teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
teradataml/analytics/mle/DWT.py
DELETED
|
@@ -1,564 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.7
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class DWT:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
input_columns = None,
|
|
35
|
-
sort_column = None,
|
|
36
|
-
wavelet = None,
|
|
37
|
-
wavelet_filter = None,
|
|
38
|
-
level = None,
|
|
39
|
-
extension_mode = "sym",
|
|
40
|
-
partition_columns = None,
|
|
41
|
-
data_sequence_column = None,
|
|
42
|
-
wavelet_filter_sequence_column = None):
|
|
43
|
-
"""
|
|
44
|
-
DESCRIPTION:
|
|
45
|
-
The DWT function implements the Mallat algorithm (an iterate
|
|
46
|
-
algorithm in the Discrete Wavelet Transform field) and applies
|
|
47
|
-
wavelet transform on multiple sequences simultaneously.
|
|
48
|
-
|
|
49
|
-
The input is typically a set of time series sequences. You specify
|
|
50
|
-
the wavelet name or wavelet filter teradataml DataFrame, transform
|
|
51
|
-
level, and (optionally) extension mode. The function returns the
|
|
52
|
-
transformed sequences in Hilbert space with the corresponding
|
|
53
|
-
component identifiers and indices. (The transformation is also
|
|
54
|
-
called the decomposition.)
|
|
55
|
-
|
|
56
|
-
You can filter the result to reduce the lengths of the transformed
|
|
57
|
-
sequences and then use the function IDWT to reconstruct them;
|
|
58
|
-
therefore, the DWT and IDWT functions are useful for compression
|
|
59
|
-
and removing noise.
|
|
60
|
-
|
|
61
|
-
PARAMETERS:
|
|
62
|
-
data:
|
|
63
|
-
Required Argument.
|
|
64
|
-
Specifies the name of the teradataml DataFrame that contains
|
|
65
|
-
the sequences to be transformed.
|
|
66
|
-
|
|
67
|
-
input_columns:
|
|
68
|
-
Required Argument.
|
|
69
|
-
Specifies the names of the columns in the input teradataml
|
|
70
|
-
DataFrame that contain the data to be transformed. These
|
|
71
|
-
columns must contain numeric values between -1e308 and 1e308.
|
|
72
|
-
The function treats NULL in columns as 0.
|
|
73
|
-
Types: str OR list of Strings (str)
|
|
74
|
-
|
|
75
|
-
sort_column:
|
|
76
|
-
Required Argument.
|
|
77
|
-
Specifies the name of the column that defines the order of
|
|
78
|
-
samples in the sequences to be transformed. In a time series
|
|
79
|
-
sequence, the column can consist of timestamp values.
|
|
80
|
-
Note:
|
|
81
|
-
If sort_column has duplicate elements in a sequence (that
|
|
82
|
-
is, in a partition), then sequence order can vary, and the
|
|
83
|
-
function can produce different transform results for the
|
|
84
|
-
sequence.
|
|
85
|
-
Types: str
|
|
86
|
-
|
|
87
|
-
wavelet:
|
|
88
|
-
Optional Argument.
|
|
89
|
-
Specifies a wavelet filter name.
|
|
90
|
-
Wavelet Family Permitted values for the argument
|
|
91
|
-
Daubechies 'db1' or 'haar', 'db2', .... ,'db10'
|
|
92
|
-
Coiflets 'coif1', ... , 'coif5'
|
|
93
|
-
Symlets 'sym1', ... ,' sym10'
|
|
94
|
-
Discrete Meyer 'dmey'
|
|
95
|
-
Biorthogonal 'bior1.1', 'bior1.3', 'bior1.5',
|
|
96
|
-
'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8',
|
|
97
|
-
'bior3.1', 'bior3.3', 'bior3.5', 'bior3.7', 'bior3.9',
|
|
98
|
-
'bior4.4', 'bior5.5'
|
|
99
|
-
Reverse Biorthogonal 'rbio1.1', 'rbio1.3', 'rbio1.5'
|
|
100
|
-
'rbio2.2', 'rbio2.4', 'rbio2.6', 'rbio2.8',
|
|
101
|
-
'rbio3.1', 'rbio3.3', 'rbio3.5', 'rbio3.7','rbio3.9',
|
|
102
|
-
'rbio4.4', 'rbio5.5'
|
|
103
|
-
Types: str
|
|
104
|
-
|
|
105
|
-
wavelet_filter:
|
|
106
|
-
Optional Argument.
