teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,564 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.7
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class DWT:
31
-
32
- def __init__(self,
33
- data = None,
34
- input_columns = None,
35
- sort_column = None,
36
- wavelet = None,
37
- wavelet_filter = None,
38
- level = None,
39
- extension_mode = "sym",
40
- partition_columns = None,
41
- data_sequence_column = None,
42
- wavelet_filter_sequence_column = None):
43
- """
44
- DESCRIPTION:
45
- The DWT function implements the Mallat algorithm (an iterate
46
- algorithm in the Discrete Wavelet Transform field) and applies
47
- wavelet transform on multiple sequences simultaneously.
48
-
49
- The input is typically a set of time series sequences. You specify
50
- the wavelet name or wavelet filter teradataml DataFrame, transform
51
- level, and (optionally) extension mode. The function returns the
52
- transformed sequences in Hilbert space with the corresponding
53
- component identifiers and indices. (The transformation is also
54
- called the decomposition.)
55
-
56
- You can filter the result to reduce the lengths of the transformed
57
- sequences and then use the function IDWT to reconstruct them;
58
- therefore, the DWT and IDWT functions are useful for compression
59
- and removing noise.
60
-
61
- PARAMETERS:
62
- data:
63
- Required Argument.
64
- Specifies the name of the teradataml DataFrame that contains
65
- the sequences to be transformed.
66
-
67
- input_columns:
68
- Required Argument.
69
- Specifies the names of the columns in the input teradataml
70
- DataFrame that contain the data to be transformed. These
71
- columns must contain numeric values between -1e308 and 1e308.
72
- The function treats NULL in columns as 0.
73
- Types: str OR list of Strings (str)
74
-
75
- sort_column:
76
- Required Argument.
77
- Specifies the name of the column that defines the order of
78
- samples in the sequences to be transformed. In a time series
79
- sequence, the column can consist of timestamp values.
80
- Note:
81
- If sort_column has duplicate elements in a sequence (that
82
- is, in a partition), then sequence order can vary, and the
83
- function can produce different transform results for the
84
- sequence.
85
- Types: str
86
-
87
- wavelet:
88
- Optional Argument.
89
- Specifies a wavelet filter name.
90
- Wavelet Family Permitted values for the argument
91
- Daubechies 'db1' or 'haar', 'db2', .... ,'db10'
92
- Coiflets 'coif1', ... , 'coif5'
93
- Symlets 'sym1', ... ,' sym10'
94
- Discrete Meyer 'dmey'
95
- Biorthogonal 'bior1.1', 'bior1.3', 'bior1.5',
96
- 'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8',
97
- 'bior3.1', 'bior3.3', 'bior3.5', 'bior3.7', 'bior3.9',
98
- 'bior4.4', 'bior5.5'
99
- Reverse Biorthogonal 'rbio1.1', 'rbio1.3', 'rbio1.5'
100
- 'rbio2.2', 'rbio2.4', 'rbio2.6', 'rbio2.8',
101
- 'rbio3.1', 'rbio3.3', 'rbio3.5', 'rbio3.7','rbio3.9',
102
- 'rbio4.4', 'rbio5.5'
103
- Types: str
104
-
105
- wavelet_filter:
106
- Optional Argument.
107
- Specifies the teradataml DataFrame that contains the coefficients
108
- of the wave filters.
109
-
110
- level:
111
- Required Argument.
112
- Specifies the wavelet transform level. The value level must be
113
- an integer in the range [1, 1000].
114
- Types: int
115
-
116
- extension_mode:
117
- Optional Argument.
118
- Specifies the method for handling border distortion.
119
- Permitted values for this argument:
120
- • "sym" : Symmetrically replicate boundary values, mirroring
121
- the points near the boundaries.
122
- For example: 4 4 3 2 1 | 1 2 3 4 | 4 3 2 1 1
123
- • "zpd" : Zero-pad boundary values with zero.
124
- For example: 0 0 0 0 0 | 1 2 3 4 | 0 0 0 0 0
125
- • "ppd" : Periodic extension, fill boundary values as the input
126
- sequence is a periodic one.
127
- For example: 4 1 2 3 4 | 1 2 3 4 | 1 2 3 4 1
128
- Default Value: "sym"
129
- Types: str
130
-
131
- partition_columns:
132
- Optional Argument.
