teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -219,16 +219,15 @@ def GLMPredictPerSegment(newdata=None, object=None, id_column=None, accumulate=N
|
|
|
219
219
|
iter_max=100)
|
|
220
220
|
|
|
221
221
|
# Predict the homestyle using GLMPredictPerSegment().
|
|
222
|
-
GLMPredictPerSegment_out_2 = GLMPredictPerSegment(
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
)
|
|
222
|
+
GLMPredictPerSegment_out_2 = GLMPredictPerSegment(newdata=housing_test_ordinal_encodingtransform.result,
|
|
223
|
+
newdata_partition_column="stories",
|
|
224
|
+
object=GLMPerSegment_out_2,
|
|
225
|
+
object_partition_column="stories",
|
|
226
|
+
id_column="sn",
|
|
227
|
+
output_prob=True,
|
|
228
|
+
output_responses=["0", "1"]
|
|
229
|
+
)
|
|
231
230
|
|
|
232
231
|
# Print the result DataFrame.
|
|
233
232
|
print(GLMPredictPerSegment_out_2.result)
|
|
234
|
-
"""
|
|
233
|
+
"""
|
|
@@ -123,8 +123,9 @@ def KMeansPredict(data=None, object=None, accumulate=None, output_distance=False
|
|
|
123
123
|
# using the model generated by the KMeans() function.
|
|
124
124
|
# Note that teradataml DataFrame representing the model
|
|
125
125
|
# is passed as input to "object".
|
|
126
|
-
KMeansPredict_out = KMeansPredict(
|
|
127
|
-
|
|
126
|
+
KMeansPredict_out = KMeansPredict(data=computers_train1,
|
|
127
|
+
object=KMeans_out.result
|
|
128
|
+
)
|
|
128
129
|
|
|
129
130
|
# Print the result DataFrames.
|
|
130
131
|
print(KMeansPredict_out.result)
|
|
@@ -16,6 +16,7 @@ def NaiveBayesTextClassifierPredict(object=None, newdata=None,
|
|
|
16
16
|
NaiveBayesTextClassifierTrainer() function to predict the outcomes for a test set
|
|
17
17
|
of data.
|
|
18
18
|
|
|
19
|
+
|
|
19
20
|
PARAMETERS:
|
|
20
21
|
object:
|
|
21
22
|
Required Argument.
|
|
@@ -151,24 +152,24 @@ def NaiveBayesTextClassifierPredict(object=None, newdata=None,
|
|
|
151
152
|
display_analytic_functions()
|
|
152
153
|
|
|
153
154
|
# Create a model which is output of NaiveBayesTextClassifierTrainer.
|
|
154
|
-
nbt_out = NaiveBayesTextClassifierTrainer(data
|
|
155
|
-
token_column
|
|
156
|
-
doc_id_column
|
|
157
|
-
doc_category_column
|
|
158
|
-
model_type
|
|
159
|
-
data_partition_column
|
|
155
|
+
nbt_out = NaiveBayesTextClassifierTrainer(data=token_table,
|
|
156
|
+
token_column='token',
|
|
157
|
+
doc_id_column='doc_id',
|
|
158
|
+
doc_category_column='category',
|
|
159
|
+
model_type="Bernoulli",
|
|
160
|
+
data_partition_column='category')
