teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,695 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Rohit Agrawal (rohit.agrawal@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 2.6
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class FrequentPaths:
31
-
32
- def __init__(self,
33
- data = None,
34
- min_support = None,
35
- time_column = None,
36
- path_filters = None,
37
- groupby_columns = None,
38
- item_column = None,
39
- item_definition_table = None,
40
- path_column = None,
41
- max_length = 2147483647,
42
- min_length = 1,
43
- closed_pattern = False,
44
- item_definition_columns = None,
45
- partition_columns = None,
46
- data_sequence_column = None,
47
- item_definition_table_sequence_column = None):
48
- """
49
- DESCRIPTION:
50
- The FrequentPaths takes a teradataml DataFrame of sequences and
51
- outputs a teradataml DataFrame of subsequences (patterns) that
52
- frequently appear in the input teradataml DataFrame and, optionally,
53
- a teradataml DataFrame of sequence-pattern pairs.
54
-
55
- PARAMETERS:
56
- data:
57
- Required Argument.
58
- Specifies the input teradataml DataFrame that contains the
59
- input sequences. Each row is one item in a sequence.
60
- Note: The function ignores rows that contain any NULL values.
61
-
62
- min_support:
63
- Required Argument.
64
- Determines the threshold for whether a sequential pattern is
65
- frequent. The min_support must be a positive float number.
66
- If min_support is in the range (0,1), then it is a relative threshold.
67
- If N is the total number of input sequences, then the threshold is
68
- T=N*min_support.
69
- For example, if there are 1000 sequences in the input
70
- teradataml DataFrame and min_support is 0.05, then the threshold is 50.
71
- If min_support is in the range (1,+), then it is an absolute threshold.
72
- Regardless of N, T=min_support. For example, if min_support is 50, then the
73
- threshold is 50, regardless of N.
74
- A pattern is frequent if its support value is at least T.
75
- Because the function outputs only frequent patterns, min_support controls
76
- the number of output patterns. If min_support is small, processing time
77
- increases exponentially; therefore, teradataml recommends starting the
78
- trial with a larger value. for example, 5% of the total sequence number
79
- if you know N and 0.05 otherwise.
80
- If you specify a relative min_support and groupby_columns, then the function
81
- calculates N and T for each group.
82
- If you specify a relative min_support and path_filters, then N is the
83
- number of sequences that meet the constraints of the filters.
84
- Types: float
85
-
86
- time_column:
87
- Optional Argument. Required when item_column or item_definition_columns
88
- is specified.
89
- Specifies the input teradataml DataFrame column that
90
- determines the order of items in a sequence. Items in the same
91
- sequence that have the same timestamp belong to the same set.
92
- Types: str
93
-
94
- path_filters:
95
- Optional Argument.
96
- Specifies the filters to use on the input teradataml DataFrame
97
- sequences. Only input teradataml DataFrame sequences that satisfy all
98
- constraints of at least one filter are input to the function. Each
99
- filter has one or more constraints, which are separated by spaces.
100
- Each constraint has this syntax:
101
- constraint (item [symbol ...]).
102
- By default, symbol is comma (,). If you specify symbol, it applies to
103
- all filters. The constraint is one of the following:
104
- • STW (start-with constraint): The first item set of the sequence
105
- must contain at least one item.
106
- For example, STW(c,d) requires the first item set of the sequence to
107
- contain c or d. Sequence "(a, c), e, (f, d)" meets this constraint
108
- because the first item set, (a,c), contains c.
109
- • EDW (end-with constraint): The last item set of the sequence must contain
110
- at least one item.
111
- For example, EDW(f,g) requires the last item set of the sequence to contain
112
- f or g. Sequence "(a, b), e, (f, d)" meets this constraint because the last
113
- item set, (f,d), contains f.
114
- • CTN (containing constraint): The sequence must contain at least one item.
115
- For example, CTN(a,b) requires the sequence to contain a or b. The
116
- sequence "(a,c), d, (e,f)" meets this constraint but the sequence "d,
117
- (e,f)" does not.
118
- Constraints in the same filter must be different.
