teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,549 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: N Bhavana (bhavana.n@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.6
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class NTree:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
root_node = None,
|
|
35
|
-
node_id = None,
|
|
36
|
-
parent_id = None,
|
|
37
|
-
allow_cycles = False,
|
|
38
|
-
starts_with = None,
|
|
39
|
-
mode = None,
|
|
40
|
-
output = None,
|
|
41
|
-
max_distance = 5,
|
|
42
|
-
logging = False,
|
|
43
|
-
result = None,
|
|
44
|
-
data_sequence_column = None,
|
|
45
|
-
data_partition_column = "1",
|
|
46
|
-
data_order_column = None):
|
|
47
|
-
"""
|
|
48
|
-
DESCRIPTION:
|
|
49
|
-
The NTree function is a hierarchical analysis SQL-MapReduce function
|
|
50
|
-
that can build and traverse tree structures on all worker machines.
|
|
51
|
-
The function reads the data only once from the disk and creates the trees in memory.
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
PARAMETERS:
|
|
55
|
-
data:
|
|
56
|
-
Required Argument.
|
|
57
|
-
Specifies the input teradataml DataFrame that contains the input table.
|
|
58
|
-
|
|
59
|
-
data_partition_column:
|
|
60
|
-
Optional Argument.
|
|
61
|
-
Specifies Partition By columns for data.
|
|
62
|
-
Values to this argument can be provided as a list, if multiple
|
|
63
|
-
columns are used for partition.
|
|
64
|
-
Default Value: 1
|
|
65
|
-
Types: str OR list of Strings (str)
|
|
66
|
-
|
|
67
|
-
data_order_column:
|
|
68
|
-
Optional Argument.
|
|
69
|
-
Specifies Order By columns for data.
|
|
70
|
-
Values to this argument can be provided as a list, if multiple
|
|
71
|
-
columns are used for ordering.
|
|
72
|
-
Types: str OR list of Strings (str)
|
|
73
|
-
|
|
74
|
-
root_node:
|
|
75
|
-
Required Argument.
|
|
76
|
-
Specifies the bool SQL expression that defines the root nodes of the
|
|
77
|
-
trees (for example, parent_id IS NULL).
|
|
78
|
-
Types: str
|
|
79
|
-
|
|
80
|
-
node_id:
|
|
81
|
-
Required Argument.
|
|
82
|
-
Specifies the SQL expression whose value uniquely identifies a node
|
|
83
|
-
in the input teradataml DataFrame (for example, order_id).
|
|
84
|
-
Note: A node can appear multiple times in the data set, with
|
|
85
|
-
different parents.
|
|
86
|
-
Types: str
|
|
87
|
-
|
|
88
|
-
parent_id:
|
|
89
|
-
Required Argument.
|
|
90
|
-
Specifies the SQL expression whose value identifies the parent node.
|
|
91
|
-
Types: str
|
|
92
|
-
|
|
93
|
-
allow_cycles:
|
|
94
|
-
Optional Argument.
|
|
95
|
-
Specifies whether trees can contain cycles. If not, a cycle in the
|
|
96
|
-
data set causes the function to throw an exception. For information
|
|
97
|
-
about cycles, refer to "Cycles in NTree"
|
|
98
|
-
Default Value: False
|
|
99
|
-
Types: bool
|
|
100
|
-
|
|
101
|
-
starts_with:
|
|
102
|
-
Required Argument.
|
|
103
|
-
Specifies the node from which to start tree traversal - must
|
|
104
|
-
be "root", "leaf ", or a SQL expression that identifies a node.
|
|
105
|
-
Types: str
|
|
106
|
-
|
|
107
|
-
mode:
|
|
108
|
-
Required Argument.
|
|
109
|
-
Specifies the direction of tree traversal from the start
|
|
110
|
-
node - up to the root node or down to the leaf nodes.
|
|
111
|
-
Permitted Values: UP, DOWN
|
|
112
|
-
Types: str
|
|
113
|
-
|
|
114
|
-
output:
|
|
115
|
-
Required Argument.