|
|
160
161
|
|
|
161
162
|
# Example: Run NaiveBayesTextClassifierPredict() on model generated by
|
|
162
163
|
# NaiveBayesTextClassifierTrainer() where model_type is "Bernoulli".
|
|
163
|
-
nbt_predict_out = NaiveBayesTextClassifierPredict(
|
|
164
|
-
|
|
165
|
-
input_token_column
|
|
166
|
-
doc_id_columns
|
|
167
|
-
model_type
|
|
168
|
-
model_token_column
|
|
169
|
-
model_category_column
|
|
170
|
-
model_prob_column
|
|
171
|
-
newdata_partition_column
|
|
164
|
+
nbt_predict_out = NaiveBayesTextClassifierPredict(newdata=complaints_tokens_test,
|
|
165
|
+
object=nbt_out,
|
|
166
|
+
input_token_column='token',
|
|
167
|
+
doc_id_columns='doc_id',
|
|
168
|
+
model_type="Bernoulli",
|
|
169
|
+
model_token_column='token',
|
|
170
|
+
model_category_column='category',
|
|
171
|
+
model_prob_column='prob',
|
|
172
|
+
newdata_partition_column='doc_id')
|
|
172
173
|
|
|
173
174
|
# Print the result DataFrame.
|
|
174
175
|
print(nbt_predict_out.result)
|
|
@@ -1,5 +1,5 @@
|
|
|
1
|
-
def NaiveBayesTextClassifierTrainer(data
|
|
2
|
-
model_type
|
|
1
|
+
def NaiveBayesTextClassifierTrainer(data=None, doc_category_column=None, token_column=None, doc_id_column=None,
|
|
2
|
+
model_type="MULTINOMIAL", **generic_arguments):
|
|
3
3
|
"""
|
|
4
4
|
DESCRIPTION:
|
|
5
5
|
The NaiveBayesTextClassifierTrainer() function calculates the conditional probabilities for
|
|
@@ -1,5 +1,5 @@
|
|
|
1
|
-
def NonLinearCombineFit(data
|
|
2
|
-
result_column
|
|
1
|
+
def NonLinearCombineFit(data=None, target_columns=None, formula=None,
|
|
2
|
+
result_column=None, **generic_arguments):
|
|
3
3
|
"""
|
|
4
4
|
DESCRIPTION:
|
|
5
5
|
The NonLinearCombineFit() function returns the target columns and a
|
|
@@ -1,24 +1,24 @@
|
|
|
1
|
-
def NonLinearCombineTransform(data
|
|
1
|
+
def NonLinearCombineTransform(data=None, object=None, accumulate=None, **generic_arguments):
|
|
2
2
|
"""
|
|
3
3
|
DESCRIPTION:
|
|
4
4
|
The NonLinearCombineTransform() function generates a new feature
|
|
5
5
|
by taking a non-linear combination of existing features using the
|
|
6
6
|
parameters from the output of NonLinearCombineFit() function.
|
|
7
|
-
|
|
8
|
-
|
|
7
|
+
|
|
8
|
+
|
|
9
9
|
PARAMETERS:
|
|
10
10
|
data:
|
|
11
11
|
Required Argument.
|
|
12
12
|
Specifies the input teradataml DataFrame.
|
|
13
13
|
Types: teradataml DataFrame
|
|
14
|
-
|
|
14
|
+
|
|
15
15
|
object:
|
|
16
16
|
Required Argument.
|
|
17
17
|
Specifies the teradataml DataFrame containing the fit parameters
|
|
18
18
|
and target columns, generated by the NonLinearCombineFit() function
|
|
19
19
|
or the instance of NonLinearCombineFit.
|
|
20
20
|
Types: teradataml DataFrame or NonLinearCombineFit
|
|
21
|
-
|
|
21
|
+
|
|
22
22
|
accumulate:
|
|
23
23
|
Optional Argument.
|
|
24
24
|
Specifies the name(s) of input teradataml DataFrame column(s)
|
|
@@ -26,7 +26,7 @@ def NonLinearCombineTransform(data = None, object = None, accumulate = None, **g
|
|
|
26
26
|
By default, the function copies no input teradataml
|
|
27
27
|
DataFrame columns to the output.