|
|
107
|
-
Specifies the teradataml DataFrame that contains the coefficients
|
|
108
|
-
of the wave filters.
|
|
109
|
-
|
|
110
|
-
level:
|
|
111
|
-
Required Argument.
|
|
112
|
-
Specifies the wavelet transform level. The value level must be
|
|
113
|
-
an integer in the range [1, 1000].
|
|
114
|
-
Types: int
|
|
115
|
-
|
|
116
|
-
extension_mode:
|
|
117
|
-
Optional Argument.
|
|
118
|
-
Specifies the method for handling border distortion.
|
|
119
|
-
Permitted values for this argument:
|
|
120
|
-
• "sym" : Symmetrically replicate boundary values, mirroring
|
|
121
|
-
the points near the boundaries.
|
|
122
|
-
For example: 4 4 3 2 1 | 1 2 3 4 | 4 3 2 1 1
|
|
123
|
-
• "zpd" : Zero-pad boundary values with zero.
|
|
124
|
-
For example: 0 0 0 0 0 | 1 2 3 4 | 0 0 0 0 0
|
|
125
|
-
• "ppd" : Periodic extension, fill boundary values as the input
|
|
126
|
-
sequence is a periodic one.
|
|
127
|
-
For example: 4 1 2 3 4 | 1 2 3 4 | 1 2 3 4 1
|
|
128
|
-
Default Value: "sym"
|
|
129
|
-
Types: str
|
|
130
|
-
|
|
131
|
-
partition_columns:
|
|
132
|
-
Optional Argument.
|
|
133
|
-
Specifies the names of the columns, which identify the sequences
|
|
134
|
-
to which data belongs. Rows with the same partition columns
|
|
135
|
-
values belong to the same sequence. If you specify multiple
|
|
136
|
-
partition columns, then the function treats the first one as the
|
|
137
|
-
distribute key of the output and meta tables. By default, all
|
|
138
|
-
rows belong to one sequence, and the function generates a
|
|
139
|
-
distribute key column named 'dwt_idrandom_name' in both the
|
|
140
|
-
output teradataml DataFrame and the meta table. In both tables,
|
|
141
|
-
every cell of dwt_idrandom_name has the value 1.
|
|
142
|
-
Types: str OR list of Strings (str)
|
|
143
|
-
|
|
144
|
-
data_sequence_column:
|
|
145
|
-
Optional Argument.
|
|
146
|
-
Specifies the list of column(s) that uniquely identifies each
|
|
147
|
-
row of the input argument "data". The argument is used to
|
|
148
|
-
ensure deterministic results for functions which produce
|
|
149
|
-
results that vary from run to run.
|
|
150
|
-
Types: str OR list of Strings (str)
|
|
151
|
-
|
|
152
|
-
wavelet_filter_sequence_column:
|
|
153
|
-
Optional Argument.
|
|
154
|
-
Specifies the list of column(s) that uniquely identifies each
|
|
155
|
-
row of the input argument "wavelet_filter". The argument is used
|
|
156
|
-
to ensure deterministic results for functions which produce
|
|
157
|
-
results that vary from run to run.
|
|
158
|
-
Types: str OR list of Strings (str)
|
|
159
|
-
|
|
160
|
-
RETURNS:
|
|
161
|
-
Instance of DWT.
|
|
162
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
163
|
-
references, such as DWTObj.<attribute_name>.
