximum number of change points to detect.
112
- Default Value: 10
113
- Types: int
114
-
115
- penalty:
116
- Optional Argument.
117
- Specifies the penalty function, which is used to avoid
118
- over-fitting.
119
- Possible values are: BIC , AIC and threshold (a float value).
120
- * For BIC, the condition for the existence of a change point
121
- is: ln(L1) - ln(L0) > (p1 - p0) * ln(n)/2.
122
- For normal distribution and linear regression, the condition
123
- is: (p1 - p0) * ln(n)/2 = ln(n).
124
- * For AIC, the condition for the existence of a change point
125
- is: ln(L1) - ln(L0) > p1 - p0.
126
- For normal distribution and linear regression, the condition
127
- is: p1 - p0 = 2.
128
- * For threshold, the specified value is compared to:
129
- ln(L1) - ln(L0).
130
- L1 and L0 are the maximum likelihood estimation of hypotheses
131
- H1 and H0. For normal distribution, the definition of
132
- Log(L1) and Log(L0) are in "Background". 'p' is the number of
133
- additional parameters introduced by adding a change point. 'p'
134
- is used in the information criterion BIC or AIC. p1 and p0
135
- represent this parameter in hypotheses H1 and H0 separately.
136
- Default Value: BIC
137
- Types: str
138
-
139
- output_option:
140
- Optional Argument.
141
- Specifies the output teradataml DataFrame columns.
142
- Default Value: changepoint
143
- Permitted Values: changepoint, segment, verbose
144
- Types: str
145
-
146
- data_sequence_column:
147
- Optional Argument.
148
- Specifies the list of column(s) that uniquely identifies each
149
- row of the input argument "data". The argument is used to
150
- ensure deterministic results for functions which produce
151
- results that vary from run to run.
152
- Types: str OR list of Strings (str)
153
-
154
- granularity:
155
- Optional Argument.
156
- Specifies the difference between index of consecutive candidate
157
- change points.
158
- Note:
159
- "granularity" argument support is only available when teradataml
160
- is connected to Vantage 1.3 version.
161
- Default Value: 1
162
- Types: int
163
-
164
- RETURNS:
165
- Instance of ChangePointDetection.
166
- Output teradataml DataFrames can be accessed using attribute
167
- references, such as ChangePointDetectionObj.<attribute_name>.
168
- Output teradataml DataFrame attribute name is:
169
- result
170
-
171
-
172
- RAISES:
173
- TeradataMlException, TypeError, ValueError
174
-
175
-
176
- EXAMPLES:
177
- # Load the data to run the example.
178
- load_example_data('changepointdetection', ['cpt', 'finance_data2'])
179
-
180
- # Provided example tables are 'cpt' and 'finance_data2'.
181
- # These input tables contain time series data like expenditure,
182
- # income between time periods or power consumption at certain
183
- # periods or sequence or pulserate etc
184
-
185
- # Create teradataml DataFrame objects.
186
- cpt_table = DataFrame.from_table('cpt')
187
- print(cpt_table) # Only 10 rows are displayed by default
188
-
189
- # Example 1: (Using default parameters)
190
- cpt_out = ChangePointDetection( data = cpt_table,
191
- data_partition_column = 'sid',
192
- data_order_column = 'id',
193
- value_column = 'val',
194
- accumulate = ['sid','id']
195
- )
196
- # Print the results
197
- print(cpt_out.result)
198
-
199
- # Example 2: (Using 'VERBOSE' output_option)
200
- cpt_out = ChangePointDetection( data = cpt_table,
201
- data_partition_column = 'sid',
202
- data_order_column = 'id',
203
- value_column = 'val',
204
- accumulate = ['sid', 'id'],
205
- output_option = 'verbose'
206
- )
207
- # Print the results
208
- print(cpt_out.result)
209
-
210
- # Example 3: (Using 'AIC' penalty)
211
- cpt_out = ChangePointDetection( data = cpt_table,
212
- data_partition_column = 'sid',
213
- data_order_column = 'id',
214
- value_column = 'val',
215
- accumulate = ['sid', 'id'],
216
- penalty = 'AIC'
217
- )
218
- # Print the results
219
- print(cpt_out.result)
220
-
221
- # Example 4: (Using 'threshold' penalty of 20)
222
- cpt_out = ChangePointDetection( data = cpt_table,
223
