teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,623 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Bhavana N (bhavana.n@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.14
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class TextParser:
31
-
32
- def __init__(self,
33
- data = None,
34
- text_column = None,
35
- to_lower_case = True,
36
- stemming = False,
37
- delimiter = "[ \\t\\f\\r\\n]+",
38
- total_words_num = False,
39
- punctuation = "[.,!?]",
40
- accumulate = None,
41
- token_column = "token",
42
- frequency_column = "frequency",
43
- total_column = "total_count",
44
- remove_stop_words = False,
45
- position_column = "location",
46
- list_positions = False,
47
- output_by_word = True,
48
- stemming_exceptions = None,
49
- stop_words = None,
50
- data_sequence_column = None,
51
- data_order_column = None):
52
- """
53
- DESCRIPTION:
54
- The TextParser function tokenizes an input stream of words, optionally
55
- stems them (reduces them to their root forms), and then outputs them.
56
- The function can either output all words in one row or output each
57
- word in its own row with (optionally) the number of times that the word appears.
58
- The TextParser function uses Porter2 as the stemming algorithm.
59
- The TextParser function reads a document into a database memory buffer and
60
- creates a hash table. The dictionary for the document must not exceed available
61
- memory; however, a million-word dictionary with an average word length of
62
- ten bytes requires only 10 MB of memory.
63
- This function can be used with real-time applications.
64
- Note: TextParser uses files that are preinstalled on the ML Engine.
65
- For details, see Preinstalled Files that functions Use.
66
-
67
- PARAMETERS:
68
- data:
69
- Required Argument.
70
- Specifies the teradataml DataFrame that contains the text to be tokenized.
71
-
72
- data_order_column:
73
- Optional Argument.
74
- Specifies Order By columns for data.
75
- Values to this argument can be provided as list, if multiple columns
76
- are used for ordering.
77
- Types: str OR list of Strings (str)
78
-
79
- text_column:
80
- Required Argument.
81
- Specifies the name of the input column whose contents are to be
82
- tokenized.
83
- Types: str
84
-
85
- to_lower_case:
86
- Optional Argument.
87
- Specifies whether to convert input text to lowercase.
88
- Note: The function ignores this argument, if the "stemming" argument has the value
89
- True.
90
- Default Value: True
91
- Types: bool
92
-
93
- stemming:
94
- Optional Argument.
95
- Specifies whether to stem the tokens that is, whether to apply the
96
- Porter2 stemming algorithm to each token to reduce it to its root
97
- form. Before stemming, the function converts the input text to
98
- lowercase and applies the remove_stop_words argument.
99
- Default Value: False
100
- Types: bool
101
-
102
- delimiter:
103
- Optional Argument.
104
- Specifies a regular expression that represents the word delimiter.
105
- Default Value: [ \\t\\f\\r\\n]+
106
- Types: str
107
-
108
- total_words_num:
109
- Optional Argument.
110
- Specifies whether to output a column that contains the total number
111
- of words in the input document.
112
- Default Value: False
113
- Types: bool
114
-
115
- punctuation:
116
- Optional Argument.
117
- Specifies a regular expression that represents the punctuation
118
- characters to remove from the input text. With stemming (True), the
119
- recommended value is "[\\\[.,?!:;~()\\\]]+".
120
- Default Value: [.,!?]
121
- Types: str
122
-
123
- accumulate:
124
- Optional Argument.
125
- Specifies the names of the input columns to copy to the output teradataml DataFrame.
126
- By default, the function copies all input columns to the output
127
- teradtaml DataFrame.
128
- Note: No accumulate column can be the same as token_column or
129
- total_column.
130
- Types: str OR list of Strings (str)
131
-
132
- token_column:
133
- Optional Argument.
134
- Specifies the name of the output column that contains the tokens.
135
- Default Value: token
136
- Types: str
137
-
138
- frequency_column:
139
- Optional Argument.
140
- Specifies the name of the output column that contains the frequency
141
- of each token.
142
- Default Value: frequency
143
- Types: str
144
-
145
- total_column:
146
- Optional Argument.
147
- Specifies the name of the output column that contains the total
148
- number of words in the input document.
149
- Default Value: total_count
150
- Types: str
151
-
152
- remove_stop_words:
153
- Optional Argument.
154
- Specifies whether to remove stop words from the input text before
155
- parsing.
156
- Default Value: False
157
- Types: bool
158
-
159
- position_column:
160
- Optional Argument.