119
- For example, the filter "STW(c,d) EDW(g,k) CTN(e)" is valid, but
120
- "STW(c,d) STW(e,h)" is invalid.
121
- This argument specifies a separator and uses it in two filters:
122
- path_filters("Separator(#)", "STW(c#d) EDW (g#k) CTN(e)", "CTN(h#k)")
123
- Types: str OR list of strs
124
-
125
- groupby_columns:
126
- Optional Argument.
127
- Specifies the input teradataml DataFrame columns by which to group the
128
- input teradataml DataFrame sequences. If you specify this argument,
129
- then the function operates on each group separately and copies each
130
- column mentioned in the argument to the output teradataml DataFrame.
131
- Types: str OR list of Strings (str)
132
-
133
- item_column:
134
- Optional Argument. Required if you specify neither item_definition_columns
135
- nor path_column.
136
- Specifies the input teradataml DataFrame columns that contain the items.
137
- Types: str OR list of Strings (str)
138
-
139
- item_definition_table:
140
- Optional Argument. Required if you specify neither item_column nor path_column.
141
- Specifies the item definition teradataml DataFrame.
142
-
143
- path_column:
144
- Optional Argument. Required if you specify neither item_column nor
145
- item_definition_columns.
146
- Specifies the input teradataml DataFrame column that
147
- contains paths in the form of sequence strings. A sequence string has
148
- this syntax: "[item [, ...]]". In the sequence string syntax, you must
149
- type the outer brackets. The sequence strings in this column
150
- can be generated by the nPath function. If you specify this argument,
151
- then each item set can have only one item.
152
- Types: str
153
-
154
- max_length:
155
- Optional Argument.
156
- Specifies the maximum length of the output sequential patterns. The
157
- length of a pattern is its number of sets.
158
- Default Value: 2147483647
159
- Types: int
160
-
161
- min_length:
162
- Optional Argument.
163
- Specifies the minimum length of the output sequential patterns.
164
- Default Value: 1
165
- Types: int
166
-
167
- closed_pattern:
168
- Optional Argument.
169
- Specifies whether to output only closed patterns.
170
- Default Value: False
171
- Types: bool
172
-
173
- item_definition_columns:
174
- Optional Argument. Required if you specify neither item_column
175
- nor path_column.
176
- Specifies the names of the index, definition, and item columns of
177
- the input argument "item_definition_table".
178
- Types: str
179
-
180
- partition_columns:
181
- Required Argument.
182
- Specifies the names of the columns that comprise the partition key of
183
- the input sequences.
184
- Types: str OR list of Strings (str)
185
-
186
- data_sequence_column:
187
- Optional Argument.
188
- Specifies the list of column(s) that uniquely identifies each row of
189
- the input argument "data". The argument is used to ensure
190
- deterministic results for functions which produce results that vary
191
- from run to run.
192
- Types: str OR list of Strings (str)
193
-
194
- item_definition_table_sequence_column:
195
- Optional Argument.
196
- Specifies the list of column(s) that uniquely identifies each row of
197
- the input argument "item_definition_table". The argument is used to
198
- ensure deterministic results for functions which produce results that
199
- vary from run to run.
200
- Types: str OR list of Strings (str)
201
-
202
- RETURNS:
203
- Instance of FrequentPaths.
204
- Output teradataml DataFrames can be accessed using attribute
205
- references, such as FrequentPathsObj.<attribute_name>.
206
- Output teradataml DataFrame attribute names are:
207
- 1. subsequence_data
208
- 2. seq_pattern_table
209
- 3. output
210
-
211
-
212
- RAISES:
213
- TeradataMlException
214
-
215
-
216
- EXAMPLES:
217
- # Load the data to run the example.
218
- load_example_data("FrequentPaths", ["bank_web_url", "ref_url", "bank_web_clicks1", "bank_web_clicks2", "sequence_table"])
219
-
220
- # Create teradataml DataFrame.
221
- bank_web_url = DataFrame.from_table("bank_web_url")
222
- ref_url = DataFrame.from_table("ref_url")
223
- bank_web_clicks1 = DataFrame.from_table("bank_web_clicks1")
224
- bank_web_clicks2 = DataFrame.from_table("bank_web_clicks2")
225
- sequence_table = DataFrame.from_table("sequence_table")
226
-
227
- # Example 1 : Running FrequentPaths function with item_column argument.