- data_partition_column = 'sid',
224
- data_order_column = 'id',
225
- value_column = 'val',
226
- accumulate = ['sid', 'id'],
227
- penalty = '20.0'
228
- )
229
- # Print the results
230
- print(cpt_out.result)
231
-
232
- # Example 5: (Using 'linear_regression' segmentation_method)
233
- cpt_out = ChangePointDetection( data = cpt_table,
234
- data_partition_column = 'sid',
235
- data_order_column = 'id',
236
- value_column = 'val',
237
- accumulate = ['sid', 'id'],
238
- segmentation_method = 'linear_regression'
239
- )
240
- # Print the results
241
- print(cpt_out.result)
242
-
243
- # Example 6 : (Using 'linear_regression' segmentation_method and 'SEGMENT'
244
- # output_option)
245
- cpt_out = ChangePointDetection( data = cpt_table,
246
- data_partition_column = 'sid',
247
- data_order_column = 'id',
248
- value_column = 'val',
249
- accumulate = ['sid', 'id'],
250
- segmentation_method = 'linear_regression',
251
- output_option = 'segment'
252
- )
253
- # Print the results
254
- print(cpt_out.result)
255
-
256
- """
257
-
258
- # Start the timer to get the build time
259
- _start_time = time.time()
260
-
261
- self.data = data
262
- self.value_column = value_column
263
- self.accumulate = accumulate
264
- self.segmentation_method = segmentation_method
265
- self.search_method = search_method
266
- self.max_change_num = max_change_num
267
- self.penalty = penalty
268
- self.output_option = output_option
269
- self.data_sequence_column = data_sequence_column
270
- self.data_partition_column = data_partition_column
271
- self.data_order_column = data_order_column
272
- self.granularity = granularity
273
-
274
- # Create TeradataPyWrapperUtils instance which contains validation functions.
275
- self.__awu = AnalyticsWrapperUtils()
276
- self.__aed_utils = AedUtils()
277
-
278
- # Create argument information matrix to do parameter checking
279
- self.__arg_info_matrix = []
280
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
281
- self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, False, (str,list)])
282
- self.__arg_info_matrix.append(["data_order_column", self.data_order_column, False, (str,list)])
283
- self.__arg_info_matrix.append(["value_column", self.value_column, False, (str)])
284
- self.__arg_info_matrix.append(["accumulate", self.accumulate, configure._vantage_version!="vantage1.0", (str,list)])
285
- self.__arg_info_matrix.append(["segmentation_method", self.segmentation_method, True, (str)])
286
- self.__arg_info_matrix.append(["search_method", self.search_method, True, (str)])
287
- self.__arg_info_matrix.append(["max_change_num", self.max_change_num, True, (int)])
288
- self.__arg_info_matrix.append(["penalty", self.penalty, True, (str)])
289
- self.__arg_info_matrix.append(["output_option", self.output_option, True, (str)])
290
- self.__arg_info_matrix.append(["granularity", self.granularity, True, (int)])
291
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
292
-
293
- if inspect.stack()[1][3] != '_from_model_catalog':
294
- # Perform the function validations
295
- self.__validate()
296
- # Generate the ML query
297
- self.__form_tdml_query()
298
- # Execute ML query
299
- self.__execute()
300
- # Get the prediction type
301
- self._prediction_type = self.__awu._get_function_prediction_type(self)
302
-
303
- # End the timer to get the build time
304
- _end_time = time.time()
305
-
306
- # Calculate the build time
307
- self._build_time = (int)(_end_time - _start_time)
308
-
309
- def __validate(self):
310
- """
311
- Function to validate sqlmr function arguments, which verifies missing
312
- arguments, input argument and table types. Also processes the
313
- argument values.
314
- """
315
-
316
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
317
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
318
-
319
- # Make sure that a non-NULL value has been supplied correct type of argument
320
- self.__awu._validate_argument_types(self.__arg_info_matrix)
321
-
322
- # Check to make sure input table types are strings or data frame objects or of valid type.