161
- Specifies the name of the output column that contains the position of
162
- a word within a document.
163
- Default Value: location
164
- Types: str
165
-
166
- list_positions:
167
- Optional Argument.
168
- Specifies whether to output the position of a word in list form.
169
- If the value is True, the function to output a row for each occurrence of the
170
- word.
171
- Note: The function ignores this argument if the output_by_word
172
- argument has the value False.
173
- Default Value: False
174
- Types: bool
175
-
176
- output_by_word:
177
- Optional Argument.
178
- Specifies whether to output each token of each input document in its
179
- own row in the output teradataml DataFrame. If you specify False, then the
180
- function outputs each tokenized input document in one row of the
181
- output teradataml DataFrame.
182
- Default Value: True
183
- Types: bool
184
-
185
- stemming_exceptions:
186
- Optional Argument.
187
- Specifies the location of the file that contains the stemming
188
- exceptions. A stemming exception is a word followed by its stemmed
189
- form. The word and its stemmed form are separated by white space.
190
- Each stemming exception is on its own line in the file.
191
- For example: bias bias news news goods goods lying lie ugly ugli sky sky early
192
- earli
193
- The words "lying", "ugly", and "early" are to become "lie",
194
- "ugli", and "earli", respectively. The other words are not to change.
195
- Types: str
196
-
197
- stop_words:
198
- Optional Argument.
199
- Specifies the location of the file that contains the stop words
200
- (words to ignore when parsing text). Each stop word is on its own
201
- line in the file.
202
- For example: a an the and this with but will
203
- Types: str
204
-
205
- data_sequence_column:
206
- Optional Argument.
207
- Specifies the list of column(s) that uniquely identifies each row of
208
- the input argument "data". The argument is used to ensure
209
- deterministic results for functions which produce results that vary
210
- from run to run.
211
- Types: str OR list of Strings (str)
212
-
213
- RETURNS:
214
- Instance of TextParser.
215
- Output teradataml DataFrames can be accessed using attribute
216
- references, such as TextParserObj.<attribute_name>.
217
- Output teradataml DataFrame attribute name is:
218
- result
219
-
220
-
221
- RAISES:
222
- TeradataMlException
223
-
224
-
225
- EXAMPLES:
226
- # Load example data.
227
- load_example_data("textparser", ["complaints","complaints_mini"])
228
-
229
- # Create teradataml DataFrame objects.
230
- complaints = DataFrame.from_table("complaints")
231
- complaints_mini = DataFrame.from_table("complaints_mini")
232
-
233
- # Example 1 - StopWords without StemmingExceptions
234
- text_parser_out1 = TextParser(data = complaints,
235
- text_column = "text_data",
236
- to_lower_case = True,
237
- stemming = False,
238
- punctuation = "\\\\[.,?\\\\!\\\\]",
239
- accumulate = ["doc_id","category"],
240
- remove_stop_words = True,
241
- list_positions = True,
242
- output_by_word = True,
243
- stop_words = "stopwords.txt"
244
- )
245
- # Print the result DataFrame.
246
- print(text_parser_out1.result)
247
-
248
- # Example 2 - StemmingExceptions without StopWords
249
- text_parser_out2 = TextParser(data = complaints_mini,
250
- text_column = "text_data",
251
- to_lower_case = True,
252
- stemming = True,
253
- punctuation = "\\\\[.,?\\\\!\\\\]",
254
- accumulate = ["doc_id","category"],
255
- output_by_word = False,
256
- stemming_exceptions = "stemmingexception.txt"
257
- )
258
-
259
- # Print the result DataFrame.
260
- print(text_parser_out2.result)
261
-
262
- """
263
-
264
- # Start the timer to get the build time
265
- _start_time = time.time()
266
-
267
- self.data = data
268
- self.text_column = text_column
269
- self.to_lower_case = to_lower_case
270
- self.stemming = stemming
271
- self.delimiter = delimiter
272
- self.total_words_num = total_words_num
273
- self.punctuation = punctuation
274
- self.accumulate = accumulate
275
- self.token_column = token_column
276
- self.frequency_column = frequency_column
277
- self.total_column = total_column
278
- self.remove_stop_words = remove_stop_words
279
- self.position_column = position_column
280
- self.list_positions = list_positions
281
- self.output_by_word = output_by_word
282
- self.stemming_exceptions = stemming_exceptions
283
- self.stop_words = stop_words
284
- self.data_sequence_column = data_sequence_column
285
- self.data_order_column = data_order_column
286
-
287
- # Create TeradataPyWrapperUtils instance which contains validation functions.