|
|
116
|
-
Specifies when to output a tuple - at every node along the
|
|
117
|
-
traversal path ("all") or only at the end of the traversal
|
|
118
|
-
path ("end").
|
|
119
|
-
Permitted Values: END, ALL
|
|
120
|
-
Default Value: end
|
|
121
|
-
Types: str
|
|
122
|
-
|
|
123
|
-
max_distance:
|
|
124
|
-
Optional Argument.
|
|
125
|
-
Specifies the maximum tree depth.
|
|
126
|
-
Default Value: 5
|
|
127
|
-
Types: int
|
|
128
|
-
|
|
129
|
-
logging:
|
|
130
|
-
Optional Argument.
|
|
131
|
-
Specifies whether the function prints log messages.
|
|
132
|
-
Default Value: False
|
|
133
|
-
Types: bool
|
|
134
|
-
|
|
135
|
-
result:
|
|
136
|
-
Required Argument.
|
|
137
|
-
Specifies aggregate operations to perform during tree traversal. The
|
|
138
|
-
function reports the result of each aggregate operation in the output
|
|
139
|
-
table. The syntax of aggregate is:
|
|
140
|
-
operation (expression) [ ALIAS alias ]
|
|
141
|
-
operation is either PATH, SUM, LEVEL, MAX, MIN, IS_CYCLE, AVG, or
|
|
142
|
-
PROPAGATE.
|
|
143
|
-
expression is a SQL expression. If operation is LEVEL or
|
|
144
|
-
IS_CYCLE, then expression must be *.
|
|
145
|
-
alias is the name of the output teradataml DataFrame column that
|
|
146
|
-
contains the result of the operation. The default value is the string
|
|
147
|
-
"operation(expression)" without the quotation marks. For example,
|
|
148
|
-
PATH(node_name).
|
|
149
|
-
Note: The function ignores alias if it is the same as an input
|
|
150
|
-
teradataml DataFrame column name.
|
|
151
|
-
For the path from the Starts_With node to the last traversed node,
|
|
152
|
-
the operations do the following:
|
|
153
|
-
1. PATH: Outputs the value of expression for each node, separating
|
|
154
|
-
values with "->".
|
|
155
|
-
2. SUM: Computes the value of expression for each node and outputs the
|
|
156
|
-
sum of these values.
|
|
157
|
-
3. LEVEL: Outputs the number of hops.
|
|
158
|
-
4. MAX: Computes the value of expression for each node and outputs the
|
|
159
|
-
highest of these values.
|
|
160
|
-
5. MIN: Computes the value of expression for each node and outputs the
|
|
161
|
-
lowest of these values.
|
|
162
|
-
6. IS_CYCLE: Outputs the cycle (if any).
|
|
163
|
-
7. AVG: Computes the value of expression for each node and outputs the
|
|
164
|
-
average of these values.
|
|
165
|
-
8. PROPAGATE: Evaluates expression with the value of the starts_with
|
|
166
|
-
node and propagates the result to every node.
|
|
167
|
-
Types: str
|
|
168
|
-
|
|
169
|
-
data_sequence_column:
|
|
170
|
-
Optional Argument.
|
|
171
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
172
|
-
the input argument "data". The argument is used to ensure
|
|
173
|
-
deterministic results for functions which produce results that vary
|
|
174
|
-
from run to run.
|
|
175
|
-
Types: str OR list of Strings (str)
|
|
176
|
-
|
|
177
|
-
RETURNS:
|
|
178
|
-
Instance of NTree.
|
|
179
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
180
|
-
references, such as NTreeObj.<attribute_name>.