|
|
28
28
|
Types: str OR list of Strings (str)
|
|
29
|
-
|
|
29
|
+
|
|
30
30
|
**generic_arguments:
|
|
31
31
|
Specifies the generic keyword arguments SQLE functions accept. Below
|
|
32
32
|
are the generic keyword arguments:
|
|
@@ -100,12 +100,12 @@ def NonLinearCombineTransform(data = None, object = None, accumulate = None, **g
|
|
|
100
100
|
target_columns = ["sibsp", "parch", "fare"],
|
|
101
101
|
formula = "Y=(X0+X1+1)*X2",
|
|
102
102
|
result_column = "total_cost")
|
|
103
|
-
|
|
103
|
+
|
|
104
104
|
# Example 1 : Get the total cost for each passenger.
|
|
105
105
|
NonLinearCombineTransform_out = NonLinearCombineTransform(data=titanic,
|
|
106
106
|
object=Fit_out,
|
|
107
107
|
accumulate="passenger")
|
|
108
|
-
|
|
108
|
+
|
|
109
109
|
# Print the result DataFrame.
|
|
110
110
|
print(NonLinearCombineTransform_out.result)
|
|
111
111
|
|
|
@@ -4,7 +4,7 @@ def OneClassSVMPredict(object=None, newdata=None, id_column=None,
|
|
|
4
4
|
"""
|
|
5
5
|
DESCRIPTION:
|
|
6
6
|
The OneClassSVMPredict() function uses the model generated
|
|
7
|
-
by the function
|
|
7
|
+
by the function On eClassSVM() to predicts target class labels
|
|
8
8
|
(classification) on new input data. Output values are 0 and 1.
|
|
9
9
|
A value of 1 corresponds to a 'normal' observation, and a value
|
|
10
10
|
of 0 is assigned to 'outlier' observations.
|
|
@@ -142,27 +142,27 @@ def OneClassSVMPredict(object=None, newdata=None, id_column=None,
|
|
|
142
142
|
|
|
143
143
|
# Train the input data by OneClassSVM which helps model
|
|
144
144
|
# to find anomalies in transformed data.
|
|
145
|
-
one_class_svm=OneClassSVM(data=transform_obj.result,
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
145
|
+
one_class_svm = OneClassSVM(data=transform_obj.result,
|
|
146
|
+
input_columns=['MedInc', 'HouseAge', 'AveRooms',
|
|
147
|
+
'AveBedrms', 'Population', 'AveOccup',
|
|
148
|
+
'Latitude', 'Longitude'],
|
|
149
|
+
local_sgd_iterations=537,
|
|
150
|
+
batch_size=1,
|
|
151
|
+
learning_rate='constant',
|
|
152
|
+
initial_eta=0.01,
|
|
153
|
+
lambda1=0.1,
|
|
154
|
+
alpha=0.0,
|
|
155
|
+
momentum=0.0,
|
|
156
|
+
iter_max=1
|
|
157
|
+
)
|
|
158
158
|
|
|
159
159
|
|
|
160
160
|
|
|
161
161
|
# Example 1 : Using trained data by OneClassSVM model, predict whether observation
|
|
162
162
|
# is outlier or normal in the form of '0' or '1' on "newdata".
|
|
163
|
-
OneClassSVMPredict_out1 = OneClassSVMPredict(
|
|
164
|
-
|
|
165
|
-
id_column
|
|
163
|
+
OneClassSVMPredict_out1 = OneClassSVMPredict(newdata=transform_obj.result,
|
|
164
|
+
object=one_class_svm.result,
|
|
165
|
+
id_column="id"
|
|
166
166
|
)
|
|
167
167
|
|
|
168
168
|
# Print the result DataFrame.
|
|
@@ -171,13 +171,14 @@ def OneClassSVMPredict(object=None, newdata=None, id_column=None,
|
|
|
171
171
|
# Example 2 : Using trained data by OneClassSVM model, predict whether observation
|
|
172
172
|
# is outlier or normal in the form of '0' or '1' also provides probability
|
|
173
173
|
# of outcome of '0' and '1' on "newdata".
|
|
174
|
-
OneClassSVMPredict_out2 = OneClassSVMPredict(
|
|
175
|
-
|
|
176
|
-
id_column
|
|
174
|
+
OneClassSVMPredict_out2 = OneClassSVMPredict(newdata=transform_obj.result,
|
|
175
|
+
object=one_class_svm,
|
|
176
|
+
id_column="id",
|
|
177
177
|
accumulate="MedInc",
|
|
178
178
|
output_prob=True,
|
|
179
179
|
output_responses=["0", "1"]
|
|
180
180
|
)