133
- Specifies the names of the columns, which identify the sequences
134
- to which data belongs. Rows with the same partition columns
135
- values belong to the same sequence. If you specify multiple
136
- partition columns, then the function treats the first one as the
137
- distribute key of the output and meta tables. By default, all
138
- rows belong to one sequence, and the function generates a
139
- distribute key column named 'dwt_idrandom_name' in both the
140
- output teradataml DataFrame and the meta table. In both tables,
141
- every cell of dwt_idrandom_name has the value 1.
142
- Types: str OR list of Strings (str)
143
-
144
- data_sequence_column:
145
- Optional Argument.
146
- Specifies the list of column(s) that uniquely identifies each
147
- row of the input argument "data". The argument is used to
148
- ensure deterministic results for functions which produce
149
- results that vary from run to run.
150
- Types: str OR list of Strings (str)
151
-
152
- wavelet_filter_sequence_column:
153
- Optional Argument.
154
- Specifies the list of column(s) that uniquely identifies each
155
- row of the input argument "wavelet_filter". The argument is used
156
- to ensure deterministic results for functions which produce
157
- results that vary from run to run.
158
- Types: str OR list of Strings (str)
159
-
160
- RETURNS:
161
- Instance of DWT.
162
- Output teradataml DataFrames can be accessed using attribute
163
- references, such as DWTObj.<attribute_name>.
164
- Output teradataml DataFrame attribute names are:
165
- 1. coefficient
166
- 2. meta_table
167
- 3. output
168
-
169
-
170
- RAISES:
171
- TeradataMlException
172
-
173
-
174
- EXAMPLES:
175
- # Load example data.
176
- load_example_data('dwt', ['ville_climatedata', 'dwt_filter_dim'])
177
-
178
- # This example uses hourly climate data 'ville_climatedata' for five
179
- # cities (Asheville, Greenville, Brownsville, Nashville and Knoxville)
180
- # on a given day. The data are temperature (in degrees Fahrenheit),
181
- # pressure (in mbars), and dewpoint (in degrees Fahrenheit). The function
182
- # generates the coefficient model teradataml DataFrame and the meta_table
183
- # teradataml DataFrame, which can be used as input to the function IDWT.
184
- # The table 'dwt_filter_dim' contains wavelet filter information needed
185
- # to generate coefficient model teradataml DataFrame and the meta_table
186
- # teradataml DataFrame.
187
-
188
- # Create teradataml DataFrame objects.
189
- ville_climatedata = DataFrame.from_table("ville_climatedata")
190
- dwt_filter_dim = DataFrame.from_table("dwt_filter_dim")
191
-
192
- # Example 1 : Using 'db2' wavelet to apply DWT function on columns,
193
- # "temp_f", "pressure_mbar" and "dewpoint_f" (of DataFrame
194
- # 'ville_climatedata') partitioned by the column "city"
195
- # and sorted by column "period".
196
- DWT_out1 = DWT(data = ville_climatedata,
197
- input_columns = ["temp_f","pressure_mbar","dewpoint_f"],
198
- sort_column = "period",
199
- wavelet = "db2",
200
- level = 2,
201
- partition_columns = ["city"]
202
- )
203
-
204
- # Print the results
205
- print(DWT_out1.coefficient) # Prints coefficient DataFrame which stores
206
- # the coefficients generated by the wavelet
207
- # transform.
208
- print(DWT_out1.meta_table) # Prints meta_table DataFrame which stores
209
- # the meta information for the wavelet
210
- # transform.
211
- print(DWT_out1.output) # Prints output teradataml DataFrame.
212
-
213
-
214
- # Example 2 : Using wavelet_filter DataFrame to apply DWT function
215
- # on columns, "temp_f", "pressure_mbar" and "dewpoint_f" (of
216
- # DataFrame 'ville_climatedata') partitioned by the column
217
- # "city" and sorted by column "period".
218
- DWT_out2 = DWT(data = ville_climatedata,
219
- input_columns = ["temp_f","pressure_mbar","dewpoint_f"],
220
- wavelet_filter=dwt_filter_dim,
221
- sort_column = "period",
222
- level = 2,
223
- partition_columns = "city",
224
- wavelet_filter_sequence_column="filtername"
225
- )
226
-
227
- # Print the results
228
- print(DWT_out2.coefficient) # Prints coefficient DataFrame which stores
229
- # the coefficients generated by the wavelet
230
- # transform.
231
- print(DWT_out2.meta_table) # Prints meta_table DataFrame which stores
232
- # the meta information for the wavelet
233
- # transform.
234
- print(DWT_out2.output) # Prints output teradataml DataFrame.