288
- self.__awu = AnalyticsWrapperUtils()
289
- self.__aed_utils = AedUtils()
290
-
291
- # Create argument information matrix to do parameter checking
292
- self.__arg_info_matrix = []
293
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
294
- self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
295
- self.__arg_info_matrix.append(["text_column", self.text_column, False, (str)])
296
- self.__arg_info_matrix.append(["to_lower_case", self.to_lower_case, True, (bool)])
297
- self.__arg_info_matrix.append(["stemming", self.stemming, True, (bool)])
298
- self.__arg_info_matrix.append(["delimiter", self.delimiter, True, (str)])
299
- self.__arg_info_matrix.append(["total_words_num", self.total_words_num, True, (bool)])
300
- self.__arg_info_matrix.append(["punctuation", self.punctuation, True, (str)])
301
- self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
302
- self.__arg_info_matrix.append(["token_column", self.token_column, True, (str)])
303
- self.__arg_info_matrix.append(["frequency_column", self.frequency_column, True, (str)])
304
- self.__arg_info_matrix.append(["total_column", self.total_column, True, (str)])
305
- self.__arg_info_matrix.append(["remove_stop_words", self.remove_stop_words, True, (bool)])
306
- self.__arg_info_matrix.append(["position_column", self.position_column, True, (str)])
307
- self.__arg_info_matrix.append(["list_positions", self.list_positions, True, (bool)])
308
- self.__arg_info_matrix.append(["output_by_word", self.output_by_word, True, (bool)])
309
- self.__arg_info_matrix.append(["stemming_exceptions", self.stemming_exceptions, True, (str)])
310
- self.__arg_info_matrix.append(["stop_words", self.stop_words, True, (str)])
311
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
312
-
313
- if inspect.stack()[1][3] != '_from_model_catalog':
314
- # Perform the function validations
315
- self.__validate()
316
- # Generate the ML query
317
- self.__form_tdml_query()
318
- # Execute ML query
319
- self.__execute()
320
- # Get the prediction type
321
- self._prediction_type = self.__awu._get_function_prediction_type(self)
322
-
323
- # End the timer to get the build time
324
- _end_time = time.time()
325
-
326
- # Calculate the build time
327
- self._build_time = (int)(_end_time - _start_time)
328
-
329
- def __validate(self):
330
- """
331
- Function to validate sqlmr function arguments, which verifies missing
332
- arguments, input argument and table types. Also processes the
333
- argument values.
334
- """
335
-
336
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
337
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
338
-
339
- # Make sure that a non-NULL value has been supplied correct type of argument
340
- self.__awu._validate_argument_types(self.__arg_info_matrix)
341
-
342
- # Check to make sure input table types are strings or data frame objects or of valid type.
343
- self.__awu._validate_input_table_datatype(self.data, "data", None)
344
-
345
- # Check whether the input columns passed to the argument are not empty.
346
- # Also check whether the input columns passed to the argument valid or not.
347
- self.__awu._validate_input_columns_not_empty(self.text_column, "text_column")
348
- self.__awu._validate_dataframe_has_argument_columns(self.text_column, "text_column", self.data, "data", False)
349
-
350
- self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
351
- self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.data, "data", False)
352
-
353
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
354
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
355
-
356
- self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
357
- self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
358
-
359
- # Validate that value passed to the output column argument is not empty.
360
- self.__awu._validate_input_columns_not_empty(self.token_column, "token_column")
361
- self.__awu._validate_input_columns_not_empty(self.frequency_column, "frequency_column")
362
- self.__awu._validate_input_columns_not_empty(self.total_column, "total_column")
363
- self.__awu._validate_input_columns_not_empty(self.position_column, "position_column")
364
-
365
- def __form_tdml_query(self):
366
- """
367
- Function to generate the analytical function queries. The function defines
368
- variables and list of arguments required to form the query.
369
- """
370
-
371
- # Output table arguments list
372
- self.__func_output_args_sql_names = []
373
- self.__func_output_args = []
374
-
375
- # Model Cataloging related attributes.