|
|
181
|
+
|
|
181
182
|
# Print the result DataFrame.
|
|
182
183
|
print(OneClassSVMPredict_out2.result)
|
|
183
184
|
|
|
@@ -5,7 +5,11 @@ def OutlierFilterTransform(data=None, object=None, **generic_arguments):
|
|
|
5
5
|
OutlierFilterTransform() uses the result DataFrame from OutlierFilterFit() function to get
|
|
6
6
|
statistics like median, count of rows, lower percentile and upper percentile for every column
|
|
7
7
|
specified in target columns argument and filters the outliers in the input data.
|
|
8
|
-
|
|
8
|
+
Notes:
|
|
9
|
+
* Partitioning of input data and model is allowed using 'data_partition_column' and
|
|
10
|
+
'object_partition_column' only if 'group_columns' are passed while creating model
|
|
11
|
+
using OutlierFilterFit() function.
|
|
12
|
+
* Neither 'data_partition_column' nor 'object_partition_column' can be used independently.
|
|
9
13
|
|
|
10
14
|
PARAMETERS:
|
|
11
15
|
data:
|
|
@@ -105,8 +109,9 @@ def OutlierFilterTransform(data=None, object=None, **generic_arguments):
|
|
|
105
109
|
# method. Note that model is passed as instance of
|
|
106
110
|
# OutlierFilterFit to "object".
|
|
107
111
|
obj1 = OutlierFilterTransform(data=titanic_data,
|
|
108
|
-
object=fit_obj
|
|
112
|
+
object=fit_obj
|
|
113
|
+
)
|
|
109
114
|
|
|
110
115
|
# Print the result DataFrame.
|
|
111
116
|
print(obj1.result)
|
|
112
|
-
"""
|
|
117
|
+
"""
|
|
@@ -5,19 +5,19 @@ def PolynomialFeaturesTransform(data=None, object=None, accumulate=None, **gener
|
|
|
5
5
|
combinations of the feature by extracting the target column, degree, bias and interaction
|
|
6
6
|
information from the output of the PolynomialFeaturesFit() function.
|
|
7
7
|
|
|
8
|
-
|
|
8
|
+
|
|
9
9
|
PARAMETERS:
|
|
10
10
|
data:
|
|
11
11
|
Required Argument.
|
|
12
12
|
Specifies the input teradataml DataFrame.
|
|
13
13
|
Types: teradataml DataFrame
|
|
14
|
-
|
|
14
|
+
|
|
15
15
|
object:
|
|
16
16
|
Required Argument.
|
|
17
17
|
Specifies the teradataml DataFrame containing the output of generated by
|
|
18
18
|
PolynomialFeaturesFit() function or the instance of PolynomialFeaturesFit.
|
|
19
19
|
Types: teradataml DataFrame or PolynomialFeaturesFit
|
|
20
|
-
|
|
20
|
+
|
|
21
21
|
accumulate:
|
|
22
22
|
Optional Argument.
|
|
23
23
|
Specifies the names of input teradataml DataFrame columns to copy to the output.
|
|
@@ -104,8 +104,9 @@ def PolynomialFeaturesTransform(data=None, object=None, accumulate=None, **gener
|
|
|
104
104
|
# Example 2: Generate feature matrix. Note that model is passed as instance of
|
|
105
105
|
# PolynomialFeaturesFit to "object".
|
|
106
106
|
obj1 = PolynomialFeaturesTransform(data=numerics,
|
|
107
|
-
object=fit_obj
|
|
107
|
+
object=fit_obj
|
|
108
|
+
)
|
|
108
109
|
|
|
109
110
|
# Print the result DataFrame.
|
|
110
111
|
print(obj1.result)
|
|
111
|
-
"""
|
|
112
|
+
"""
|
|
@@ -4,26 +4,26 @@ def RandomProjectionTransform(object=None, data=None, accumulate=None, **generic
|
|
|
4
4
|
The RandomProjectionTransform() function converts the
|
|
5
5
|
high-dimensional input data to a low-dimensional space
|
|
6
6
|
using the RandomProjectionFit() function output.
