teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
teradataml/analytics/mle/IDWT.py
DELETED
|
@@ -1,476 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.6
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class IDWT:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
coefficient = None,
|
|
34
|
-
meta_table = None,
|
|
35
|
-
input_columns = None,
|
|
36
|
-
sort_column = None,
|
|
37
|
-
partition_columns = None,
|
|
38
|
-
coefficient_sequence_column = None,
|
|
39
|
-
meta_table_sequence_column = None):
|
|
40
|
-
"""
|
|
41
|
-
DESCRIPTION:
|
|
42
|
-
The IDWT function is the inverse of DWT; that is, IDWT applies
|
|
43
|
-
inverse wavelet transforms on multiple sequences simultaneously.
|
|
44
|
-
IDWT takes as input the output teradataml DataFrame and meta
|
|
45
|
-
DataFrame output by DWT and outputs the sequences in time domain.
|
|
46
|
-
(Because the IDWT output is comparable to the DWT input, the
|
|
47
|
-
inverse transformation is also called the reconstruction.)
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
PARAMETERS:
|
|
51
|
-
coefficient:
|
|
52
|
-
Required Argument.
|
|
53
|
-
Specifies the name of the input teradataml DataFrame that
|
|
54
|
-
contains the coefficients generated by DWT. Typically, this
|
|
55
|
-
teradataml DataFrame is the output teradataml DataFrame of
|
|
56
|
-
DWT.
|
|
57
|
-
|
|
58
|
-
meta_table:
|
|
59
|
-
Required Argument.
|
|
60
|
-
Specifies the name of the input teradataml DataFrame that
|
|
61
|
-
contains the meta information used in DWT. Typically, this
|
|
62
|
-
teradataml DataFrame is the meta teradataml DataFrame output
|
|
63
|
-
by DWT.
|
|
64
|
-
|
|
65
|
-
input_columns:
|
|
66
|
-
Required Argument.
|
|
67
|
-
Specifies the names of the columns, present in the 'coefficent'
|
|
68
|
-
teradataml DataFrame, that contain the data to be transformed.
|
|
69
|
-
These columns must contain numeric values between -1e308 and
|
|
70
|
-
1e308. The function treats NULL in columns as 0.
|
|
71
|
-
Types: str OR list of Strings (str)
|
|
72
|
-
|
|
73
|
-
sort_column:
|
|
74
|
-
Required Argument.
|
|
75
|
-
Specifies the name of the input column that represents the
|
|
76
|
-
order of coefficients in each sequence (the waveletid column
|
|
77
|
-
in the DWT output teradataml DataFrame). The column must
|
|
78
|
-
contain a sequence of integer values that start from 1 for
|
|
79
|
-
each sequence. If a value is missing from the sequence, then
|
|
80
|
-
the function treats the corresponding data column as 0.
|
|
81
|
-
Types: str
|
|
82
|
-
|
|
83
|
-
partition_columns:
|
|
84
|
-
Optional Argument.
|
|
85
|
-
Specifies the names of the partition_columns, which identify
|
|
86
|
-
the sequences. Rows with the same partition_columns values
|
|
87
|
-
belong to the same sequence. If you specify multiple
|
|
88
|
-
partition_columns, then the function treats the first one as
|
|
89
|
-
the distribute key of the output and meta teradataml DataFrames.
|
|
90
|
-
By default, all rows belong to one sequence, and the function
|
|
91
|
-
generates a distribute key column named 'dwt_idrandom_name' in
|
|
92
|
-
both the output teradataml DataFrame and the meta teradataml
|
|
93
|
-
DataFrame. In both teradataml DataFrames, every cell of
|
|
94
|
-
'dwt_idrandom_name' has the value 1.
|
|
95
|
-
Types: str OR list of Strings (str)
|
|
96
|
-
|
|
97
|
-
coefficient_sequence_column:
|
|
98
|
-
Optional Argument.
|
|
99
|
-
Specifies the list of column(s) that uniquely identifies each
|
|
100
|
-
row of the input argument "coefficient". The argument is used
|
|
101
|
-
to ensure deterministic results for functions which produce
|
|
102
|
-
results that vary from run to run.
|
|
103
|
-
Types: str OR list of Strings (str)
|
|
104
|
-
|
|
105
|
-
meta_table_sequence_column:
|
|
106
|
-
Optional Argument.
|
|
107
|
-
Specifies the list of column(s) that uniquely identifies each
|
|
108
|
-
row of the input argument "meta_table". The argument is used
|
|
109
|
-
to ensure deterministic results for functions which produce
|
|
110
|
-
results that vary from run to run.
