teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,549 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: N Bhavana (bhavana.n@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.6
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class NTree:
31
-
32
- def __init__(self,
33
- data = None,
34
- root_node = None,
35
- node_id = None,
36
- parent_id = None,
37
- allow_cycles = False,
38
- starts_with = None,
39
- mode = None,
40
- output = None,
41
- max_distance = 5,
42
- logging = False,
43
- result = None,
44
- data_sequence_column = None,
45
- data_partition_column = "1",
46
- data_order_column = None):
47
- """
48
- DESCRIPTION:
49
- The NTree function is a hierarchical analysis SQL-MapReduce function
50
- that can build and traverse tree structures on all worker machines.
51
- The function reads the data only once from the disk and creates the trees in memory.
52
-
53
-
54
- PARAMETERS:
55
- data:
56
- Required Argument.
57
- Specifies the input teradataml DataFrame that contains the input table.
58
-
59
- data_partition_column:
60
- Optional Argument.
61
- Specifies Partition By columns for data.
62
- Values to this argument can be provided as a list, if multiple
63
- columns are used for partition.
64
- Default Value: 1
65
- Types: str OR list of Strings (str)
66
-
67
- data_order_column:
68
- Optional Argument.
69
- Specifies Order By columns for data.
70
- Values to this argument can be provided as a list, if multiple
71
- columns are used for ordering.
72
- Types: str OR list of Strings (str)
73
-
74
- root_node:
75
- Required Argument.
76
- Specifies the bool SQL expression that defines the root nodes of the
77
- trees (for example, parent_id IS NULL).
78
- Types: str
79
-
80
- node_id:
81
- Required Argument.
82
- Specifies the SQL expression whose value uniquely identifies a node
83
- in the input teradataml DataFrame (for example, order_id).
84
- Note: A node can appear multiple times in the data set, with
85
- different parents.
86
- Types: str
87
-
88
- parent_id:
89
- Required Argument.
90
- Specifies the SQL expression whose value identifies the parent node.
91
- Types: str
92
-
93
- allow_cycles:
94
- Optional Argument.
95
- Specifies whether trees can contain cycles. If not, a cycle in the
96
- data set causes the function to throw an exception. For information
97
- about cycles, refer to "Cycles in NTree"
98
- Default Value: False
99
- Types: bool
100
-
101
- starts_with:
102
- Required Argument.
103
- Specifies the node from which to start tree traversal - must
104
- be "root", "leaf ", or a SQL expression that identifies a node.
105
- Types: str
106
-
107
- mode:
108
- Required Argument.
109
- Specifies the direction of tree traversal from the start
110
- node - up to the root node or down to the leaf nodes.
111
- Permitted Values: UP, DOWN
112
- Types: str
113
-
114
- output:
115
- Required Argument.
116
- Specifies when to output a tuple - at every node along the
117
- traversal path ("all") or only at the end of the traversal
118
- path ("end").
119
- Permitted Values: END, ALL
120
- Default Value: end
121
- Types: str
122
-
123
- max_distance:
124
- Optional Argument.
125
- Specifies the maximum tree depth.
126
- Default Value: 5
127
- Types: int
128
-
129
- logging:
130
- Optional Argument.
131
- Specifies whether the function prints log messages.
132
- Default Value: False
133
- Types: bool
134
-
135
- result:
136
- Required Argument.
137
- Specifies aggregate operations to perform during tree traversal. The
138
- function reports the result of each aggregate operation in the output
139
- table. The syntax of aggregate is:
140
- operation (expression) [ ALIAS alias ]
141
- operation is either PATH, SUM, LEVEL, MAX, MIN, IS_CYCLE, AVG, or
142
- PROPAGATE.
143
- expression is a SQL expression. If operation is LEVEL or
144
- IS_CYCLE, then expression must be *.
145
- alias is the name of the output teradataml DataFrame column that
146
- contains the result of the operation. The default value is the string
147
- "operation(expression)" without the quotation marks. For example,
148
- PATH(node_name).
149
- Note: The function ignores alias if it is the same as an input
150
- teradataml DataFrame column name.
151
- For the path from the Starts_With node to the last traversed node,
152
- the operations do the following:
153
- 1. PATH: Outputs the value of expression for each node, separating
154
- values with "->".
155
- 2. SUM: Computes the value of expression for each node and outputs the
156
- sum of these values.
157
- 3. LEVEL: Outputs the number of hops.
158
- 4. MAX: Computes the value of expression for each node and outputs the
159
- highest of these values.
160
- 5. MIN: Computes the value of expression for each node and outputs the
161
- lowest of these values.
162
- 6. IS_CYCLE: Outputs the cycle (if any).