|
|
7
|
-
|
|
8
|
-
|
|
7
|
+
|
|
8
|
+
|
|
9
9
|
PARAMETERS:
|
|
10
10
|
object:
|
|
11
11
|
Required Argument.
|
|
12
12
|
Specifies the teradataml DataFrame containing the output generated by
|
|
13
13
|
RandomProjectionFit() function or the instance of RandomProjectionFit.
|
|
14
14
|
Types: teradataml DataFrame or RandomProjectionFit
|
|
15
|
-
|
|
15
|
+
|
|
16
16
|
data:
|
|
17
17
|
Required Argument.
|
|
18
18
|
Specifies the input teradataml DataFrame.
|
|
19
19
|
Types: teradataml DataFrame
|
|
20
|
-
|
|
20
|
+
|
|
21
21
|
accumulate:
|
|
22
22
|
Optional Argument.
|
|
23
23
|
Specifies the name(s) of input teradataml DataFrame column(s) to copy to the
|
|
24
24
|
output. By default, only transformed columns are present in the output.
|
|
25
25
|
Types: str OR list of Strings (str)
|
|
26
|
-
|
|
26
|
+
|
|
27
27
|
**generic_arguments:
|
|
28
28
|
Specifies the generic keyword arguments SQLE functions accept. Below
|
|
29
29
|
are the generic keyword arguments:
|
|
@@ -45,7 +45,7 @@ def RandomProjectionTransform(object=None, data=None, accumulate=None, **generic
|
|
|
45
45
|
otherwise not.
|
|
46
46
|
Default Value: False
|
|
47
47
|
Types: bool
|
|
48
|
-
|
|
48
|
+
|
|
49
49
|
Function allows the user to partition, hash, order or local
|
|
50
50
|
order the input data. These generic arguments are available
|
|
51
51
|
for each argument that accepts teradataml DataFrame as
|
|
@@ -4,6 +4,7 @@ def RowNormalizeTransform(data=None, object=None, accumulate=None, **generic_arg
|
|
|
4
4
|
RowNormalizeTransform() function normalizes input columns row-wise, using
|
|
5
5
|
RowNormalizeFit() function output.
|
|
6
6
|
|
|
7
|
+
|
|
7
8
|
PARAMETERS:
|
|
8
9
|
data:
|
|
9
10
|
Required Argument.
|
|
@@ -107,4 +108,4 @@ def RowNormalizeTransform(data=None, object=None, accumulate=None, **generic_arg
|
|
|
107
108
|
|
|
108
109
|
# Print the result DataFrame.
|
|
109
110
|
print(obj1.result)
|
|
110
|
-
"""
|
|
111
|
+
"""
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
def SVM(formula=None, data
|
|
1
|
+
def SVM(formula=None, data=None, input_columns=None, response_column=None, model_type="Classification",
|
|
2
2
|
iter_max=300, epsilon=0.1, batch_size=10, lambda1=0.02, alpha=0.15, iter_num_no_change=50,
|
|
3
3
|
tolerance=0.001, intercept=True, class_weights="0:1.0, 1:1.0", learning_rate=None,
|
|
4
4
|
initial_eta=0.05, decay_rate=0.25, decay_steps=5, momentum=0.0, nesterov=False,
|
|
@@ -1,5 +1,5 @@
|
|
|
1
|
-
def SVMPredict(object
|
|
2
|
-
output_prob
|
|
1
|
+
def SVMPredict(object=None, newdata=None, id_column=None, accumulate=None,
|
|
2
|
+
output_prob=False, output_responses=None, **generic_arguments):
|
|
3
3
|
"""
|
|
4
4
|
DESCRIPTION:
|
|
5
5
|
The SVMPredict() function uses the model generated by the function SVM() to
|
|
@@ -150,12 +150,13 @@ def SVMPredict(object = None, newdata = None, id_column = None, accumulate = Non
|
|
|
150
150
|
response_column="MedHouseVal",
|
|
151
151
|
model_type="Regression"
|
|
152
152
|
)