|
|
111
|
-
Types: str OR list of Strings (str)
|
|
112
|
-
|
|
113
|
-
RETURNS:
|
|
114
|
-
Instance of IDWT.
|
|
115
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
116
|
-
references, such as IDWTObj.<attribute_name>.
|
|
117
|
-
Output teradataml DataFrame attribute names are:
|
|
118
|
-
1. output_table
|
|
119
|
-
2. output
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
RAISES:
|
|
123
|
-
TeradataMlException
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
EXAMPLES:
|
|
127
|
-
|
|
128
|
-
# Load example data of "DWT".
|
|
129
|
-
load_example_data("dwt", ["ville_climatedata", "dwt_filter_dim"])
|
|
130
|
-
|
|
131
|
-
# The table "ville_climatedata" contains hourly climate data for five
|
|
132
|
-
# cities on a given day. The table "dwt_filter_dim" contains wavelet
|
|
133
|
-
# filter information.
|
|
134
|
-
|
|
135
|
-
# Example 1 : Apply inverse wavelet transform on the output of
|
|
136
|
-
# DWT, to generate time series sequence.
|
|
137
|
-
|
|
138
|
-
# Create teradataml DataFrame objects.
|
|
139
|
-
ville_climatedata = DataFrame.from_table("ville_climatedata")
|
|
140
|
-
dwt_filter_dim = DataFrame.from_table("dwt_filter_dim")
|
|
141
|
-
|
|
142
|
-
DWT_out = DWT(data = ville_climatedata,
|
|
143
|
-
input_columns = ["temp_f","pressure_mbar","dewpoint_f"],
|
|
144
|
-
wavelet_filter=dwt_filter_dim,
|
|
145
|
-
sort_column = "period",
|
|
146
|
-
level = 2,
|
|
147
|
-
partition_columns = "city",
|
|
148
|
-
wavelet_filter_sequence_column="filtername"
|
|
149
|
-
)
|
|
150
|
-
|
|
151
|
-
IDWT_out = IDWT(coefficient = DWT_out.coefficient,
|
|
152
|
-
meta_table = DWT_out.meta_table,
|
|
153
|
-
input_columns = ["temp_f","pressure_mbar","dewpoint_f"],
|
|
154
|
-
sort_column = "waveletid",
|
|
155
|
-
partition_columns = ["city"]
|
|
156
|
-
)
|
|
157
|
-
|
|
158
|
-
# Print the results
|
|
159
|
-
print(IDWT_out.output_table)
|
|
160
|
-
|
|
161
|
-
# Example 2 : Alternatively, persist the outputs of DWT in
|
|
162
|
-
# Vantage and use persisted tables to perform IDWT.
|
|
163
|
-
|
|
164
|
-
# Persisting DWT_out.coefficient to table named as 'dwt_coef_table'
|
|
165
|
-
# and DWT_out.meta_table to table named as 'dwt_meta_table'.
|
|
166
|
-
copy_to_sql(DWT_out.coefficient, "dwt_coef_table")
|
|
167
|
-
copy_to_sql(DWT_out.meta_table, "dwt_meta_table")