|
|
181
|
-
Output teradataml DataFrame attribute name is:
|
|
182
|
-
result
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
RAISES:
|
|
186
|
-
TeradataMlException
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
EXAMPLES:
|
|
190
|
-
|
|
191
|
-
# Load example data
|
|
192
|
-
load_example_data("ntree", ["employee_table", "emp_table_by_dept"])
|
|
193
|
-
|
|
194
|
-
# Create teradataml DataFrame objects.
|
|
195
|
-
employee_table = DataFrame.from_table("employee_table")
|
|
196
|
-
emp_table_by_dept = DataFrame.from_table("emp_table_by_dept")
|
|
197
|
-
|
|
198
|
-
# Example 1 - This example finds the employees who report to employee
|
|
199
|
-
# 100 (either directly or indirectly) by traversing the tree
|
|
200
|
-
# of employees from employee 100 downward.
|
|
201
|
-
ntree_out1 = NTree(data=employee_table,
|
|
202
|
-
root_node = 'mgr_id is NULL',
|
|
203
|
-
node_id='emp_id',
|
|
204
|
-
parent_id='mgr_id',
|
|
205
|
-
starts_with='emp_id=100',
|
|
206
|
-
mode='down',
|
|
207
|
-
output='end',
|
|
208
|
-
result='PATH(emp_name) AS path'
|
|
209
|
-
)
|
|
210
|
-
|
|
211
|
-
# Print the result DataFrame
|
|
212
|
-
print(ntree_out1)
|
|
213
|
-
|
|
214
|
-
# Example 2 - This example finds the reporting structure by department.
|
|
215
|
-
ntree_out2 = NTree(data=emp_table_by_dept,
|
|
216
|
-
data_partition_column='department',
|
|
217
|
-
root_node = "mgr_id = 'none'",
|
|
218
|
-
node_id='id',
|
|
219
|
-
parent_id='mgr_id',
|
|
220
|
-
starts_with="id=10",
|
|
221
|
-
mode='down',
|
|
222
|
-
output='all',
|
|
223
|
-
result='PATH(name) AS path, PATH(id) as path2'
|
|
224
|
-
)
|
|
225
|
-
|
|
226
|
-
# Print the result DataFrame
|
|
227
|
-
print(ntree_out2)
|
|
228
|
-
|
|
229
|
-
"""
|
|
230
|
-
|
|
231
|
-
# Start the timer to get the build time
|
|
232
|
-
_start_time = time.time()
|
|
233
|
-
|
|
234
|
-
self.data = data
|
|
235
|
-
self.root_node = root_node
|
|
236
|
-
self.node_id = node_id
|
|
237
|
-
self.parent_id = parent_id
|
|
238
|
-
self.allow_cycles = allow_cycles
|
|
239
|
-
self.starts_with = starts_with
|
|
240
|
-
self.mode = mode
|
|
241
|
-
self.output = output
|
|
242
|
-
self.max_distance = max_distance
|
|
243
|
-
self.logging = logging
|
|
244
|
-
self.result = result
|
|
245
|
-
self.data_sequence_column = data_sequence_column
|
|
246
|
-
self.data_partition_column = data_partition_column
|
|
247
|
-
self.data_order_column = data_order_column
|
|
248
|
-
|
|
249
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
250
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
251
|
-
self.__aed_utils = AedUtils()
|
|
252
|
-
|
|
253
|
-
# Create argument information matrix to do parameter checking
|
|
254
|
-
self.__arg_info_matrix = []
|
|
255
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
256
|
-
self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, True, (str,list)])
|
|
257
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
|
|
258
|
-
self.__arg_info_matrix.append(["root_node", self.root_node, False, (str)])
|
|
259
|
-
self.__arg_info_matrix.append(["node_id", self.node_id, False, (str)])
|
|
260
|
-
self.__arg_info_matrix.append(["parent_id", self.parent_id, False, (str)])
|
|
261
|
-
self.__arg_info_matrix.append(["allow_cycles", self.allow_cycles, True, (bool)])
|
|
262
|
-
self.__arg_info_matrix.append(["starts_with", self.starts_with, False, (str)])
|
|
263
|
-
self.__arg_info_matrix.append(["mode", self.mode, False, (str)])
|
|
264
|
-
self.__arg_info_matrix.append(["output", self.output, False, (str)])
|
|
265
|
-
self.__arg_info_matrix.append(["max_distance", self.max_distance, True, (int)])
|
|
266
|
-
self.__arg_info_matrix.append(["logging", self.logging, True, (bool)])
|
|
267
|
-
self.__arg_info_matrix.append(["result", self.result, False, (str)])
|
|
268
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
269
|
-
|
|
270
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
271
|
-
# Perform the function validations
|
|
272
|
-
self.__validate()
|
|
273
|
-
# Generate the ML query
|
|
274
|
-
self.__form_tdml_query()
|
|
275
|
-
# Execute ML query
|
|
276
|
-
self.__execute()
|
|
277
|
-
# Get the prediction type
|
|
278
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
279
|
-
|
|
280
|
-
# End the timer to get the build time
|
|
281
|
-
_end_time = time.time()
|
|
282
|
-
|
|
283
|
-
# Calculate the build time
|
|
284
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
285
|
-
|
|
286
|
-
def __validate(self):
|
|
287
|
-
"""
|
|
288
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
289
|
-
arguments, input argument and table types. Also processes the
|
|
290
|
-
argument values.