|
|
153
|
+
|
|
153
154
|
# SVMPredict() predicts target values using regression model by SVM().
|
|
154
|
-
SVMPredict_out1 = SVMPredict(
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
155
|
+
SVMPredict_out1 = SVMPredict(newdata=transform_obj.result,
|
|
156
|
+
object=svm_obj1.result,
|
|
157
|
+
id_column="id",
|
|
158
|
+
accumulate="MedHouseVal"
|
|
159
|
+
)
|
|
159
160
|
|
|
160
161
|
# Print the result DataFrame.
|
|
161
162
|
print(SVMPredict_out1.result)
|
|
@@ -185,18 +186,17 @@ def SVMPredict(object = None, newdata = None, id_column = None, accumulate = Non
|
|
|
185
186
|
nesterov_optimization=True,
|
|
186
187
|
local_sgd_iterations=1,
|
|
187
188
|
)
|
|
189
|
+
|
|
188
190
|
# SVMPredict() predicts target values using classification model by SVM() and
|
|
189
191
|
# instance of SVM passed to SVMPredict.
|
|
190
|
-
SVMPredict_out2 = SVMPredict(
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
192
|
+
SVMPredict_out2 = SVMPredict(newdata=transform_obj.result,
|
|
193
|
+
object=svm_obj2,
|
|
194
|
+
id_column="id",
|
|
195
|
+
accumulate="MedHouseVal",
|
|
196
|
+
output_prob=True,
|
|
197
|
+
output_responses=["0", "1"]
|
|
198
|
+
)
|
|
197
199
|
|
|
198
200
|
# Print the result DataFrame.
|
|
199
201
|
print(SVMPredict_out2.result)
|
|
200
202
|
"""
|
|
201
|
-
|
|
202
|
-
|
|
@@ -101,8 +101,9 @@ def SimpleImputeTransform(data=None, object=None, **generic_arguments):
|
|
|
101
101
|
# Example 2: Impute the values for missing values. Note that model is passed
|
|
102
102
|
# as instance of SimpleImputeFit to "object".
|
|
103
103
|
obj1 = SimpleImputeTransform(data=titanic,
|
|
104
|
-
|
|
104
|
+
object=fit_obj
|
|
105
|
+
)
|
|
105
106
|
|
|
106
107
|
# Print the result DataFrame.
|
|
107
108
|
print(obj1.result)
|
|
108
|
-
"""
|
|
109
|
+
"""
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
def TDDecisionForestPredict(newdata
|
|
2
|
-
detailed
|
|
3
|
-
accumulate
|
|
1
|
+
def TDDecisionForestPredict(newdata=None, object=None, id_column=None,
|
|
2
|
+
detailed=False, output_prob=False, output_responses=None,
|
|
3
|
+
accumulate=None, **generic_arguments):
|
|
4
4
|
"""
|
|
5
5
|
DESCRIPTION:
|
|
6
6
|
TDDecisionForestPredict() function uses the model output by DecisionForest()
|
|
@@ -134,7 +134,7 @@ def TDDecisionForestPredict(newdata = None, object = None, id_column = None,
|
|
|
134
134
|
|
|
135
135
|
# Example 1 : This example takes boston data as input, and generates the Regression
|
|
136
136
|
# model using DecisionForest(). Using TDDecisionForestPredict() function
|
|
137
|
-
# to predict the medv with the Regression model generated by
|
|
137
|
+
# to predict the medv with the Regression model generated by DecisionForest().
|
|
138
138
|
|
|
139
139
|
# Create 2 samples of input data - sample 1 will have 80% of total rows and
|
|
140
140
|
# sample 2 will have 20% of total rows.
|
|
@@ -13,33 +13,33 @@ def TDGLMPredict(object=None, newdata=None, id_column=None, accumulate=None, out
|
|
|
13
13
|
* User can use RegressionEvaluator(), ClassificationEvaluator(), or ROC() function as a
|
|
14
14
|
post-processing step for evaluating prediction results.
