teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,476 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.6
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class IDWT:
31
-
32
- def __init__(self,
33
- coefficient = None,
34
- meta_table = None,
35
- input_columns = None,
36
- sort_column = None,
37
- partition_columns = None,
38
- coefficient_sequence_column = None,
39
- meta_table_sequence_column = None):
40
- """
41
- DESCRIPTION:
42
- The IDWT function is the inverse of DWT; that is, IDWT applies
43
- inverse wavelet transforms on multiple sequences simultaneously.
44
- IDWT takes as input the output teradataml DataFrame and meta
45
- DataFrame output by DWT and outputs the sequences in time domain.
46
- (Because the IDWT output is comparable to the DWT input, the
47
- inverse transformation is also called the reconstruction.)
48
-
49
-
50
- PARAMETERS:
51
- coefficient:
52
- Required Argument.
53
- Specifies the name of the input teradataml DataFrame that
54
- contains the coefficients generated by DWT. Typically, this
55
- teradataml DataFrame is the output teradataml DataFrame of
56
- DWT.
57
-
58
- meta_table:
59
- Required Argument.
60
- Specifies the name of the input teradataml DataFrame that
61
- contains the meta information used in DWT. Typically, this
62
- teradataml DataFrame is the meta teradataml DataFrame output
63
- by DWT.
64
-
65
- input_columns:
66
- Required Argument.
67
- Specifies the names of the columns, present in the 'coefficent'
68
- teradataml DataFrame, that contain the data to be transformed.
69
- These columns must contain numeric values between -1e308 and
70
- 1e308. The function treats NULL in columns as 0.
71
- Types: str OR list of Strings (str)
72
-
73
- sort_column:
74
- Required Argument.
75
- Specifies the name of the input column that represents the
76
- order of coefficients in each sequence (the waveletid column
77
- in the DWT output teradataml DataFrame). The column must
78
- contain a sequence of integer values that start from 1 for
79
- each sequence. If a value is missing from the sequence, then
80
- the function treats the corresponding data column as 0.
81
- Types: str
82
-
83
- partition_columns:
84
- Optional Argument.
85
- Specifies the names of the partition_columns, which identify
86
- the sequences. Rows with the same partition_columns values
87
- belong to the same sequence. If you specify multiple
88
- partition_columns, then the function treats the first one as
89
- the distribute key of the output and meta teradataml DataFrames.
90
- By default, all rows belong to one sequence, and the function
91
- generates a distribute key column named 'dwt_idrandom_name' in
92
- both the output teradataml DataFrame and the meta teradataml
93
- DataFrame. In both teradataml DataFrames, every cell of
94
- 'dwt_idrandom_name' has the value 1.
95
- Types: str OR list of Strings (str)
96
-
97
- coefficient_sequence_column:
98
- Optional Argument.
99
- Specifies the list of column(s) that uniquely identifies each
100
- row of the input argument "coefficient". The argument is used
101
- to ensure deterministic results for functions which produce
102
- results that vary from run to run.
103
- Types: str OR list of Strings (str)
104
-
105
- meta_table_sequence_column:
106
- Optional Argument.
107
- Specifies the list of column(s) that uniquely identifies each
108
- row of the input argument "meta_table". The argument is used
109
- to ensure deterministic results for functions which produce
110
- results that vary from run to run.
111
- Types: str OR list of Strings (str)
112
-
113
- RETURNS:
114
- Instance of IDWT.
115
- Output teradataml DataFrames can be accessed using attribute
116
- references, such as IDWTObj.<attribute_name>.
117
- Output teradataml DataFrame attribute names are:
118
- 1. output_table
119
- 2. output
120
-
121
-
122
- RAISES:
123
- TeradataMlException
124
-
125
-
126
- EXAMPLES:
127
-
128
- # Load example data of "DWT".
129
- load_example_data("dwt", ["ville_climatedata", "dwt_filter_dim"])
130
-
131
- # The table "ville_climatedata" contains hourly climate data for five
132
- # cities on a given day. The table "dwt_filter_dim" contains wavelet
133
- # filter information.
134
-
135
- # Example 1 : Apply inverse wavelet transform on the output of
136
- # DWT, to generate time series sequence.
137
-
138
- # Create teradataml DataFrame objects.