|
|
291
|
-
"""
|
|
292
|
-
|
|
293
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
294
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
295
|
-
|
|
296
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
297
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
298
|
-
|
|
299
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
300
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
301
|
-
|
|
302
|
-
# Check for permitted values
|
|
303
|
-
mode_permitted_values = ["UP", "DOWN"]
|
|
304
|
-
self.__awu._validate_permitted_values(self.mode, mode_permitted_values, "mode")
|
|
305
|
-
|
|
306
|
-
output_permitted_values = ["END", "ALL"]
|
|
307
|
-
self.__awu._validate_permitted_values(self.output, output_permitted_values, "output")
|
|
308
|
-
|
|
309
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
310
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
311
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
312
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
313
|
-
|
|
314
|
-
self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
|
|
315
|
-
if self.__awu._is_default_or_not(self.data_partition_column, "1"):
|
|
316
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
|
|
317
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
318
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
def __form_tdml_query(self):
|
|
322
|
-
"""
|
|
323
|
-
Function to generate the analytical function queries. The function defines
|
|
324
|
-
variables and list of arguments required to form the query.
|
|
325
|
-
"""
|
|
326
|
-
|
|
327
|
-
# Output table arguments list
|
|
328
|
-
self.__func_output_args_sql_names = []
|
|
329
|
-
self.__func_output_args = []
|
|
330
|
-
|
|
331
|
-
# Model Cataloging related attributes.
|
|
332
|
-
self._sql_specific_attributes = {}
|
|
333
|
-
self._sql_formula_attribute_mapper = {}
|
|
334
|
-
self._target_column = None
|
|
335
|
-
self._algorithm_name = None
|
|
336
|
-
|
|
337
|
-
# Generate lists for rest of the function arguments
|
|
338
|
-
self.__func_other_arg_sql_names = []
|
|
339
|
-
self.__func_other_args = []
|
|
340
|
-
self.__func_other_arg_json_datatypes = []
|
|
341
|
-
|
|
342
|
-
self.__func_other_arg_sql_names.append("ROOT_NODE")
|
|
343
|
-
self.__func_other_args.append(self.root_node)
|
|
344
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
345
|
-
|
|
346
|
-
self.__func_other_arg_sql_names.append("NODE_ID")
|
|
347
|
-
self.__func_other_args.append(self.node_id)
|
|
348
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
349
|
-
|
|
350
|
-
self.__func_other_arg_sql_names.append("PARENT_ID")
|
|
351
|
-
self.__func_other_args.append(self.parent_id)
|
|
352
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
353
|
-
|
|
354
|
-
self.__func_other_arg_sql_names.append("MODE")
|
|
355
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.mode,"'"))
|
|
356
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
357
|
-
|
|
358
|
-
if self.allow_cycles is not None and self.allow_cycles != False:
|
|
359
|
-
self.__func_other_arg_sql_names.append("ALLOW_CYCLES")
|
|
360
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.allow_cycles,"'"))
|
|
361
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
362
|
-
|
|
363
|
-
self.__func_other_arg_sql_names.append("STARTS_WITH")
|
|
364
|
-
# If starts_with is one of root or leaf, enclose it in quotes else for a SQL expression
|
|
365
|
-
# don't do anything and send it as such
|
|
366
|
-
if self.starts_with.lower == "root" or self.starts_with.lower == "leaf":
|
|
367
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.starts_with,"'"))
|
|
368
|
-
else:
|
|
369
|
-
self.__func_other_args.append(self.starts_with)
|
|
370