|
|
168
|
-
|
|
169
|
-
# Create teradataml DataFrame objects.
|
|
170
|
-
dwt_coef_table = DataFrame.from_table("dwt_coef_table")
|
|
171
|
-
dwt_meta_table = DataFrame.from_table("dwt_meta_table")
|
|
172
|
-
|
|
173
|
-
IDWT_out = IDWT(coefficient = dwt_coef_table,
|
|
174
|
-
meta_table = dwt_meta_table,
|
|
175
|
-
input_columns = ["temp_f","pressure_mbar","dewpoint_f"],
|
|
176
|
-
sort_column = "waveletid",
|
|
177
|
-
partition_columns = ["city"]
|
|
178
|
-
)
|
|
179
|
-
|
|
180
|
-
# Print the results
|
|
181
|
-
print(IDWT_out)
|
|
182
|
-
|
|
183
|
-
"""
|
|
184
|
-
|
|
185
|
-
# Start the timer to get the build time
|
|
186
|
-
_start_time = time.time()
|
|
187
|
-
|
|
188
|
-
self.coefficient = coefficient
|
|
189
|
-
self.meta_table = meta_table
|
|
190
|
-
self.input_columns = input_columns
|
|
191
|
-
self.sort_column = sort_column
|
|
192
|
-
self.partition_columns = partition_columns
|
|
193
|
-
self.coefficient_sequence_column = coefficient_sequence_column
|
|
194
|
-
self.meta_table_sequence_column = meta_table_sequence_column
|
|
195
|
-
|
|
196
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
197
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
198
|
-
self.__aed_utils = AedUtils()
|
|
199
|
-
|
|
200
|
-
# Create argument information matrix to do parameter checking
|
|
201
|
-
self.__arg_info_matrix = []
|
|
202
|
-
self.__arg_info_matrix.append(["coefficient", self.coefficient, False, (DataFrame)])
|
|
203
|
-
self.__arg_info_matrix.append(["meta_table", self.meta_table, False, (DataFrame)])
|
|
204
|
-
self.__arg_info_matrix.append(["input_columns", self.input_columns, False, (str,list)])
|
|
205
|
-
self.__arg_info_matrix.append(["sort_column", self.sort_column, False, (str)])
|
|
206
|
-
self.__arg_info_matrix.append(["partition_columns", self.partition_columns, True, (str,list)])
|
|
207
|
-
self.__arg_info_matrix.append(["coefficient_sequence_column", self.coefficient_sequence_column, True, (str,list)])
|
|
208
|
-
self.__arg_info_matrix.append(["meta_table_sequence_column", self.meta_table_sequence_column, True, (str,list)])
|
|
209
|
-
|
|
210
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
211
|
-
# Perform the function validations
|
|
212
|
-
self.__validate()
|
|
213
|
-
# Generate the ML query
|
|
214
|
-
self.__form_tdml_query()
|
|
215
|
-
# Execute ML query
|
|
216
|
-
self.__execute()
|
|
217
|
-
# Get the prediction type
|
|
218
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
219
|
-
|
|
220
|
-
# End the timer to get the build time
|
|
221
|
-
_end_time = time.time()
|
|
222
|
-
|
|
223
|
-
# Calculate the build time
|
|
224
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
225
|
-
|
|
226
|
-
def __validate(self):
|
|
227
|
-
"""
|
|
228
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
229
|
-
arguments, input argument and table types. Also processes the
|
|
230
|
-
argument values.
|
|
231
|
-
"""
|
|
232
|
-
|
|
233
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
234
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
235
|
-
|
|
236
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
237
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
238
|
-
|
|
239
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
240
|
-
self.__awu._validate_input_table_datatype(self.coefficient, "coefficient", None)
|
|
241
|
-
self.__awu._validate_input_table_datatype(self.meta_table, "meta_table", None)
|
|
242
|
-
|
|
243
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
244
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
245
|
-
self.__awu._validate_input_columns_not_empty(self.sort_column, "sort_column")
|
|
246
|
-
self.__awu._validate_dataframe_has_argument_columns(self.sort_column, "sort_column", self.coefficient, "coefficient", False)
|
|
247
|
-
|
|
248
|
-
self.__awu._validate_input_columns_not_empty(self.input_columns, "input_columns")
|
|
249
|
-
self.__awu._validate_dataframe_has_argument_columns(self.input_columns, "input_columns", self.coefficient, "coefficient", False)
|
|
250
|
-
|
|
251
|
-
self.__awu._validate_input_columns_not_empty(self.partition_columns, "partition_columns")
|
|
252
|
-
self.__awu._validate_dataframe_has_argument_columns(self.partition_columns, "partition_columns", self.coefficient, "coefficient", False)
|
|
253
|
-
|
|
254
|
-
self.__awu._validate_input_columns_not_empty(self.coefficient_sequence_column, "coefficient_sequence_column")
|
|
255
|
-
self.__awu._validate_dataframe_has_argument_columns(self.coefficient_sequence_column, "coefficient_sequence_column", self.coefficient, "coefficient", False)
|
|
256
|
-
|
|
257
|
-
self.__awu._validate_input_columns_not_empty(self.meta_table_sequence_column, "meta_table_sequence_column")
|
|
258
|
-
self.__awu._validate_dataframe_has_argument_columns(self.meta_table_sequence_column, "meta_table_sequence_column", self.meta_table, "meta_table", False)
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
def __form_tdml_query(self):
|
|
262
|
-
"""
|
|
263
|
-
Function to generate the analytical function queries. The function defines
|
|
264
|
-
variables and list of arguments required to form the query.