163
- 7. AVG: Computes the value of expression for each node and outputs the
164
- average of these values.
165
- 8. PROPAGATE: Evaluates expression with the value of the starts_with
166
- node and propagates the result to every node.
167
- Types: str
168
-
169
- data_sequence_column:
170
- Optional Argument.
171
- Specifies the list of column(s) that uniquely identifies each row of
172
- the input argument "data". The argument is used to ensure
173
- deterministic results for functions which produce results that vary
174
- from run to run.
175
- Types: str OR list of Strings (str)
176
-
177
- RETURNS:
178
- Instance of NTree.
179
- Output teradataml DataFrames can be accessed using attribute
180
- references, such as NTreeObj.<attribute_name>.
181
- Output teradataml DataFrame attribute name is:
182
- result
183
-
184
-
185
- RAISES:
186
- TeradataMlException
187
-
188
-
189
- EXAMPLES:
190
-
191
- # Load example data
192
- load_example_data("ntree", ["employee_table", "emp_table_by_dept"])
193
-
194
- # Create teradataml DataFrame objects.
195
- employee_table = DataFrame.from_table("employee_table")
196
- emp_table_by_dept = DataFrame.from_table("emp_table_by_dept")
197
-
198
- # Example 1 - This example finds the employees who report to employee
199
- # 100 (either directly or indirectly) by traversing the tree
200
- # of employees from employee 100 downward.
201
- ntree_out1 = NTree(data=employee_table,
202
- root_node = 'mgr_id is NULL',
203
- node_id='emp_id',
204
- parent_id='mgr_id',
205
- starts_with='emp_id=100',
206
- mode='down',
207
- output='end',
208
- result='PATH(emp_name) AS path'
209
- )
210
-
211
- # Print the result DataFrame
212
- print(ntree_out1)
213
-
214
- # Example 2 - This example finds the reporting structure by department.
215
- ntree_out2 = NTree(data=emp_table_by_dept,
216
- data_partition_column='department',
217
- root_node = "mgr_id = 'none'",
218
- node_id='id',
219
- parent_id='mgr_id',
220
- starts_with="id=10",
221
- mode='down',
222
- output='all',
223
- result='PATH(name) AS path, PATH(id) as path2'
224
- )
225
-
226
- # Print the result DataFrame
227
- print(ntree_out2)
228
-
229
- """
230
-
231
- # Start the timer to get the build time
232
- _start_time = time.time()
233
-
234
- self.data = data
235
- self.root_node = root_node
236
- self.node_id = node_id
237
- self.parent_id = parent_id
238
- self.allow_cycles = allow_cycles
239
- self.starts_with = starts_with
240
- self.mode = mode
241
- self.output = output
242
- self.max_distance = max_distance
243
- self.logging = logging
244
- self.result = result
245
- self.data_sequence_column = data_sequence_column
246
- self.data_partition_column = data_partition_column
247
- self.data_order_column = data_order_column
248
-
249
- # Create TeradataPyWrapperUtils instance which contains validation functions.
250
- self.__awu = AnalyticsWrapperUtils()
251
- self.__aed_utils = AedUtils()
252
-
253
- # Create argument information matrix to do parameter checking
254
- self.__arg_info_matrix = []
255
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
256
- self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, True, (str,list)])
257
- self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
258
- self.__arg_info_matrix.append(["root_node", self.root_node, False, (str)])
259
- self.__arg_info_matrix.append(["node_id", self.node_id, False, (str)])
260
- self.__arg_info_matrix.append(["parent_id", self.parent_id, False, (str)])
261
- self.__arg_info_matrix.append(["allow_cycles", self.allow_cycles, True, (bool)])
262
- self.__arg_info_matrix.append(["starts_with", self.starts_with, False, (str)])
263
- self.__arg_info_matrix.append(["mode", self.mode, False, (str)])
264
- self.__arg_info_matrix.append(["output", self.output, False, (str)])
265
- self.__arg_info_matrix.append(["max_distance", self.max_distance, True, (int)])
266
- self.__arg_info_matrix.append(["logging", self.logging, True, (bool)])
267
- self.__arg_info_matrix.append(["result", self.result, False, (str)])
268
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
269
-
270
- if inspect.stack()[1][3] != '_from_model_catalog':
271
- # Perform the function validations
272
- self.__validate()
273
- # Generate the ML query
274
- self.__form_tdml_query()
275
- # Execute ML query
276
- self.__execute()
277
- # Get the prediction type
278
- self._prediction_type = self.__awu._get_function_prediction_type(self)
279
-
280
- # End the timer to get the build time
281
- _end_time = time.time()
282
-
283
- # Calculate the build time
284
- self._build_time = (int)(_end_time - _start_time)
285
-
286
- def __validate(self):
287
- """
288
- Function to validate sqlmr function arguments, which verifies missing
289
- arguments, input argument and table types. Also processes the
290
- argument values.