|
|
164
|
-
Output teradataml DataFrame attribute names are:
|
|
165
|
-
1. coefficient
|
|
166
|
-
2. meta_table
|
|
167
|
-
3. output
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
RAISES:
|
|
171
|
-
TeradataMlException
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
EXAMPLES:
|
|
175
|
-
# Load example data.
|
|
176
|
-
load_example_data('dwt', ['ville_climatedata', 'dwt_filter_dim'])
|
|
177
|
-
|
|
178
|
-
# This example uses hourly climate data 'ville_climatedata' for five
|
|
179
|
-
# cities (Asheville, Greenville, Brownsville, Nashville and Knoxville)
|
|
180
|
-
# on a given day. The data are temperature (in degrees Fahrenheit),
|
|
181
|
-
# pressure (in mbars), and dewpoint (in degrees Fahrenheit). The function
|
|
182
|
-
# generates the coefficient model teradataml DataFrame and the meta_table
|
|
183
|
-
# teradataml DataFrame, which can be used as input to the function IDWT.
|
|
184
|
-
# The table 'dwt_filter_dim' contains wavelet filter information needed
|
|
185
|
-
# to generate coefficient model teradataml DataFrame and the meta_table
|
|
186
|
-
# teradataml DataFrame.
|
|
187
|
-
|
|
188
|
-
# Create teradataml DataFrame objects.
|
|
189
|
-
ville_climatedata = DataFrame.from_table("ville_climatedata")
|
|
190
|
-
dwt_filter_dim = DataFrame.from_table("dwt_filter_dim")
|
|
191
|
-
|
|
192
|
-
# Example 1 : Using 'db2' wavelet to apply DWT function on columns,
|
|
193
|
-
# "temp_f", "pressure_mbar" and "dewpoint_f" (of DataFrame
|
|
194
|
-
# 'ville_climatedata') partitioned by the column "city"
|
|
195
|
-
# and sorted by column "period".
|
|
196
|
-
DWT_out1 = DWT(data = ville_climatedata,
|
|
197
|
-
input_columns = ["temp_f","pressure_mbar","dewpoint_f"],
|
|
198
|
-
sort_column = "period",
|
|
199
|
-
wavelet = "db2",
|
|
200
|
-
level = 2,
|
|
201
|
-
partition_columns = ["city"]
|
|
202
|
-
)
|
|
203
|
-
|
|
204
|
-
# Print the results
|
|
205
|
-
print(DWT_out1.coefficient) # Prints coefficient DataFrame which stores
|
|
206
|
-
# the coefficients generated by the wavelet
|
|
207
|
-
# transform.
|
|
208
|
-
print(DWT_out1.meta_table) # Prints meta_table DataFrame which stores
|
|
209
|
-
# the meta information for the wavelet
|
|
210
|
-
# transform.
|
|
211
|
-
print(DWT_out1.output) # Prints output teradataml DataFrame.
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
# Example 2 : Using wavelet_filter DataFrame to apply DWT function
|
|
215
|
-
# on columns, "temp_f", "pressure_mbar" and "dewpoint_f" (of
|
|
216
|
-
# DataFrame 'ville_climatedata') partitioned by the column
|
|
217
|
-
# "city" and sorted by column "period".
|
|
218
|
-
DWT_out2 = DWT(data = ville_climatedata,
|
|
219
|
-
input_columns = ["temp_f","pressure_mbar","dewpoint_f"],
|
|
220
|
-
wavelet_filter=dwt_filter_dim,
|
|
221
|
-
sort_column = "period",
|
|
222
|
-
level = 2,
|
|
223
|
-
partition_columns = "city",
|
|
224
|
-
wavelet_filter_sequence_column="filtername"
|
|
225
|
-
)
|
|
226
|
-
|
|
227
|
-
# Print the results
|
|
228
|
-
print(DWT_out2.coefficient) # Prints coefficient DataFrame which stores
|
|
229
|
-
# the coefficients generated by the wavelet
|
|
230
|
-
# transform.
|
|
231
|
-
print(DWT_out2.meta_table) # Prints meta_table DataFrame which stores
|
|
232
|
-
# the meta information for the wavelet
|
|
233
|
-
# transform.
|
|
234
|
-
print(DWT_out2.output) # Prints output teradataml DataFrame.