323
- self.__awu._validate_input_table_datatype(self.data, "data", None)
324
-
325
- # Check for permitted values
326
- segmentation_method_permitted_values = ["NORMAL_DISTRIBUTION", "LINEAR_REGRESSION"]
327
- self.__awu._validate_permitted_values(self.segmentation_method, segmentation_method_permitted_values, "segmentation_method")
328
-
329
- search_method_permitted_values = ["BINARY"]
330
- self.__awu._validate_permitted_values(self.search_method, search_method_permitted_values, "search_method")
331
-
332
- output_option_permitted_values = ["CHANGEPOINT", "SEGMENT", "VERBOSE"]
333
- self.__awu._validate_permitted_values(self.output_option, output_option_permitted_values, "output_option")
334
-
335
- # Check whether the input columns passed to the argument are not empty.
336
- # Also check whether the input columns passed to the argument valid or not.
337
- self.__awu._validate_input_columns_not_empty(self.value_column, "value_column")
338
- self.__awu._validate_dataframe_has_argument_columns(self.value_column, "value_column", self.data, "data", False)
339
-
340
- self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
341
- self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.data, "data", False)
342
-
343
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
344
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
345
-
346
- self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
347
- self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
348
-
349
- self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
350
- self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
351
-
352
-
353
- def __form_tdml_query(self):
354
- """
355
- Function to generate the analytical function queries. The function defines
356
- variables and list of arguments required to form the query.
357
- """
358
-
359
- # Output table arguments list
360
- self.__func_output_args_sql_names = []
361
- self.__func_output_args = []
362
-
363
- # Model Cataloging related attributes.
364
- self._sql_specific_attributes = {}
365
- self._sql_formula_attribute_mapper = {}
366
- self._target_column = None
367
- self._algorithm_name = None
368
-
369
- # Generate lists for rest of the function arguments
370
- self.__func_other_arg_sql_names = []
371
- self.__func_other_args = []
372
- self.__func_other_arg_json_datatypes = []
373
-
374
- self.__func_other_arg_sql_names.append("ValueColumn")
375
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.value_column, "\""), "'"))
376
- self.__func_other_arg_json_datatypes.append("COLUMNS")
377
-
378
- if self.accumulate is not None:
379
- self.__func_other_arg_sql_names.append("Accumulate")
380
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
381
- self.__func_other_arg_json_datatypes.append("COLUMNS")
382
-
383
- if self.segmentation_method is not None and self.segmentation_method != "normal_distribution":
384
- self.__func_other_arg_sql_names.append("SegmentationMethod")
385
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.segmentation_method, "'"))
386
- self.__func_other_arg_json_datatypes.append("STRING")
387
-
388
- if self.search_method is not None and self.search_method != "binary":
389
- self.__func_other_arg_sql_names.append("SearchMethod")
390
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.search_method, "'"))
391
- self.__func_other_arg_json_datatypes.append("STRING")
392
-
393
- if self.max_change_num is not None and self.max_change_num != 10:
394
- self.__func_other_arg_sql_names.append("MaxChangeNum")
395
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_change_num, "'"))
396
- self.__func_other_arg_json_datatypes.append("INTEGER")
397
-
398
- if self.penalty is not None and self.penalty != "BIC":
399
- self.__func_other_arg_sql_names.append("Penalty")
400
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.penalty, "'"))
401
- self.__func_other_arg_json_datatypes.append("STRING")
402
-
403
- if self.output_option is not None and self.output_option != "changepoint":
404
- self.__func_other_arg_sql_names.append("OutputOption")
405
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_option, "'"))
406
- self.__func_other_arg_json_datatypes.append("STRING")
407
-
408
- if self.granularity is not None and self.granularity != 1:
409
- self.__func_other_arg_sql_names.append("Granularity")
410
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.granularity, "'"))
411
- self.__func_other_arg_json_datatypes.append("INTEGER")
412
-
413
- # Generate lists for rest of the function arguments
414
- sequence_input_by_list = []
415
- if self.data_sequence_column is not None:
416
- sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
417
-
418
- if len(sequence_input_by_list) > 0:
419
- self.__func_other_arg_sql_names.append("SequenceInputBy")
420
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
421
- self.__func_other_args.append(sequence_input_by_arg_value)
422
- self.__func_other_arg_json_datatypes.append("STRING")
423
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
424
-
425
-
426
- # Declare empty lists to hold input table information.