291
- """
292
-
293
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
294
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
295
-
296
- # Make sure that a non-NULL value has been supplied correct type of argument
297
- self.__awu._validate_argument_types(self.__arg_info_matrix)
298
-
299
- # Check to make sure input table types are strings or data frame objects or of valid type.
300
- self.__awu._validate_input_table_datatype(self.data, "data", None)
301
-
302
- # Check for permitted values
303
- mode_permitted_values = ["UP", "DOWN"]
304
- self.__awu._validate_permitted_values(self.mode, mode_permitted_values, "mode")
305
-
306
- output_permitted_values = ["END", "ALL"]
307
- self.__awu._validate_permitted_values(self.output, output_permitted_values, "output")
308
-
309
- # Check whether the input columns passed to the argument are not empty.
310
- # Also check whether the input columns passed to the argument valid or not.
311
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
312
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
313
-
314
- self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
315
- if self.__awu._is_default_or_not(self.data_partition_column, "1"):
316
- self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
317
- self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
318
- self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
319
-
320
-
321
- def __form_tdml_query(self):
322
- """
323
- Function to generate the analytical function queries. The function defines
324
- variables and list of arguments required to form the query.
325
- """
326
-
327
- # Output table arguments list
328
- self.__func_output_args_sql_names = []
329
- self.__func_output_args = []
330
-
331
- # Model Cataloging related attributes.
332
- self._sql_specific_attributes = {}
333
- self._sql_formula_attribute_mapper = {}
334
- self._target_column = None
335
- self._algorithm_name = None
336
-
337
- # Generate lists for rest of the function arguments
338
- self.__func_other_arg_sql_names = []
339
- self.__func_other_args = []
340
- self.__func_other_arg_json_datatypes = []
341
-
342
- self.__func_other_arg_sql_names.append("ROOT_NODE")
343
- self.__func_other_args.append(self.root_node)
344
- self.__func_other_arg_json_datatypes.append("STRING")
345
-
346
- self.__func_other_arg_sql_names.append("NODE_ID")
347
- self.__func_other_args.append(self.node_id)
348
- self.__func_other_arg_json_datatypes.append("STRING")
349
-
350
- self.__func_other_arg_sql_names.append("PARENT_ID")
351
- self.__func_other_args.append(self.parent_id)
352
- self.__func_other_arg_json_datatypes.append("STRING")
353
-
354
- self.__func_other_arg_sql_names.append("MODE")
355
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.mode,"'"))
356
- self.__func_other_arg_json_datatypes.append("STRING")
357
-
358
- if self.allow_cycles is not None and self.allow_cycles != False:
359
- self.__func_other_arg_sql_names.append("ALLOW_CYCLES")
360
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.allow_cycles,"'"))
361
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
362
-
363
- self.__func_other_arg_sql_names.append("STARTS_WITH")
364
- # If starts_with is one of root or leaf, enclose it in quotes else for a SQL expression
365
- # don't do anything and send it as such
366
- if self.starts_with.lower == "root" or self.starts_with.lower == "leaf":
367
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.starts_with,"'"))
368
- else:
369
- self.__func_other_args.append(self.starts_with)
370
- self.__func_other_arg_json_datatypes.append("STRING")
371
-
372
- self.__func_other_arg_sql_names.append("OUTPUT")
373
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output,"'"))
374
- self.__func_other_arg_json_datatypes.append("STRING")
375
-
376
- if self.max_distance is not None and self.max_distance != 5:
377
- self.__func_other_arg_sql_names.append("MAX_DISTANCE")
378
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_distance,"'"))
379
- self.__func_other_arg_json_datatypes.append("INTEGER")
380
-
381
- self.__func_other_arg_sql_names.append("RESULT")
382
- self.__func_other_args.append(self.result)
383
- self.__func_other_arg_json_datatypes.append("STRING")
384
-
385
- if self.logging is not None and self.logging != False:
386
- self.__func_other_arg_sql_names.append("LOGGING")
387
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.logging,"'"))
388
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
389
-
390
- # Generate lists for rest of the function arguments
391
- sequence_input_by_list = []
392
- if self.data_sequence_column is not None:
393
- sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
394
-
395
- if len(sequence_input_by_list) > 0:
396
- self.__func_other_arg_sql_names.append("SequenceInputBy")
397
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
398
- self.__func_other_args.append(sequence_input_by_arg_value)
399
- self.__func_other_arg_json_datatypes.append("STRING")
400
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
401
-
402
- # Process data
403
- if self.__awu._is_default_or_not(self.data_partition_column, "1"):
404
- self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column,"\"")
405
- # Declare empty lists to hold input table information.