139
- ville_climatedata = DataFrame.from_table("ville_climatedata")
140
- dwt_filter_dim = DataFrame.from_table("dwt_filter_dim")
141
-
142
- DWT_out = DWT(data = ville_climatedata,
143
- input_columns = ["temp_f","pressure_mbar","dewpoint_f"],
144
- wavelet_filter=dwt_filter_dim,
145
- sort_column = "period",
146
- level = 2,
147
- partition_columns = "city",
148
- wavelet_filter_sequence_column="filtername"
149
- )
150
-
151
- IDWT_out = IDWT(coefficient = DWT_out.coefficient,
152
- meta_table = DWT_out.meta_table,
153
- input_columns = ["temp_f","pressure_mbar","dewpoint_f"],
154
- sort_column = "waveletid",
155
- partition_columns = ["city"]
156
- )
157
-
158
- # Print the results
159
- print(IDWT_out.output_table)
160
-
161
- # Example 2 : Alternatively, persist the outputs of DWT in
162
- # Vantage and use persisted tables to perform IDWT.
163
-
164
- # Persisting DWT_out.coefficient to table named as 'dwt_coef_table'
165
- # and DWT_out.meta_table to table named as 'dwt_meta_table'.
166
- copy_to_sql(DWT_out.coefficient, "dwt_coef_table")
167
- copy_to_sql(DWT_out.meta_table, "dwt_meta_table")
168
-
169
- # Create teradataml DataFrame objects.
170
- dwt_coef_table = DataFrame.from_table("dwt_coef_table")
171
- dwt_meta_table = DataFrame.from_table("dwt_meta_table")
172
-
173
- IDWT_out = IDWT(coefficient = dwt_coef_table,
174
- meta_table = dwt_meta_table,
175
- input_columns = ["temp_f","pressure_mbar","dewpoint_f"],
176
- sort_column = "waveletid",
177
- partition_columns = ["city"]
178
- )
179
-
180
- # Print the results
181
- print(IDWT_out)
182
-
183
- """
184
-
185
- # Start the timer to get the build time
186
- _start_time = time.time()
187
-
188
- self.coefficient = coefficient
189
- self.meta_table = meta_table
190
- self.input_columns = input_columns
191
- self.sort_column = sort_column
192
- self.partition_columns = partition_columns
193
- self.coefficient_sequence_column = coefficient_sequence_column
194
- self.meta_table_sequence_column = meta_table_sequence_column
195
-
196
- # Create TeradataPyWrapperUtils instance which contains validation functions.
197
- self.__awu = AnalyticsWrapperUtils()
198
- self.__aed_utils = AedUtils()
199
-
200
- # Create argument information matrix to do parameter checking
201
- self.__arg_info_matrix = []
202
- self.__arg_info_matrix.append(["coefficient", self.coefficient, False, (DataFrame)])
203
- self.__arg_info_matrix.append(["meta_table", self.meta_table, False, (DataFrame)])
204
- self.__arg_info_matrix.append(["input_columns", self.input_columns, False, (str,list)])
205
- self.__arg_info_matrix.append(["sort_column", self.sort_column, False, (str)])
206
- self.__arg_info_matrix.append(["partition_columns", self.partition_columns, True, (str,list)])
207
- self.__arg_info_matrix.append(["coefficient_sequence_column", self.coefficient_sequence_column, True, (str,list)])
208
- self.__arg_info_matrix.append(["meta_table_sequence_column", self.meta_table_sequence_column, True, (str,list)])
209
-
210
- if inspect.stack()[1][3] != '_from_model_catalog':
211
- # Perform the function validations
212
- self.__validate()
213
- # Generate the ML query
214
- self.__form_tdml_query()
215
- # Execute ML query
216
- self.__execute()
217
- # Get the prediction type
218
- self._prediction_type = self.__awu._get_function_prediction_type(self)
219
-
220
- # End the timer to get the build time
221
- _end_time = time.time()
222
-
223
- # Calculate the build time
224
- self._build_time = (int)(_end_time - _start_time)
225
-
226
- def __validate(self):
227
- """
228
- Function to validate sqlmr function arguments, which verifies missing
229
- arguments, input argument and table types. Also processes the
230
- argument values.
231
- """
232
-
233
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
234
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
235
-
236
- # Make sure that a non-NULL value has been supplied correct type of argument
237
- self.__awu._validate_argument_types(self.__arg_info_matrix)
238
-
239
- # Check to make sure input table types are strings or data frame objects or of valid type.
240
- self.__awu._validate_input_table_datatype(self.coefficient, "coefficient", None)
241
- self.__awu._validate_input_table_datatype(self.meta_table, "meta_table", None)
242
-
243
- # Check whether the input columns passed to the argument are not empty.