427
- self.__func_input_arg_sql_names = []
428
- self.__func_input_table_view_query = []
429
- self.__func_input_dataframe_type = []
430
- self.__func_input_distribution = []
431
- self.__func_input_partition_by_cols = []
432
- self.__func_input_order_by_cols = []
433
-
434
- # Process data
435
- self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
436
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
437
- self.__func_input_distribution.append("FACT")
438
- self.__func_input_arg_sql_names.append("input")
439
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
440
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
441
- self.__func_input_partition_by_cols.append(self.data_partition_column)
442
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
443
-
444
- function_name = "ChangePointDetection"
445
- # Create instance to generate SQLMR.
446
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
447
- self.__func_input_arg_sql_names,
448
- self.__func_input_table_view_query,
449
- self.__func_input_dataframe_type,
450
- self.__func_input_distribution,
451
- self.__func_input_partition_by_cols,
452
- self.__func_input_order_by_cols,
453
- self.__func_other_arg_sql_names,
454
- self.__func_other_args,
455
- self.__func_other_arg_json_datatypes,
456
- self.__func_output_args_sql_names,
457
- self.__func_output_args,
458
- engine="ENGINE_ML")
459
- # Invoke call to SQL-MR generation.
460
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
461
-
462
- # Print SQL-MR query if requested to do so.
463
- if display.print_sqlmr_query:
464
- print(self.sqlmr_query)
465
-
466
- # Set the algorithm name for Model Cataloging.
467
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
468
-
469
- def __execute(self):
470
- """
471
- Function to execute SQL-MR queries.
472
- Create DataFrames for the required SQL-MR outputs.
473
- """
474
- # Generate STDOUT table name and add it to the output table list.
475
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
476
- try:
477
- # Generate the output.
478
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
479
- except Exception as emsg:
480
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
481
-
482
- # Update output table data frames.
483
- self._mlresults = []
484
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
485
- self._mlresults.append(self.result)
486
-
487
- def show_query(self):
488
- """
489
- Function to return the underlying SQL query.
490
- When model object is created using retrieve_model(), then None is returned.
491
- """
492
- return self.sqlmr_query
493
-
494
- def get_prediction_type(self):
495
- """
496
- Function to return the Prediction type of the algorithm.
497
- When model object is created using retrieve_model(), then the value returned is
498
- as saved in the Model Catalog.
499
- """
500
- return self._prediction_type
501
-
502
- def get_target_column(self):
503
- """
504
- Function to return the Target Column of the algorithm.
505
- When model object is created using retrieve_model(), then the value returned is
506
- as saved in the Model Catalog.
507
- """
508
- return self._target_column
509
-
510
- def get_build_time(self):
511
- """
512
- Function to return the build time of the algorithm in seconds.
513
- When model object is created using retrieve_model(), then the value returned is
514
- as saved in the Model Catalog.
515
- """
516
- return self._build_time
517
-
518
- def _get_algorithm_name(self):
519
- """
520
- Function to return the name of the algorithm.
521
- """
522
- return self._algorithm_name
523
-
524
- def _get_sql_specific_attributes(self):
525
- """
526
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
527
- """
528
- return self._sql_specific_attributes
529
-
530
- @classmethod
531
- def _from_model_catalog(cls,
532
- result = None,
533
- **kwargs):
534
- """
535
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
536
- """
537
- kwargs.pop("result", None)
538
-
539
- # Model Cataloging related attributes.
540
- target_column = kwargs.pop("__target_column", None)
541
- prediction_type = kwargs.pop("__prediction_type", None)
542
- algorithm_name = kwargs.pop("__algorithm_name", None)
543
- build_time = kwargs.pop("__build_time", None)
544
-
545
- # Let's create an object of this class.
546
- obj = cls(**kwargs)
547
- obj.result = result
548
-
549
- # Initialize the sqlmr_query class attribute.
550
- obj.sqlmr_query = None
551
-
552
- # Initialize the SQL specific Model Cataloging attributes.
553
- obj._sql_specific_attributes = None
554
- obj._target_column = target_column
555
- obj._prediction_type = prediction_type
556
- obj._algorithm_name = algorithm_name
557
- obj._build_time = build_time
558
-
559
- # Update output table data frames.
560
- obj._mlresults = []
561
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
562
- obj._mlresults.append(obj.result)
563
- return obj
564
-
565
- def __repr__(self):
566
- """
567
- Returns the string representation for a ChangePointDetection class instance.
568
- """
569
- repr_string="############ STDOUT Output ############"
570
- repr_string = "{}\n\n{}".format(repr_string,self.result)
571
- return repr_string
572
-