406
- self.__func_input_arg_sql_names = []
407
- self.__func_input_table_view_query = []
408
- self.__func_input_dataframe_type = []
409
- self.__func_input_distribution = []
410
- self.__func_input_partition_by_cols = []
411
- self.__func_input_order_by_cols = []
412
-
413
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
414
- self.__func_input_distribution.append("FACT")
415
- self.__func_input_arg_sql_names.append("input")
416
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
417
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
418
- self.__func_input_partition_by_cols.append(self.data_partition_column)
419
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
420
-
421
- function_name = "NTree"
422
- # Create instance to generate SQLMR.
423
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
424
- self.__func_input_arg_sql_names,
425
- self.__func_input_table_view_query,
426
- self.__func_input_dataframe_type,
427
- self.__func_input_distribution,
428
- self.__func_input_partition_by_cols,
429
- self.__func_input_order_by_cols,
430
- self.__func_other_arg_sql_names,
431
- self.__func_other_args,
432
- self.__func_other_arg_json_datatypes,
433
- self.__func_output_args_sql_names,
434
- self.__func_output_args,
435
- engine="ENGINE_ML")
436
- # Invoke call to SQL-MR generation.
437
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
438
-
439
- # Print SQL-MR query if requested to do so.
440
- if display.print_sqlmr_query:
441
- print(self.sqlmr_query)
442
-
443
- # Set the algorithm name for Model Cataloging.
444
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
445
-
446
- def __execute(self):
447
- """
448
- Function to execute SQL-MR queries.
449
- Create DataFrames for the required SQL-MR outputs.
450
- """
451
- # Generate STDOUT table name and add it to the output table list.
452
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
453
- try:
454
- # Generate the output.
455
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
456
- except Exception as emsg:
457
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
458
-
459
- # Update output table data frames.
460
- self._mlresults = []
461
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
462
- self._mlresults.append(self.result)
463
-
464
- def show_query(self):
465
- """
466
- Function to return the underlying SQL query.
467
- When model object is created using retrieve_model(), then None is returned.
468
- """
469
- return self.sqlmr_query
470
-
471
- def get_prediction_type(self):
472
- """
473
- Function to return the Prediction type of the algorithm.
474
- When model object is created using retrieve_model(), then the value returned is
475
- as saved in the Model Catalog.
476
- """
477
- return self._prediction_type
478
-
479
- def get_target_column(self):
480
- """
481
- Function to return the Target Column of the algorithm.
482
- When model object is created using retrieve_model(), then the value returned is
483
- as saved in the Model Catalog.
484
- """
485
- return self._target_column
486
-
487
- def get_build_time(self):
488
- """
489
- Function to return the build time of the algorithm in seconds.
490
- When model object is created using retrieve_model(), then the value returned is
491
- as saved in the Model Catalog.
492
- """
493
- return self._build_time
494
-
495
- def _get_algorithm_name(self):
496
- """
497
- Function to return the name of the algorithm.
498
- """
499
- return self._algorithm_name
500
-
501
- def _get_sql_specific_attributes(self):
502
- """
503
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
504
- """
505
- return self._sql_specific_attributes
506
-
507
- @classmethod
508
- def _from_model_catalog(cls,
509
- result = None,
510
- **kwargs):
511
- """
512
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
513
- """
514
- kwargs.pop("result", None)
515
-
516
- # Model Cataloging related attributes.
517
- target_column = kwargs.pop("__target_column", None)
518
- prediction_type = kwargs.pop("__prediction_type", None)
519
- algorithm_name = kwargs.pop("__algorithm_name", None)
520
- build_time = kwargs.pop("__build_time", None)
521
-
522
- # Let's create an object of this class.
523
- obj = cls(**kwargs)
524
- obj.result = result
525
-
526
- # Initialize the sqlmr_query class attribute.
527
- obj.sqlmr_query = None
528
-
529
- # Initialize the SQL specific Model Cataloging attributes.
530
- obj._sql_specific_attributes = None
531
- obj._target_column = target_column
532
- obj._prediction_type = prediction_type
533
- obj._algorithm_name = algorithm_name
534
- obj._build_time = build_time
535
-
536
- # Update output table data frames.
537
- obj._mlresults = []
538
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
539
- obj._mlresults.append(obj.result)
540
- return obj
541
-
542
- def __repr__(self):
543
- """
544
- Returns the string representation for a NTree class instance.
545
- """
546
- repr_string="############ STDOUT Output ############"
547
- repr_string = "{}\n\n{}".format(repr_string,self.result)
548
- return repr_string
549
-