|
|
235
|
-
|
|
236
|
-
"""
|
|
237
|
-
|
|
238
|
-
# Start the timer to get the build time
|
|
239
|
-
_start_time = time.time()
|
|
240
|
-
|
|
241
|
-
self.data = data
|
|
242
|
-
self.input_columns = input_columns
|
|
243
|
-
self.sort_column = sort_column
|
|
244
|
-
self.wavelet = wavelet
|
|
245
|
-
self.wavelet_filter = wavelet_filter
|
|
246
|
-
self.level = level
|
|
247
|
-
self.extension_mode = extension_mode
|
|
248
|
-
self.partition_columns = partition_columns
|
|
249
|
-
self.data_sequence_column = data_sequence_column
|
|
250
|
-
self.wavelet_filter_sequence_column = wavelet_filter_sequence_column
|
|
251
|
-
|
|
252
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
253
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
254
|
-
self.__aed_utils = AedUtils()
|
|
255
|
-
|
|
256
|
-
# Create argument information matrix to do parameter checking
|
|
257
|
-
self.__arg_info_matrix = []
|
|
258
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
259
|
-
self.__arg_info_matrix.append(["input_columns", self.input_columns, False, (str,list)])
|
|
260
|
-
self.__arg_info_matrix.append(["sort_column", self.sort_column, False, (str)])
|
|
261
|
-
self.__arg_info_matrix.append(["wavelet", self.wavelet, True, (str)])
|
|
262
|
-
self.__arg_info_matrix.append(["wavelet_filter", self.wavelet_filter, True, (DataFrame)])
|
|
263
|
-
self.__arg_info_matrix.append(["level", self.level, False, (int)])
|
|
264
|
-
self.__arg_info_matrix.append(["extension_mode", self.extension_mode, True, (str)])
|
|
265
|
-
self.__arg_info_matrix.append(["partition_columns", self.partition_columns, True, (str,list)])
|
|
266
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
267
|
-
self.__arg_info_matrix.append(["wavelet_filter_sequence_column", self.wavelet_filter_sequence_column, True, (str,list)])
|
|
268
|
-
|
|
269
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
270
|
-
# Perform the function validations
|
|
271
|
-
self.__validate()
|
|
272
|
-
# Generate the ML query
|
|
273
|
-
self.__form_tdml_query()
|
|
274
|
-
# Execute ML query
|
|
275
|
-
self.__execute()
|
|
276
|
-
# Get the prediction type
|
|
277
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
278
|
-
|
|
279
|
-
# End the timer to get the build time
|
|
280
|
-
_end_time = time.time()
|
|
281
|
-
|
|
282
|
-
# Calculate the build time
|
|
283
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
284
|
-
|
|
285
|
-
def __validate(self):
|
|
286
|
-
"""
|
|
287
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
288
|
-
arguments, input argument and table types. Also processes the
|
|
289
|
-
argument values.