235
-
236
- """
237
-
238
- # Start the timer to get the build time
239
- _start_time = time.time()
240
-
241
- self.data = data
242
- self.input_columns = input_columns
243
- self.sort_column = sort_column
244
- self.wavelet = wavelet
245
- self.wavelet_filter = wavelet_filter
246
- self.level = level
247
- self.extension_mode = extension_mode
248
- self.partition_columns = partition_columns
249
- self.data_sequence_column = data_sequence_column
250
- self.wavelet_filter_sequence_column = wavelet_filter_sequence_column
251
-
252
- # Create TeradataPyWrapperUtils instance which contains validation functions.
253
- self.__awu = AnalyticsWrapperUtils()
254
- self.__aed_utils = AedUtils()
255
-
256
- # Create argument information matrix to do parameter checking
257
- self.__arg_info_matrix = []
258
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
259
- self.__arg_info_matrix.append(["input_columns", self.input_columns, False, (str,list)])
260
- self.__arg_info_matrix.append(["sort_column", self.sort_column, False, (str)])
261
- self.__arg_info_matrix.append(["wavelet", self.wavelet, True, (str)])
262
- self.__arg_info_matrix.append(["wavelet_filter", self.wavelet_filter, True, (DataFrame)])
263
- self.__arg_info_matrix.append(["level", self.level, False, (int)])
264
- self.__arg_info_matrix.append(["extension_mode", self.extension_mode, True, (str)])
265
- self.__arg_info_matrix.append(["partition_columns", self.partition_columns, True, (str,list)])
266
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
267
- self.__arg_info_matrix.append(["wavelet_filter_sequence_column", self.wavelet_filter_sequence_column, True, (str,list)])
268
-
269
- if inspect.stack()[1][3] != '_from_model_catalog':
270
- # Perform the function validations
271
- self.__validate()
272
- # Generate the ML query
273
- self.__form_tdml_query()
274
- # Execute ML query
275
- self.__execute()
276
- # Get the prediction type
277
- self._prediction_type = self.__awu._get_function_prediction_type(self)
278
-
279
- # End the timer to get the build time
280
- _end_time = time.time()
281
-
282
- # Calculate the build time
283
- self._build_time = (int)(_end_time - _start_time)
284
-
285
- def __validate(self):
286
- """
287
- Function to validate sqlmr function arguments, which verifies missing
288
- arguments, input argument and table types. Also processes the
289
- argument values.
290
- """
291
-
292
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
293
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
294
-
295
- # Make sure that a non-NULL value has been supplied correct type of argument
296
- self.__awu._validate_argument_types(self.__arg_info_matrix)
297
-
298
- # Check to make sure input table types are strings or data frame objects or of valid type.
299
- self.__awu._validate_input_table_datatype(self.data, "data", None)
300
- self.__awu._validate_input_table_datatype(self.wavelet_filter, "wavelet_filter", None)
301
-
302
- # Check for permitted values
303
- extension_mode_permitted_values = ["SYM", "ZPD", "PPD"]
304
- self.__awu._validate_permitted_values(self.extension_mode, extension_mode_permitted_values, "extension_mode")
305
-
306
- # Check whether the input columns passed to the argument are not empty.
307
- # Also check whether the input columns passed to the argument valid or not.
308
- self.__awu._validate_input_columns_not_empty(self.sort_column, "sort_column")
309
- self.__awu._validate_dataframe_has_argument_columns(self.sort_column, "sort_column", self.data, "data", False)
310
-
311
- self.__awu._validate_input_columns_not_empty(self.input_columns, "input_columns")
312
- self.__awu._validate_dataframe_has_argument_columns(self.input_columns, "input_columns", self.data, "data", False)
313
-
314
- self.__awu._validate_input_columns_not_empty(self.partition_columns, "partition_columns")
315
- self.__awu._validate_dataframe_has_argument_columns(self.partition_columns, "partition_columns", self.data, "data", False)
316
-
317
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
318
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
319
-
320
- self.__awu._validate_input_columns_not_empty(self.wavelet_filter_sequence_column, "wavelet_filter_sequence_column")
321
- self.__awu._validate_dataframe_has_argument_columns(self.wavelet_filter_sequence_column, "wavelet_filter_sequence_column", self.wavelet_filter, "wavelet_filter", False)
322
-
323
-
324
- def __form_tdml_query(self):
325
- """
326
- Function to generate the analytical function queries. The function defines
327
- variables and list of arguments required to form the query.