|
|
265
|
-
"""
|
|
266
|
-
# Generate temp table names for output table parameters if any.
|
|
267
|
-
self.__output_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_idwt0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
268
|
-
|
|
269
|
-
# Output table arguments list
|
|
270
|
-
self.__func_output_args_sql_names = ["OutputTable"]
|
|
271
|
-
self.__func_output_args = [self.__output_table_temp_tablename]
|
|
272
|
-
|
|
273
|
-
# Model Cataloging related attributes.
|
|
274
|
-
self._sql_specific_attributes = {}
|
|
275
|
-
self._sql_formula_attribute_mapper = {}
|
|
276
|
-
self._target_column = None
|
|
277
|
-
self._algorithm_name = None
|
|
278
|
-
|
|
279
|
-
# Generate lists for rest of the function arguments
|
|
280
|
-
self.__func_other_arg_sql_names = []
|
|
281
|
-
self.__func_other_args = []
|
|
282
|
-
self.__func_other_arg_json_datatypes = []
|
|
283
|
-
|
|
284
|
-
self.__func_other_arg_sql_names.append("SortColumn")
|
|
285
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.sort_column, "\""), "'"))
|
|
286
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
287
|
-
|
|
288
|
-
self.__func_other_arg_sql_names.append("InputColumns")
|
|
289
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.input_columns, "\""), "'"))
|
|
290
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
291
|
-
|
|
292
|
-
if self.partition_columns is not None:
|
|
293
|
-
self.__func_other_arg_sql_names.append("PartitionColumns")
|
|
294
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.partition_columns, "\""), "'"))
|
|
295
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
296
|
-
|
|
297
|
-
# Generate lists for rest of the function arguments
|
|
298
|
-
sequence_input_by_list = []
|
|
299
|
-
if self.coefficient_sequence_column is not None:
|
|
300
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.coefficient_sequence_column, ""))
|
|
301
|
-
|
|
302
|
-
if self.meta_table_sequence_column is not None:
|
|
303
|
-
sequence_input_by_list.append("MetaTable:" + UtilFuncs._teradata_collapse_arglist(self.meta_table_sequence_column, ""))
|
|
304
|
-
|
|
305
|
-
if len(sequence_input_by_list) > 0:
|
|
306
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
307
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
308
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
309
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
310
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
311
|
-
|
|
312
|
-
|
|
313
|
-
# Declare empty lists to hold input table information.
|
|
314
|
-
self.__func_input_arg_sql_names = []
|
|
315
|
-
self.__func_input_table_view_query = []
|
|
316
|
-
self.__func_input_dataframe_type = []
|
|
317
|
-
self.__func_input_distribution = []
|
|
318
|
-
self.__func_input_partition_by_cols = []
|
|
319
|
-
self.__func_input_order_by_cols = []
|
|
320
|
-
|
|
321
|
-
# Process coefficient
|
|
322
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.coefficient, False)
|
|
323
|
-
self.__func_input_distribution.append("NONE")
|
|
324
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
325
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
326
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
327
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
328
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
329
|
-
|
|
330
|
-
# Process meta_table
|
|
331
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.meta_table, False)
|
|
332
|
-
self.__func_input_distribution.append("NONE")
|
|
333
|
-
self.__func_input_arg_sql_names.append("MetaTable")
|
|
334
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
335
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
336
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
337
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
338
|
-
|
|
339
|
-
function_name = "IDWT"
|
|
340
|
-
# Create instance to generate SQLMR.
|
|
341
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
342
|
-
self.__func_input_arg_sql_names,
|
|
343
|
-
self.__func_input_table_view_query,
|
|
344
|
-
self.__func_input_dataframe_type,
|
|
345
|
-
self.__func_input_distribution,
|
|
346
|
-
self.__func_input_partition_by_cols,
|
|
347
|
-
self.__func_input_order_by_cols,
|
|
348
|
-
self.__func_other_arg_sql_names,
|
|
349
|
-
self.__func_other_args,
|
|
350
|
-
self.__func_other_arg_json_datatypes,
|
|
351
|
-
self.__func_output_args_sql_names,
|
|
352
|
-
self.__func_output_args,
|
|
353
|
-
engine="ENGINE_ML")
|
|
354
|
-
# Invoke call to SQL-MR generation.
|
|
355
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
356
|
-
|
|
357
|
-
# Print SQL-MR query if requested to do so.
|
|
358
|
-
if display.print_sqlmr_query:
|
|
359
|
-
print(self.sqlmr_query)
|
|
360
|
-
|
|
361
|
-
# Set the algorithm name for Model Cataloging.
|
|
362
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
363
|
-
|
|
364
|
-
def __execute(self):
|
|
365
|
-
"""
|
|
366
|
-
Function to execute SQL-MR queries.