376
- self._sql_specific_attributes = {}
377
- self._sql_formula_attribute_mapper = {}
378
- self._target_column = None
379
- self._algorithm_name = None
380
-
381
- # Generate lists for rest of the function arguments
382
- self.__func_other_arg_sql_names = []
383
- self.__func_other_args = []
384
- self.__func_other_arg_json_datatypes = []
385
-
386
- self.__func_other_arg_sql_names.append("TextColumn")
387
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.text_column, "\""), "'"))
388
- self.__func_other_arg_json_datatypes.append("COLUMNS")
389
-
390
- if self.accumulate is not None:
391
- self.__func_other_arg_sql_names.append("Accumulate")
392
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
393
- self.__func_other_arg_json_datatypes.append("COLUMNS")
394
-
395
- if self.to_lower_case is not None and self.to_lower_case != True:
396
- self.__func_other_arg_sql_names.append("ToLowerCase")
397
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.to_lower_case, "'"))
398
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
399
-
400
- if self.stemming is not None and self.stemming != False:
401
- self.__func_other_arg_sql_names.append("Stemming")
402
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.stemming, "'"))
403
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
404
-
405
- if self.output_by_word is not None and self.output_by_word != True:
406
- self.__func_other_arg_sql_names.append("OutputByWord")
407
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_by_word, "'"))
408
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
409
-
410
- if self.stemming_exceptions is not None:
411
- self.__func_other_arg_sql_names.append("StemmingExceptions")
412
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.stemming_exceptions, "'"))
413
- self.__func_other_arg_json_datatypes.append("STRING")
414
-
415
- if self.remove_stop_words is not None and self.remove_stop_words != False:
416
- self.__func_other_arg_sql_names.append("RemoveStopWords")
417
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.remove_stop_words, "'"))
418
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
419
-
420
- if self.stop_words is not None:
421
- self.__func_other_arg_sql_names.append("StopWords")
422
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.stop_words, "'"))
423
- self.__func_other_arg_json_datatypes.append("STRING")
424
-
425
- if self.delimiter is not None and self.delimiter != "[ \\t\\f\\r\\n]+":
426
- self.__func_other_arg_sql_names.append("Delimiter")
427
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.delimiter, "'"))
428
- self.__func_other_arg_json_datatypes.append("STRING")
429
-
430
- if self.total_words_num is not None and self.total_words_num != False:
431
- self.__func_other_arg_sql_names.append("TotalWordsNum")
432
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.total_words_num, "'"))
433
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
434
-
435
- if self.punctuation is not None and self.punctuation != "[.,!?]":
436
- self.__func_other_arg_sql_names.append("Punctuation")
437
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.punctuation, "'"))
438
- self.__func_other_arg_json_datatypes.append("STRING")
439
-
440
- if self.list_positions is not None and self.list_positions != False:
441
- self.__func_other_arg_sql_names.append("ListPositions")
442
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.list_positions, "'"))
443
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
444
-
445
- if self.token_column is not None and self.token_column != "token":
446
- self.__func_other_arg_sql_names.append("TokenColumn")
447
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.token_column, "'"))
448
- self.__func_other_arg_json_datatypes.append("STRING")
449
-
450
- if self.frequency_column is not None and self.frequency_column != "frequency":
451
- self.__func_other_arg_sql_names.append("FrequencyColumn")
452
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.frequency_column, "'"))
453
- self.__func_other_arg_json_datatypes.append("STRING")
454
-
455
- if self.total_column is not None and self.total_column != "total_count":
456
- self.__func_other_arg_sql_names.append("TotalColumn")
457
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.total_column, "'"))
458
- self.__func_other_arg_json_datatypes.append("STRING")
459
-
460
- if self.position_column is not None and self.position_column != "location":
461
- self.__func_other_arg_sql_names.append("PositionColumn")
462
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.position_column, "'"))
463
- self.__func_other_arg_json_datatypes.append("STRING")
464
-
465
- # Generate lists for rest of the function arguments
466
- sequence_input_by_list = []
467
- if self.data_sequence_column is not None:
468
- sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
469
-
470
- if len(sequence_input_by_list) > 0:
471
- self.__func_other_arg_sql_names.append("SequenceInputBy")
472
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
473
- self.__func_other_args.append(sequence_input_by_arg_value)
474
- self.__func_other_arg_json_datatypes.append("STRING")
475
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
476
-
477
-
478
- # Declare empty lists to hold input table information.