244
- # Also check whether the input columns passed to the argument valid or not.
245
- self.__awu._validate_input_columns_not_empty(self.sort_column, "sort_column")
246
- self.__awu._validate_dataframe_has_argument_columns(self.sort_column, "sort_column", self.coefficient, "coefficient", False)
247
-
248
- self.__awu._validate_input_columns_not_empty(self.input_columns, "input_columns")
249
- self.__awu._validate_dataframe_has_argument_columns(self.input_columns, "input_columns", self.coefficient, "coefficient", False)
250
-
251
- self.__awu._validate_input_columns_not_empty(self.partition_columns, "partition_columns")
252
- self.__awu._validate_dataframe_has_argument_columns(self.partition_columns, "partition_columns", self.coefficient, "coefficient", False)
253
-
254
- self.__awu._validate_input_columns_not_empty(self.coefficient_sequence_column, "coefficient_sequence_column")
255
- self.__awu._validate_dataframe_has_argument_columns(self.coefficient_sequence_column, "coefficient_sequence_column", self.coefficient, "coefficient", False)
256
-
257
- self.__awu._validate_input_columns_not_empty(self.meta_table_sequence_column, "meta_table_sequence_column")
258
- self.__awu._validate_dataframe_has_argument_columns(self.meta_table_sequence_column, "meta_table_sequence_column", self.meta_table, "meta_table", False)
259
-
260
-
261
- def __form_tdml_query(self):
262
- """
263
- Function to generate the analytical function queries. The function defines
264
- variables and list of arguments required to form the query.
265
- """
266
- # Generate temp table names for output table parameters if any.
267
- self.__output_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_idwt0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
268
-
269
- # Output table arguments list
270
- self.__func_output_args_sql_names = ["OutputTable"]
271
- self.__func_output_args = [self.__output_table_temp_tablename]
272
-
273
- # Model Cataloging related attributes.
274
- self._sql_specific_attributes = {}
275
- self._sql_formula_attribute_mapper = {}
276
- self._target_column = None
277
- self._algorithm_name = None
278
-
279
- # Generate lists for rest of the function arguments
280
- self.__func_other_arg_sql_names = []
281
- self.__func_other_args = []
282
- self.__func_other_arg_json_datatypes = []
283
-
284
- self.__func_other_arg_sql_names.append("SortColumn")
285
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.sort_column, "\""), "'"))
286
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
287
-
288
- self.__func_other_arg_sql_names.append("InputColumns")
289
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.input_columns, "\""), "'"))
290
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
291
-
292
- if self.partition_columns is not None:
293
- self.__func_other_arg_sql_names.append("PartitionColumns")
294
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.partition_columns, "\""), "'"))
295
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
296
-
297
- # Generate lists for rest of the function arguments
298
- sequence_input_by_list = []
299
- if self.coefficient_sequence_column is not None:
300
- sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.coefficient_sequence_column, ""))
301
-
302
- if self.meta_table_sequence_column is not None:
303
- sequence_input_by_list.append("MetaTable:" + UtilFuncs._teradata_collapse_arglist(self.meta_table_sequence_column, ""))
304
-
305
- if len(sequence_input_by_list) > 0:
306
- self.__func_other_arg_sql_names.append("SequenceInputBy")
307
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
308
- self.__func_other_args.append(sequence_input_by_arg_value)
309
- self.__func_other_arg_json_datatypes.append("STRING")
310
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
311
-
312
-
313
- # Declare empty lists to hold input table information.
314
- self.__func_input_arg_sql_names = []
315
- self.__func_input_table_view_query = []
316
- self.__func_input_dataframe_type = []
317
- self.__func_input_distribution = []
318
- self.__func_input_partition_by_cols = []
319
- self.__func_input_order_by_cols = []
320
-
321
- # Process coefficient
322
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.coefficient, False)
323
- self.__func_input_distribution.append("NONE")
324
- self.__func_input_arg_sql_names.append("InputTable")
325
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
326
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
327
- self.__func_input_partition_by_cols.append("NA_character_")
328
- self.__func_input_order_by_cols.append("NA_character_")
329
-
330
- # Process meta_table
331
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.meta_table, False)
332
- self.__func_input_distribution.append("NONE")
333
- self.__func_input_arg_sql_names.append("MetaTable")
334
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
335
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
336
- self.__func_input_partition_by_cols.append("NA_character_")
337
- self.__func_input_order_by_cols.append("NA_character_")
338
-
339
- function_name = "IDWT"
340
- # Create instance to generate SQLMR.