|
|
290
|
-
"""
|
|
291
|
-
|
|
292
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
293
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
294
|
-
|
|
295
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
296
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
297
|
-
|
|
298
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
299
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
300
|
-
self.__awu._validate_input_table_datatype(self.wavelet_filter, "wavelet_filter", None)
|
|
301
|
-
|
|
302
|
-
# Check for permitted values
|
|
303
|
-
extension_mode_permitted_values = ["SYM", "ZPD", "PPD"]
|
|
304
|
-
self.__awu._validate_permitted_values(self.extension_mode, extension_mode_permitted_values, "extension_mode")
|
|
305
|
-
|
|
306
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
307
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
308
|
-
self.__awu._validate_input_columns_not_empty(self.sort_column, "sort_column")
|
|
309
|
-
self.__awu._validate_dataframe_has_argument_columns(self.sort_column, "sort_column", self.data, "data", False)
|
|
310
|
-
|
|
311
|
-
self.__awu._validate_input_columns_not_empty(self.input_columns, "input_columns")
|
|
312
|
-
self.__awu._validate_dataframe_has_argument_columns(self.input_columns, "input_columns", self.data, "data", False)
|
|
313
|
-
|
|
314
|
-
self.__awu._validate_input_columns_not_empty(self.partition_columns, "partition_columns")
|
|
315
|
-
self.__awu._validate_dataframe_has_argument_columns(self.partition_columns, "partition_columns", self.data, "data", False)
|
|
316
|
-
|
|
317
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
318
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
319
|
-
|
|
320
|
-
self.__awu._validate_input_columns_not_empty(self.wavelet_filter_sequence_column, "wavelet_filter_sequence_column")
|
|
321
|
-
self.__awu._validate_dataframe_has_argument_columns(self.wavelet_filter_sequence_column, "wavelet_filter_sequence_column", self.wavelet_filter, "wavelet_filter", False)
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
def __form_tdml_query(self):
|
|
325
|
-
"""
|
|
326
|
-
Function to generate the analytical function queries. The function defines
|
|
327
|
-
variables and list of arguments required to form the query.
|
|
328
|
-
"""
|
|
329
|
-
# Generate temp table names for output table parameters if any.
|
|
330
|
-
self.__coefficient_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_dwt0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
331
|
-
self.__meta_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_dwt1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
332
|
-
|
|
333
|
-
# Output table arguments list
|
|
334
|
-
self.__func_output_args_sql_names = ["OutputTable", "MetaTable"]
|
|
335
|
-
self.__func_output_args = [self.__coefficient_temp_tablename, self.__meta_table_temp_tablename]
|
|
336
|
-
|
|
337
|
-
# Model Cataloging related attributes.
|
|
338
|
-
self._sql_specific_attributes = {}
|
|
339
|
-
self._sql_formula_attribute_mapper = {}
|
|
340
|
-
self._target_column = None
|
|
341
|
-
self._algorithm_name = None
|
|
342
|
-
|
|
343
|
-
# Generate lists for rest of the function arguments
|
|
344
|
-
self.__func_other_arg_sql_names = []
|
|
345
|
-
self.__func_other_args = []
|
|
346
|
-
self.__func_other_arg_json_datatypes = []
|
|
347
|
-
|
|
348
|
-
self.__func_other_arg_sql_names.append("SortColumn")
|
|
349
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.sort_column, "\""), "'"))
|
|
350
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
351
|
-
|
|
352
|
-
self.__func_other_arg_sql_names.append("TargetColumns")
|
|
353
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.input_columns, "\""), "'"))
|
|
354
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
355
|
-
|
|
356
|
-
if self.partition_columns is not None:
|
|
357
|
-
self.__func_other_arg_sql_names.append("PartitionColumns")
|
|
358
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.partition_columns, "\""), "'"))
|
|
359
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
360
|
-
|
|
361
|
-
self.__func_other_arg_sql_names.append("WaveletTransformLevel")
|
|
362
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.level, "'"))
|
|
363
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
364
|
-
|
|
365
|
-
if self.wavelet is not None:
|
|
366
|
-
self.__func_other_arg_sql_names.append("Wavelet")
|
|
367
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.wavelet, "'"))
|
|
368
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
369
|
-
|
|
370
|
-
if self.extension_mode is not None and self.extension_mode != "sym":
|
|
371
|
-
self.__func_other_arg_sql_names.append("ExtensionMode")
|
|
372
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.extension_mode, "'"))
|
|
373
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
374
|
-
|
|
375
|
-
# Generate lists for rest of the function arguments
|
|
376
|
-
sequence_input_by_list = []
|
|
377
|
-
if self.data_sequence_column is not None:
|
|
378
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
379
|
-
|
|
380
|
-
if self.wavelet_filter_sequence_column is not None:
|
|
381
|
-
sequence_input_by_list.append("WaveletFilterTable:" + UtilFuncs._teradata_collapse_arglist(self.wavelet_filter_sequence_column, ""))
|
|
382
|
-
|
|
383
|
-
if len(sequence_input_by_list) > 0:
|
|
384
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
385
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
386
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
387
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
388
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
# Declare empty lists to hold input table information.
|
|
392
|
-
self.__func_input_arg_sql_names = []
|
|
393
|
-
self.__func_input_table_view_query = []
|
|
394
|
-
self.__func_input_dataframe_type = []
|
|
395
|
-
self.__func_input_distribution = []
|
|
396
|
-
self.__func_input_partition_by_cols = []
|
|
397
|
-
self.__func_input_order_by_cols = []
|
|
398
|
-
|
|
399
|
-
# Process data
|
|
400
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
401
|
-
self.__func_input_distribution.append("NONE")
|
|
402
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
403
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
404
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
405
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
406
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
407
|
-
|
|
408
|
-
# Process wavelet_filter
|
|
409
|
-
if self.wavelet_filter is not None:
|
|
410
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.wavelet_filter, False)
|
|
411
|
-
self.__func_input_distribution.append("NONE")
|
|
412
|
-
self.__func_input_arg_sql_names.append("WaveletFilterTable")
|
|
413
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
414
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
415
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
416
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
417
|
-
|
|
418
|
-
function_name = "DWT"
|
|
419
|
-
# Create instance to generate SQLMR.
|
|
420
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
421
|
-
self.__func_input_arg_sql_names,
|
|
422
|
-
self.__func_input_table_view_query,
|
|
423
|
-
self.__func_input_dataframe_type,
|
|
424
|
-
self.__func_input_distribution,
|
|
425
|
-
self.__func_input_partition_by_cols,
|
|
426
|
-
self.__func_input_order_by_cols,
|
|
427
|
-
self.__func_other_arg_sql_names,
|
|
428
|
-
self.__func_other_args,
|
|
429
|
-
self.__func_other_arg_json_datatypes,
|
|
430
|
-
self.__func_output_args_sql_names,
|
|
431
|
-
self.__func_output_args,
|
|
432
|
-
engine="ENGINE_ML")
|
|
433
|
-
# Invoke call to SQL-MR generation.
|
|
434
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
435
|
-
|
|
436
|
-
# Print SQL-MR query if requested to do so.
|
|
437
|
-
if display.print_sqlmr_query:
|
|
438
|
-
print(self.sqlmr_query)
|
|
439
|
-
|
|
440
|
-
# Set the algorithm name for Model Cataloging.
|
|
441
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
442
|
-
|
|
443
|
-
def __execute(self):
|
|
444
|
-
"""
|
|
445
|
-
Function to execute SQL-MR queries.
|
|
446
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
447
|
-
"""
|
|
448
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
449
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
450
|
-
try:
|
|
451
|
-
# Generate the output.
|
|
452
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
453
|
-
except Exception as emsg:
|
|
454
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
455
|
-
|
|
456
|
-
# Update output table data frames.
|
|
457
|
-
self._mlresults = []
|
|
458
|
-
self.coefficient = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__coefficient_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__coefficient_temp_tablename))
|
|
459
|
-
self.meta_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__meta_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__meta_table_temp_tablename))
|
|
460
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
461
|
-
self._mlresults.append(self.coefficient)
|
|
462
|
-
self._mlresults.append(self.meta_table)
|
|
463
|
-
self._mlresults.append(self.output)
|
|
464
|
-
|
|
465
|
-
def show_query(self):
|
|
466
|
-
"""
|
|
467
|
-
Function to return the underlying SQL query.
|
|
468
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
469
|
-
"""
|
|
470
|
-
return self.sqlmr_query
|
|
471
|
-
|
|
472
|
-
def get_prediction_type(self):
|
|
473
|
-
"""
|
|
474
|
-
Function to return the Prediction type of the algorithm.
|
|
475
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
476
|
-
as saved in the Model Catalog.
|
|
477
|
-
"""
|
|
478
|
-
return self._prediction_type
|
|
479
|
-
|
|
480
|
-
def get_target_column(self):
|
|
481
|
-
"""
|
|
482
|
-
Function to return the Target Column of the algorithm.