328
- """
329
- # Generate temp table names for output table parameters if any.
330
- self.__coefficient_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_dwt0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
331
- self.__meta_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_dwt1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
332
-
333
- # Output table arguments list
334
- self.__func_output_args_sql_names = ["OutputTable", "MetaTable"]
335
- self.__func_output_args = [self.__coefficient_temp_tablename, self.__meta_table_temp_tablename]
336
-
337
- # Model Cataloging related attributes.
338
- self._sql_specific_attributes = {}
339
- self._sql_formula_attribute_mapper = {}
340
- self._target_column = None
341
- self._algorithm_name = None
342
-
343
- # Generate lists for rest of the function arguments
344
- self.__func_other_arg_sql_names = []
345
- self.__func_other_args = []
346
- self.__func_other_arg_json_datatypes = []
347
-
348
- self.__func_other_arg_sql_names.append("SortColumn")
349
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.sort_column, "\""), "'"))
350
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
351
-
352
- self.__func_other_arg_sql_names.append("TargetColumns")
353
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.input_columns, "\""), "'"))
354
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
355
-
356
- if self.partition_columns is not None:
357
- self.__func_other_arg_sql_names.append("PartitionColumns")
358
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.partition_columns, "\""), "'"))
359
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
360
-
361
- self.__func_other_arg_sql_names.append("WaveletTransformLevel")
362
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.level, "'"))
363
- self.__func_other_arg_json_datatypes.append("INTEGER")
364
-
365
- if self.wavelet is not None:
366
- self.__func_other_arg_sql_names.append("Wavelet")
367
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.wavelet, "'"))
368
- self.__func_other_arg_json_datatypes.append("STRING")
369
-
370
- if self.extension_mode is not None and self.extension_mode != "sym":
371
- self.__func_other_arg_sql_names.append("ExtensionMode")
372
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.extension_mode, "'"))
373
- self.__func_other_arg_json_datatypes.append("STRING")
374
-
375
- # Generate lists for rest of the function arguments
376
- sequence_input_by_list = []
377
- if self.data_sequence_column is not None:
378
- sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
379
-
380
- if self.wavelet_filter_sequence_column is not None:
381
- sequence_input_by_list.append("WaveletFilterTable:" + UtilFuncs._teradata_collapse_arglist(self.wavelet_filter_sequence_column, ""))
382
-
383
- if len(sequence_input_by_list) > 0:
384
- self.__func_other_arg_sql_names.append("SequenceInputBy")
385
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
386
- self.__func_other_args.append(sequence_input_by_arg_value)
387
- self.__func_other_arg_json_datatypes.append("STRING")
388
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
389
-
390
-
391
- # Declare empty lists to hold input table information.
392
- self.__func_input_arg_sql_names = []
393
- self.__func_input_table_view_query = []
394
- self.__func_input_dataframe_type = []
395
- self.__func_input_distribution = []
396
- self.__func_input_partition_by_cols = []
397
- self.__func_input_order_by_cols = []
398
-
399
- # Process data
400
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
401
- self.__func_input_distribution.append("NONE")
402
- self.__func_input_arg_sql_names.append("InputTable")
403
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
404
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
405
- self.__func_input_partition_by_cols.append("NA_character_")
406
- self.__func_input_order_by_cols.append("NA_character_")
407
-
408
- # Process wavelet_filter
409
- if self.wavelet_filter is not None:
410
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.wavelet_filter, False)
411
- self.__func_input_distribution.append("NONE")
412
- self.__func_input_arg_sql_names.append("WaveletFilterTable")
413
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
414
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
415
- self.__func_input_partition_by_cols.append("NA_character_")
416
- self.__func_input_order_by_cols.append("NA_character_")
417
-
418
- function_name = "DWT"
419
- # Create instance to generate SQLMR.
420
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
421
- self.__func_input_arg_sql_names,
422
- self.__func_input_table_view_query,
423
- self.__func_input_dataframe_type,
424
- self.__func_input_distribution,
425
- self.__func_input_partition_by_cols,
426
- self.__func_input_order_by_cols,
427
- self.__func_other_arg_sql_names,
428
- self.__func_other_args,
429
- self.__func_other_arg_json_datatypes,
430
- self.__func_output_args_sql_names,
431
- self.__func_output_args,
432
- engine="ENGINE_ML")
433
- # Invoke call to SQL-MR generation.
434
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
435
-
436
- # Print SQL-MR query if requested to do so.