|
|
367
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
368
|
-
"""
|
|
369
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
370
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
371
|
-
try:
|
|
372
|
-
# Generate the output.
|
|
373
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
374
|
-
except Exception as emsg:
|
|
375
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
376
|
-
|
|
377
|
-
# Update output table data frames.
|
|
378
|
-
self._mlresults = []
|
|
379
|
-
self.output_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__output_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__output_table_temp_tablename))
|
|
380
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
381
|
-
self._mlresults.append(self.output_table)
|
|
382
|
-
self._mlresults.append(self.output)
|
|
383
|
-
|
|
384
|
-
def show_query(self):
|
|
385
|
-
"""
|
|
386
|
-
Function to return the underlying SQL query.
|
|
387
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
388
|
-
"""
|
|
389
|
-
return self.sqlmr_query
|
|
390
|
-
|
|
391
|
-
def get_prediction_type(self):
|
|
392
|
-
"""
|
|
393
|
-
Function to return the Prediction type of the algorithm.
|
|
394
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
395
|
-
as saved in the Model Catalog.
|
|
396
|
-
"""
|
|
397
|
-
return self._prediction_type
|
|
398
|
-
|
|
399
|
-
def get_target_column(self):
|
|
400
|
-
"""
|
|
401
|
-
Function to return the Target Column of the algorithm.
|
|
402
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
403
|
-
as saved in the Model Catalog.
|
|
404
|
-
"""
|
|
405
|
-
return self._target_column
|
|
406
|
-
|
|
407
|
-
def get_build_time(self):
|
|
408
|
-
"""
|
|
409
|
-
Function to return the build time of the algorithm in seconds.
|
|
410
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
411
|
-
as saved in the Model Catalog.
|
|
412
|
-
"""
|
|
413
|
-
return self._build_time
|
|
414
|
-
|
|
415
|
-
def _get_algorithm_name(self):
|
|
416
|
-
"""
|
|
417
|
-
Function to return the name of the algorithm.
|
|
418
|
-
"""
|
|
419
|
-
return self._algorithm_name
|
|
420
|
-
|
|
421
|
-
def _get_sql_specific_attributes(self):
|
|
422
|
-
"""
|
|
423
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
424
|
-
"""
|
|
425
|
-
return self._sql_specific_attributes
|
|
426
|
-
|
|
427
|
-
@classmethod
|
|
428
|
-
def _from_model_catalog(cls,
|
|
429
|
-
output_table = None,
|
|
430
|
-
output = None,
|
|
431
|
-
**kwargs):
|
|
432
|
-
"""
|
|
433
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
434
|
-
"""
|
|
435
|
-
kwargs.pop("output_table", None)
|
|
436
|
-
kwargs.pop("output", None)
|
|
437
|
-
|
|
438
|
-
# Model Cataloging related attributes.
|
|
439
|
-
target_column = kwargs.pop("__target_column", None)
|
|
440
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
441
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
442
|
-
build_time = kwargs.pop("__build_time", None)
|
|
443
|
-
|
|
444
|
-
# Let's create an object of this class.
|
|
445
|
-
obj = cls(**kwargs)
|
|
446
|
-
obj.output_table = output_table
|
|
447
|
-
obj.output = output
|
|
448
|
-
|
|
449
|
-
# Initialize the sqlmr_query class attribute.
|
|
450
|
-
obj.sqlmr_query = None
|
|
451
|
-
|
|
452
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
453
|
-
obj._sql_specific_attributes = None
|
|
454
|
-
obj._target_column = target_column
|
|
455
|
-
obj._prediction_type = prediction_type
|
|
456
|
-
obj._algorithm_name = algorithm_name
|
|
457
|
-
obj._build_time = build_time
|
|
458
|
-
|
|
459
|
-
# Update output table data frames.
|
|
460
|
-
obj._mlresults = []
|
|
461
|
-
obj.output_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_table))
|
|
462
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
463
|
-
obj._mlresults.append(obj.output_table)
|
|
464
|
-
obj._mlresults.append(obj.output)
|
|
465
|
-
return obj
|
|
466
|
-
|
|
467
|
-
def __repr__(self):
|
|
468
|
-
"""
|
|
469
|
-
Returns the string representation for a IDWT class instance.
|
|
470
|
-
"""
|
|
471
|
-
repr_string="############ STDOUT Output ############"
|
|
472
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
473
|
-
repr_string="{}\n\n\n############ output_table Output ############".format(repr_string)
|
|
474
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output_table)
|
|
475
|
-
return repr_string
|
|
476
|
-
|