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
371
|
-
|
|
372
|
-
self.__func_other_arg_sql_names.append("OUTPUT")
|
|
373
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output,"'"))
|
|
374
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
375
|
-
|
|
376
|
-
if self.max_distance is not None and self.max_distance != 5:
|
|
377
|
-
self.__func_other_arg_sql_names.append("MAX_DISTANCE")
|
|
378
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_distance,"'"))
|
|
379
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
380
|
-
|
|
381
|
-
self.__func_other_arg_sql_names.append("RESULT")
|
|
382
|
-
self.__func_other_args.append(self.result)
|
|
383
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
384
|
-
|
|
385
|
-
if self.logging is not None and self.logging != False:
|
|
386
|
-
self.__func_other_arg_sql_names.append("LOGGING")
|
|
387
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.logging,"'"))
|
|
388
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
389
|
-
|
|
390
|
-
# Generate lists for rest of the function arguments
|
|
391
|
-
sequence_input_by_list = []
|
|
392
|
-
if self.data_sequence_column is not None:
|
|
393
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
394
|
-
|
|
395
|
-
if len(sequence_input_by_list) > 0:
|
|
396
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
397
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
398
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
399
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
400
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
401
|
-
|
|
402
|
-
# Process data
|
|
403
|
-
if self.__awu._is_default_or_not(self.data_partition_column, "1"):
|
|
404
|
-
self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column,"\"")
|
|
405
|
-
# Declare empty lists to hold input table information.
|
|
406
|
-
self.__func_input_arg_sql_names = []
|
|
407
|
-
self.__func_input_table_view_query = []
|
|
408
|
-
self.__func_input_dataframe_type = []
|
|
409
|
-
self.__func_input_distribution = []
|
|
410
|
-
self.__func_input_partition_by_cols = []
|
|
411
|
-
self.__func_input_order_by_cols = []
|
|
412
|
-
|
|
413
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
414
|
-
self.__func_input_distribution.append("FACT")
|
|
415
|
-
self.__func_input_arg_sql_names.append("input")
|
|
416
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
417
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
418
|
-
self.__func_input_partition_by_cols.append(self.data_partition_column)
|
|
419
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
420
|
-
|
|
421
|
-
function_name = "NTree"
|
|
422
|
-
# Create instance to generate SQLMR.
|
|
423
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
424
|
-
self.__func_input_arg_sql_names,
|
|
425
|
-
self.__func_input_table_view_query,
|
|
426
|
-
self.__func_input_dataframe_type,
|
|
427
|
-
self.__func_input_distribution,
|
|
428
|
-
self.__func_input_partition_by_cols,
|
|
429
|
-
self.__func_input_order_by_cols,
|
|
430
|
-
self.__func_other_arg_sql_names,
|
|
431
|
-
self.__func_other_args,
|
|
432
|
-
self.__func_other_arg_json_datatypes,
|
|
433
|
-
self.__func_output_args_sql_names,
|
|
434
|
-
self.__func_output_args,
|
|
435
|
-
engine="ENGINE_ML")
|
|
436
|
-
# Invoke call to SQL-MR generation.
|
|
437
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
438
|
-
|
|
439
|
-
# Print SQL-MR query if requested to do so.
|
|
440
|
-
if display.print_sqlmr_query:
|
|
441
|
-
print(self.sqlmr_query)
|
|
442
|
-
|
|
443
|
-
# Set the algorithm name for Model Cataloging.
|
|
444
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
445
|
-
|
|
446
|
-
def __execute(self):
|
|
447
|
-
"""
|
|
448
|
-
Function to execute SQL-MR queries.