437
- if display.print_sqlmr_query:
438
- print(self.sqlmr_query)
439
-
440
- # Set the algorithm name for Model Cataloging.
441
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
442
-
443
- def __execute(self):
444
- """
445
- Function to execute SQL-MR queries.
446
- Create DataFrames for the required SQL-MR outputs.
447
- """
448
- # Generate STDOUT table name and add it to the output table list.
449
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
450
- try:
451
- # Generate the output.
452
- UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
453
- except Exception as emsg:
454
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
455
-
456
- # Update output table data frames.
457
- self._mlresults = []
458
- self.coefficient = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__coefficient_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__coefficient_temp_tablename))
459
- self.meta_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__meta_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__meta_table_temp_tablename))
460
- self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
461
- self._mlresults.append(self.coefficient)
462
- self._mlresults.append(self.meta_table)
463
- self._mlresults.append(self.output)
464
-
465
- def show_query(self):
466
- """
467
- Function to return the underlying SQL query.
468
- When model object is created using retrieve_model(), then None is returned.
469
- """
470
- return self.sqlmr_query
471
-
472
- def get_prediction_type(self):
473
- """
474
- Function to return the Prediction type of the algorithm.
475
- When model object is created using retrieve_model(), then the value returned is
476
- as saved in the Model Catalog.
477
- """
478
- return self._prediction_type
479
-
480
- def get_target_column(self):
481
- """
482
- Function to return the Target Column of the algorithm.
483
- When model object is created using retrieve_model(), then the value returned is
484
- as saved in the Model Catalog.
485
- """
486
- return self._target_column
487
-
488
- def get_build_time(self):
489
- """
490
- Function to return the build time of the algorithm in seconds.
491
- When model object is created using retrieve_model(), then the value returned is
492
- as saved in the Model Catalog.
493
- """
494
- return self._build_time
495
-
496
- def _get_algorithm_name(self):
497
- """
498
- Function to return the name of the algorithm.
499
- """
500
- return self._algorithm_name
501
-
502
- def _get_sql_specific_attributes(self):
503
- """
504
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
505
- """
506
- return self._sql_specific_attributes
507
-
508
- @classmethod
509
- def _from_model_catalog(cls,
510
- coefficient = None,
511
- meta_table = None,
512
- output = None,
513
- **kwargs):
514
- """
515
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
516
- """
517
- kwargs.pop("coefficient", None)
518
- kwargs.pop("meta_table", None)
519
- kwargs.pop("output", None)
520
-
521
- # Model Cataloging related attributes.
522
- target_column = kwargs.pop("__target_column", None)
523
- prediction_type = kwargs.pop("__prediction_type", None)
524
- algorithm_name = kwargs.pop("__algorithm_name", None)
525
- build_time = kwargs.pop("__build_time", None)
526
-
527
- # Let's create an object of this class.
528
- obj = cls(**kwargs)
529
- obj.coefficient = coefficient
530
- obj.meta_table = meta_table
531
- obj.output = output
532
-
533
- # Initialize the sqlmr_query class attribute.
534
- obj.sqlmr_query = None
535
-
536
- # Initialize the SQL specific Model Cataloging attributes.
537
- obj._sql_specific_attributes = None
538
- obj._target_column = target_column
539
- obj._prediction_type = prediction_type
540
- obj._algorithm_name = algorithm_name
541
- obj._build_time = build_time
542
-
543
- # Update output table data frames.
544
- obj._mlresults = []
545
- obj.coefficient = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.coefficient), source_type="table", database_name=UtilFuncs._extract_db_name(obj.coefficient))
546
- obj.meta_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.meta_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.meta_table))
547
- obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
548
- obj._mlresults.append(obj.coefficient)
549
- obj._mlresults.append(obj.meta_table)
550
- obj._mlresults.append(obj.output)
551
- return obj
552
-
553
- def __repr__(self):
554
- """
555
- Returns the string representation for a DWT class instance.
556
- """
557
- repr_string="############ STDOUT Output ############"
558
- repr_string = "{}\n\n{}".format(repr_string,self.output)
559
- repr_string="{}\n\n\n############ coefficient Output ############".format(repr_string)
560
- repr_string = "{}\n\n{}".format(repr_string,self.coefficient)
561
- repr_string="{}\n\n\n############ meta_table Output ############".format(repr_string)
562
- repr_string = "{}\n\n{}".format(repr_string,self.meta_table)
563
- return repr_string
564
-