341
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
342
- self.__func_input_arg_sql_names,
343
- self.__func_input_table_view_query,
344
- self.__func_input_dataframe_type,
345
- self.__func_input_distribution,
346
- self.__func_input_partition_by_cols,
347
- self.__func_input_order_by_cols,
348
- self.__func_other_arg_sql_names,
349
- self.__func_other_args,
350
- self.__func_other_arg_json_datatypes,
351
- self.__func_output_args_sql_names,
352
- self.__func_output_args,
353
- engine="ENGINE_ML")
354
- # Invoke call to SQL-MR generation.
355
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
356
-
357
- # Print SQL-MR query if requested to do so.
358
- if display.print_sqlmr_query:
359
- print(self.sqlmr_query)
360
-
361
- # Set the algorithm name for Model Cataloging.
362
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
363
-
364
- def __execute(self):
365
- """
366
- Function to execute SQL-MR queries.
367
- Create DataFrames for the required SQL-MR outputs.
368
- """
369
- # Generate STDOUT table name and add it to the output table list.
370
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
371
- try:
372
- # Generate the output.
373
- UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
374
- except Exception as emsg:
375
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
376
-
377
- # Update output table data frames.
378
- self._mlresults = []
379
- self.output_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__output_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__output_table_temp_tablename))
380
- self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
381
- self._mlresults.append(self.output_table)
382
- self._mlresults.append(self.output)
383
-
384
- def show_query(self):
385
- """
386
- Function to return the underlying SQL query.
387
- When model object is created using retrieve_model(), then None is returned.
388
- """
389
- return self.sqlmr_query
390
-
391
- def get_prediction_type(self):
392
- """
393
- Function to return the Prediction type of the algorithm.
394
- When model object is created using retrieve_model(), then the value returned is
395
- as saved in the Model Catalog.
396
- """
397
- return self._prediction_type
398
-
399
- def get_target_column(self):
400
- """
401
- Function to return the Target Column of the algorithm.
402
- When model object is created using retrieve_model(), then the value returned is
403
- as saved in the Model Catalog.
404
- """
405
- return self._target_column
406
-
407
- def get_build_time(self):
408
- """
409
- Function to return the build time of the algorithm in seconds.
410
- When model object is created using retrieve_model(), then the value returned is
411
- as saved in the Model Catalog.
412
- """
413
- return self._build_time
414
-
415
- def _get_algorithm_name(self):
416
- """
417
- Function to return the name of the algorithm.
418
- """
419
- return self._algorithm_name
420
-
421
- def _get_sql_specific_attributes(self):
422
- """
423
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
424
- """
425
- return self._sql_specific_attributes
426
-
427
- @classmethod
428
- def _from_model_catalog(cls,
429
- output_table = None,
430
- output = None,
431
- **kwargs):
432
- """
433
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
434
- """
435
- kwargs.pop("output_table", None)
436
- kwargs.pop("output", None)
437
-
438
- # Model Cataloging related attributes.
439
- target_column = kwargs.pop("__target_column", None)
440
- prediction_type = kwargs.pop("__prediction_type", None)
441
- algorithm_name = kwargs.pop("__algorithm_name", None)
442
- build_time = kwargs.pop("__build_time", None)
443
-
444
- # Let's create an object of this class.
445
- obj = cls(**kwargs)
446
- obj.output_table = output_table
447
- obj.output = output
448
-
449
- # Initialize the sqlmr_query class attribute.
450
- obj.sqlmr_query = None
451
-
452
- # Initialize the SQL specific Model Cataloging attributes.
453
- obj._sql_specific_attributes = None
454
- obj._target_column = target_column
455
- obj._prediction_type = prediction_type
456
- obj._algorithm_name = algorithm_name
457
- obj._build_time = build_time
458
-
459
- # Update output table data frames.
460
- obj._mlresults = []
461
- obj.output_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_table))
462
- obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
463
- obj._mlresults.append(obj.output_table)
464
- obj._mlresults.append(obj.output)
465
- return obj
466
-
467
- def __repr__(self):
468
- """
469
- Returns the string representation for a IDWT class instance.
470
- """
471
- repr_string="############ STDOUT Output ############"
472
- repr_string = "{}\n\n{}".format(repr_string,self.output)
473
- repr_string="{}\n\n\n############ output_table Output ############".format(repr_string)
474
- repr_string = "{}\n\n{}".format(repr_string,self.output_table)
475
- return repr_string
476
-