|
|
449
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
450
|
-
"""
|
|
451
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
452
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
453
|
-
try:
|
|
454
|
-
# Generate the output.
|
|
455
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
456
|
-
except Exception as emsg:
|
|
457
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
458
|
-
|
|
459
|
-
# Update output table data frames.
|
|
460
|
-
self._mlresults = []
|
|
461
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
462
|
-
self._mlresults.append(self.result)
|
|
463
|
-
|
|
464
|
-
def show_query(self):
|
|
465
|
-
"""
|
|
466
|
-
Function to return the underlying SQL query.
|
|
467
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
468
|
-
"""
|
|
469
|
-
return self.sqlmr_query
|
|
470
|
-
|
|
471
|
-
def get_prediction_type(self):
|
|
472
|
-
"""
|
|
473
|
-
Function to return the Prediction type of the algorithm.
|
|
474
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
475
|
-
as saved in the Model Catalog.
|
|
476
|
-
"""
|
|
477
|
-
return self._prediction_type
|
|
478
|
-
|
|
479
|
-
def get_target_column(self):
|
|
480
|
-
"""
|
|
481
|
-
Function to return the Target Column of the algorithm.
|
|
482
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
483
|
-
as saved in the Model Catalog.
|
|
484
|
-
"""
|
|
485
|
-
return self._target_column
|
|
486
|
-
|
|
487
|
-
def get_build_time(self):
|
|
488
|
-
"""
|
|
489
|
-
Function to return the build time of the algorithm in seconds.
|
|
490
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
491
|
-
as saved in the Model Catalog.
|
|
492
|
-
"""
|
|
493
|
-
return self._build_time
|
|
494
|
-
|
|
495
|
-
def _get_algorithm_name(self):
|
|
496
|
-
"""
|
|
497
|
-
Function to return the name of the algorithm.
|
|
498
|
-
"""
|
|
499
|
-
return self._algorithm_name
|
|
500
|
-
|
|
501
|
-
def _get_sql_specific_attributes(self):
|
|
502
|
-
"""
|
|
503
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
504
|
-
"""
|
|
505
|
-
return self._sql_specific_attributes
|
|
506
|
-
|
|
507
|
-
@classmethod
|
|
508
|
-
def _from_model_catalog(cls,
|
|
509
|
-
result = None,
|
|
510
|
-
**kwargs):
|
|
511
|
-
"""
|
|
512
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
513
|
-
"""
|
|
514
|
-
kwargs.pop("result", None)
|
|
515
|
-
|
|
516
|
-
# Model Cataloging related attributes.
|
|
517
|
-
target_column = kwargs.pop("__target_column", None)
|
|
518
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
519
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
520
|
-
build_time = kwargs.pop("__build_time", None)
|
|
521
|
-
|
|
522
|
-
# Let's create an object of this class.
|
|
523
|
-
obj = cls(**kwargs)
|
|
524
|
-
obj.result = result
|
|
525
|
-
|
|
526
|
-
# Initialize the sqlmr_query class attribute.
|
|
527
|
-
obj.sqlmr_query = None
|
|
528
|
-
|
|
529
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
530
|
-
obj._sql_specific_attributes = None
|
|
531
|
-
obj._target_column = target_column
|
|
532
|
-
obj._prediction_type = prediction_type
|
|
533
|
-
obj._algorithm_name = algorithm_name
|
|
534
|
-
obj._build_time = build_time
|
|
535
|
-
|
|
536
|
-
# Update output table data frames.
|
|
537
|
-
obj._mlresults = []
|
|
538
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
539
|
-
obj._mlresults.append(obj.result)
|
|
540
|
-
return obj
|
|
541
|
-
|
|
542
|
-
def __repr__(self):
|
|
543
|
-
"""
|
|
544
|
-
Returns the string representation for a NTree class instance.
|
|
545
|
-
"""
|
|
546
|
-
repr_string="############ STDOUT Output ############"
|
|
547
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
548
|
-
return repr_string
|
|
549
|
-
|