479
- self.__func_input_arg_sql_names = []
480
- self.__func_input_table_view_query = []
481
- self.__func_input_dataframe_type = []
482
- self.__func_input_distribution = []
483
- self.__func_input_partition_by_cols = []
484
- self.__func_input_order_by_cols = []
485
-
486
- # Process data
487
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
488
- self.__func_input_distribution.append("FACT")
489
- self.__func_input_arg_sql_names.append("input")
490
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
491
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
492
- self.__func_input_partition_by_cols.append("ANY")
493
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
494
-
495
- function_name = "TextParser"
496
- # Create instance to generate SQLMR.
497
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
498
- self.__func_input_arg_sql_names,
499
- self.__func_input_table_view_query,
500
- self.__func_input_dataframe_type,
501
- self.__func_input_distribution,
502
- self.__func_input_partition_by_cols,
503
- self.__func_input_order_by_cols,
504
- self.__func_other_arg_sql_names,
505
- self.__func_other_args,
506
- self.__func_other_arg_json_datatypes,
507
- self.__func_output_args_sql_names,
508
- self.__func_output_args,
509
- engine="ENGINE_ML")
510
- # Invoke call to SQL-MR generation.
511
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
512
-
513
- # Print SQL-MR query if requested to do so.
514
- if display.print_sqlmr_query:
515
- print(self.sqlmr_query)
516
-
517
- # Set the algorithm name for Model Cataloging.
518
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
519
-
520
- def __execute(self):
521
- """
522
- Function to execute SQL-MR queries.
523
- Create DataFrames for the required SQL-MR outputs.
524
- """
525
- # Generate STDOUT table name and add it to the output table list.
526
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
527
- try:
528
- # Generate the output.
529
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
530
- except Exception as emsg:
531
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
532
-
533
- # Update output table data frames.
534
- self._mlresults = []
535
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
536
- self._mlresults.append(self.result)
537
-
538
- def show_query(self):
539
- """
540
- Function to return the underlying SQL query.
541
- When model object is created using retrieve_model(), then None is returned.
542
- """
543
- return self.sqlmr_query
544
-
545
- def get_prediction_type(self):
546
- """
547
- Function to return the Prediction type of the algorithm.
548
- When model object is created using retrieve_model(), then the value returned is
549
- as saved in the Model Catalog.
550
- """
551
- return self._prediction_type
552
-
553
- def get_target_column(self):
554
- """
555
- Function to return the Target Column of the algorithm.
556
- When model object is created using retrieve_model(), then the value returned is
557
- as saved in the Model Catalog.
558
- """
559
- return self._target_column
560
-
561
- def get_build_time(self):
562
- """
563
- Function to return the build time of the algorithm in seconds.
564
- When model object is created using retrieve_model(), then the value returned is
565
- as saved in the Model Catalog.
566
- """
567
- return self._build_time
568
-
569
- def _get_algorithm_name(self):
570
- """
571
- Function to return the name of the algorithm.
572
- """
573
- return self._algorithm_name
574
-
575
- def _get_sql_specific_attributes(self):
576
- """
577
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
578
- """
579
- return self._sql_specific_attributes
580
-
581
- @classmethod
582
- def _from_model_catalog(cls,
583
- result = None,
584
- **kwargs):
585
- """
586
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
587
- """
588
- kwargs.pop("result", None)
589
-
590
- # Model Cataloging related attributes.
591
- target_column = kwargs.pop("__target_column", None)
592
- prediction_type = kwargs.pop("__prediction_type", None)
593
- algorithm_name = kwargs.pop("__algorithm_name", None)
594
- build_time = kwargs.pop("__build_time", None)
595
-
596
- # Let's create an object of this class.
597
- obj = cls(**kwargs)
598
- obj.result = result
599
-
600
- # Initialize the sqlmr_query class attribute.
601
- obj.sqlmr_query = None
602
-
603
- # Initialize the SQL specific Model Cataloging attributes.
604
- obj._sql_specific_attributes = None
605
- obj._target_column = target_column
606
- obj._prediction_type = prediction_type
607
- obj._algorithm_name = algorithm_name
608
- obj._build_time = build_time
609
-
610
- # Update output table data frames.
611
- obj._mlresults = []
612
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
613
- obj._mlresults.append(obj.result)
614
- return obj
615
-
616
- def __repr__(self):
617
- """
618
- Returns the string representation for a TextParser class instance.
619
- """
620
- repr_string="############ STDOUT Output ############"
621
- repr_string = "{}\n\n{}".format(repr_string,self.result)
622
- return repr_string
623
-