|
|
15
15
|
* The TDGLMPredict() function accepts models from GLM() function in SQLE.
|
|
16
|
-
|
|
17
|
-
|
|
16
|
+
|
|
17
|
+
|
|
18
18
|
PARAMETERS:
|
|
19
19
|
object:
|
|
20
20
|
Required Argument.
|
|
21
21
|
Specifies the teradataml DataFrame containing the model data generated by GLM()
|
|
22
22
|
function or the instance of GLM.
|
|
23
23
|
Types: teradataml DataFrame or GLM
|
|
24
|
-
|
|
24
|
+
|
|
25
25
|
newdata:
|
|
26
26
|
Required Argument.
|
|
27
27
|
Specifies the teradataml DataFrame containing the input data.
|
|
28
28
|
Types: teradataml DataFrame
|
|
29
|
-
|
|
29
|
+
|
|
30
30
|
id_column:
|
|
31
31
|
Required Argument.
|
|
32
32
|
Specifies the name of the column that uniquely identifies an
|
|
33
33
|
observation in the test data.
|
|
34
34
|
Types: str
|
|
35
|
-
|
|
35
|
+
|
|
36
36
|
accumulate:
|
|
37
37
|
Optional Argument.
|
|
38
38
|
Specifies the name(s) of input teradataml DataFrame column(s) to copy to the
|
|
39
39
|
output. By default, the function copies no input teradataml DataFrame columns
|
|
40
40
|
to the output.
|
|
41
41
|
Types: str OR list of Strings (str)
|
|
42
|
-
|
|
42
|
+
|
|
43
43
|
output_prob:
|
|
44
44
|
Optional Argument.
|
|
45
45
|
Specifies whether the function should output the probability for each
|
|
@@ -48,7 +48,7 @@ def TDGLMPredict(object=None, newdata=None, id_column=None, accumulate=None, out
|
|
|
48
48
|
Only applicable if the "family" is 'Binomial'.
|
|
49
49
|
Default Value: False
|
|
50
50
|
Types: bool
|
|
51
|
-
|
|
51
|
+
|
|
52
52
|
output_responses:
|
|
53
53
|
Optional Argument.
|
|
54
54
|
Specifies the class labels for which to output probabilities.
|
|
@@ -57,7 +57,7 @@ def TDGLMPredict(object=None, newdata=None, id_column=None, accumulate=None, out
|
|
|
57
57
|
Note:
|
|
58
58
|
Only applicable if "output_prob" is True.
|
|
59
59
|
Types: str OR list of strs
|
|
60
|
-
|
|
60
|
+
|
|
61
61
|
**generic_arguments:
|
|
62
62
|
Specifies the generic keyword arguments SQLE functions accept. Below
|
|
63
63
|
are the generic keyword arguments:
|
|
@@ -143,29 +143,29 @@ def TDGLMPredict(object=None, newdata=None, id_column=None, accumulate=None, out
|
|
|
143
143
|
accumulate=["id","MedHouseVal"])
|
|
144
144
|
|
|
145
145
|
# Generate regression model using generalized linear model(GLM).
|
|
146
|
-
answer=GLM(input_columns=["MedInc", "HouseAge", "AveRooms", "AveBedrms", "Population", "AveOccup",
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
146
|
+
answer = GLM(input_columns=["MedInc", "HouseAge", "AveRooms", "AveBedrms", "Population", "AveOccup",
|
|
147
|
+
"Latitude", "Longitude"],
|
|
148
|
+
response_column="MedHouseVal",
|
|
149
|
+
data=obj.result,
|
|
150
|
+
nesterov=False)