|
|
483
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
484
|
-
as saved in the Model Catalog.
|
|
485
|
-
"""
|
|
486
|
-
return self._target_column
|
|
487
|
-
|
|
488
|
-
def get_build_time(self):
|
|
489
|
-
"""
|
|
490
|
-
Function to return the build time of the algorithm in seconds.
|
|
491
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
492
|
-
as saved in the Model Catalog.
|
|
493
|
-
"""
|
|
494
|
-
return self._build_time
|
|
495
|
-
|
|
496
|
-
def _get_algorithm_name(self):
|
|
497
|
-
"""
|
|
498
|
-
Function to return the name of the algorithm.
|
|
499
|
-
"""
|
|
500
|
-
return self._algorithm_name
|
|
501
|
-
|
|
502
|
-
def _get_sql_specific_attributes(self):
|
|
503
|
-
"""
|
|
504
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
505
|
-
"""
|
|
506
|
-
return self._sql_specific_attributes
|
|
507
|
-
|
|
508
|
-
@classmethod
|
|
509
|
-
def _from_model_catalog(cls,
|
|
510
|
-
coefficient = None,
|
|
511
|
-
meta_table = None,
|
|
512
|
-
output = None,
|
|
513
|
-
**kwargs):
|
|
514
|
-
"""
|
|
515
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
516
|
-
"""
|
|
517
|
-
kwargs.pop("coefficient", None)
|
|
518
|
-
kwargs.pop("meta_table", None)
|
|
519
|
-
kwargs.pop("output", None)
|
|
520
|
-
|
|
521
|
-
# Model Cataloging related attributes.
|
|
522
|
-
target_column = kwargs.pop("__target_column", None)
|
|
523
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
524
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
525
|
-
build_time = kwargs.pop("__build_time", None)
|
|
526
|
-
|
|
527
|
-
# Let's create an object of this class.
|
|
528
|
-
obj = cls(**kwargs)
|
|
529
|
-
obj.coefficient = coefficient
|
|
530
|
-
obj.meta_table = meta_table
|
|
531
|
-
obj.output = output
|
|
532
|
-
|
|
533
|
-
# Initialize the sqlmr_query class attribute.
|
|
534
|
-
obj.sqlmr_query = None
|
|
535
|
-
|
|
536
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
537
|
-
obj._sql_specific_attributes = None
|
|
538
|
-
obj._target_column = target_column
|
|
539
|
-
obj._prediction_type = prediction_type
|
|
540
|
-
obj._algorithm_name = algorithm_name
|
|
541
|
-
obj._build_time = build_time
|
|
542
|
-
|
|
543
|
-
# Update output table data frames.
|
|
544
|
-
obj._mlresults = []
|
|
545
|
-
obj.coefficient = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.coefficient), source_type="table", database_name=UtilFuncs._extract_db_name(obj.coefficient))
|
|
546
|
-
obj.meta_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.meta_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.meta_table))
|
|
547
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
548
|
-
obj._mlresults.append(obj.coefficient)
|
|
549
|
-
obj._mlresults.append(obj.meta_table)
|
|
550
|
-
obj._mlresults.append(obj.output)
|
|
551
|
-
return obj
|
|
552
|
-
|
|
553
|
-
def __repr__(self):
|
|
554
|
-
"""
|
|
555
|
-
Returns the string representation for a DWT class instance.
|
|
556
|
-
"""
|
|
557
|
-
repr_string="############ STDOUT Output ############"
|
|
558
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
559
|
-
repr_string="{}\n\n\n############ coefficient Output ############".format(repr_string)
|
|
560
|
-
repr_string = "{}\n\n{}".format(repr_string,self.coefficient)
|
|
561
|
-
repr_string="{}\n\n\n############ meta_table Output ############".format(repr_string)
|
|
562
|
-
repr_string = "{}\n\n{}".format(repr_string,self.meta_table)
|
|
563
|
-
return repr_string
|
|
564
|
-
|