|
|
151
151
|
|
|
152
152
|
# TDGLMPredict() predicts 'MedHouseVal' using generated regression model by GLM and newdata.
|
|
153
153
|
# Note that teradataml DataFrame representing the model is passed as input to "object".
|
|
154
|
-
TDGLMPredict_out = TDGLMPredict(
|
|
155
|
-
|
|
154
|
+
TDGLMPredict_out = TDGLMPredict(newdata=obj.result,
|
|
155
|
+
object=answer.result,
|
|
156
156
|
accumulate="MedHouseVal",
|
|
157
157
|
id_column="id")
|
|
158
|
-
|
|
158
|
+
|
|
159
159
|
# Print the result DataFrame.
|
|
160
160
|
print(TDGLMPredict_out.result)
|
|
161
161
|
|
|
162
162
|
# Example 2: TDGLMPredict() predicts the 'MedHouseVal' using generated regression model
|
|
163
163
|
# by GLM and newdata. Note that model is passed as instance of GLM to "object".
|
|
164
|
-
TDGLMPredict_out1 = TDGLMPredict(
|
|
165
|
-
|
|
164
|
+
TDGLMPredict_out1 = TDGLMPredict(newdata=obj.result,
|
|
165
|
+
object=answer,
|
|
166
166
|
accumulate="MedHouseVal",
|
|
167
167
|
id_column="id")
|
|
168
168
|
|
|
169
169
|
# Print the result DataFrame.
|
|
170
170
|
print(TDGLMPredict_out1.result)
|
|
171
|
-
"""
|
|
171
|
+
"""
|
|
@@ -17,6 +17,7 @@ def TargetEncodingTransform(data=None, object=None, accumulate=None, **generic_a
|
|
|
17
17
|
the "default_values" argument is also not used during
|
|
18
18
|
TargetEncodingFit() function.
|
|
19
19
|
|
|
20
|
+
|
|
20
21
|
PARAMETERS:
|
|
21
22
|
data:
|
|
22
23
|
Required Argument.
|
|
@@ -115,9 +116,9 @@ def TargetEncodingTransform(data=None, object=None, accumulate=None, **generic_a
|
|
|
115
116
|
# Find the distinct count of 'sex' and 'embarked' in which only 2 column should be present
|
|
116
117
|
# name 'ColumnName' and 'CategoryCount'.
|
|
117
118
|
category_data=categorical_summ.result.groupby('ColumnName').count()
|
|
118
|
-
category_data = category_data.assign(drop_columns
|
|
119
|
-
ColumnName
|
|
120
|
-
CategoryCount
|
|
119
|
+
category_data = category_data.assign(drop_columns=True,
|
|
120
|
+
ColumnName=category_data.ColumnName,
|
|
121
|
+
CategoryCount=category_data.count_DistinctValue)
|
|
121
122
|
|
|
122
123
|
# Generates the required hyperparameters when "encoder_method" is 'CBM_BETA'.
|
|
123
124
|
TargetEncodingFit_out = TargetEncodingFit(data=data_input,
|
|
@@ -137,4 +138,4 @@ def TargetEncodingTransform(data=None, object=None, accumulate=None, **generic_a
|
|
|
137
138
|
# Print the result DataFrame.
|
|
138
139
|
print(TargetEncodingTransform_out.result)
|
|
139
140
|
|
|
140
|
-
"""
|
|
141
|
+
"""
|
|
@@ -4,6 +4,7 @@ def Transform(data=None, object=None, id_columns=None, **generic_arguments):
|
|
|
4
4
|
The Transform() function applies numeric transformations to input columns,
|
|
5
5
|
using Fit() output.
|
|
6
6
|
|
|
7
|
+
|
|
7
8
|
PARAMETERS:
|
|
8
9
|
data:
|
|
9
10
|
Required Argument.
|
|
@@ -119,5 +120,4 @@ def Transform(data=None, object=None, id_columns=None, **generic_arguments):
|
|
|
119
120
|
|
|
120
121
|
# Print the result DataFrame.
|
|
121
122
|
print(transform_result1.result)
|
|
122
|
-
|
|
123
|
-
"""
|
|
123
|
+
"""
|