228
- # data: bank_web_clicks1, which has web clickstream data from a set of users with multiple sessions.
229
- # We are using users action information as item_column to run FrequentPaths function to select sequences.
230
- frequentpaths_out1 = FrequentPaths(data=bank_web_clicks1,
231
- partition_columns='session_id',
232
- time_column='datestamp',
233
- item_column='page',
234
- min_support=2.0,
235
- max_length=2147483647,
236
- min_length=1,
237
- closed_pattern=False,
238
- data_sequence_column='datestamp'
239
- )
240
-
241
- # Print the result DataFrame.
242
- print(frequentpaths_out1.subsequence_data)
243
- print(frequentpaths_out1.seq_pattern_table)
244
- print(frequentpaths_out1.output)
245
-
246
- # Example 2 : Running FrequentPaths function with item_definition_table argument.
247
- # data: bank_web_url, which has the URL of each page browsed by the customer.
248
- # item_definition_table : ref_url, which has the definitions of the browser pages
249
- frequentpaths_out2 = FrequentPaths(data=bank_web_url,
250
- item_definition_table=ref_url,
251
- partition_columns='session_id',
252
- time_column='datestamp',
253
- min_support=2.0,
254
- item_definition_columns='[page_id:pagedef:page]',
255
- max_length=2147483647,
256
- min_length=1,
257
- closed_pattern=False,
258
- data_sequence_column='datestamp'
259
- )
260
-
261
- # Print the result DataFrame.
262
- print(frequentpaths_out2.subsequence_data)
263
- print(frequentpaths_out2.seq_pattern_table)
264
- print(frequentpaths_out2.output)
265
-
266
- # Example 3 : Running FrequentPaths function with groupby_columns argument.
267
- # FrequentPaths function will operates on each group (customer) separately.
268
- frequentpaths_out3 = FrequentPaths(data=bank_web_clicks2,
269
- partition_columns='session_id',
270
- time_column='datestamp',
271
- item_column='page',
272
- groupby_columns='customer_id',
273
- min_support=2.0,
274
- max_length=2147483647,
275
- min_length=1,
276
- closed_pattern=False,
277
- data_sequence_column='datestamp'
278
- )
279
-
280
- # Print the result DataFrame.
281
- print(frequentpaths_out3.subsequence_data)
282
- print(frequentpaths_out3.seq_pattern_table)
283
- print(frequentpaths_out3.output)
284
-
285
- # Example 4 : Running FrequentPaths function with path_filters argument.
286
- frequentpaths_out4 = FrequentPaths(data=bank_web_clicks1,
287
- partition_columns='session_id',
288
- time_column='datestamp',
289
- item_column='page',
290
- min_support=2.0,
291
- max_length=2147483647,
292
- path_filters='STW(account summary) EDW(account history)',
293
- min_length=1,
294
- closed_pattern=False,
295
- data_sequence_column='datestamp'
296
- )
297
-
298
- # Print the result DataFrame.
299
- print(frequentpaths_out4.subsequence_data)
300
- print(frequentpaths_out4.seq_pattern_table)
301
- print(frequentpaths_out4.output)
302
-
303
- # Example 5 : Using NPath output to run FrequentPaths function to select sequences.
304
- # data: npath_output, which the example creates by inputting the teradataml DataFrame
305
- # "sequence_table", to the NPath function.
306
- npath_output = NPath(data1=sequence_table,
307
- data1_partition_column='id',
308
- data1_order_column='datestamp',
309
- result=['FIRST(id OF itemA) AS id','Accumulate (item OF ANY(itemA, itemAny, itemC)) AS path'],
310
- mode='nonoverlapping',
311
- pattern='itemA.itemAny*.itemC',
312
- symbols=["item='A' AS itemA","item='C' AS itemC","TRUE AS itemAny"])
313
-
314
- # Passing NPath function output to run FrequentPaths function.
315
- frequentpaths_out5 = FrequentPaths(data=npath_output.result,
316
- partition_columns='id',
317
- path_column='path',
318
- min_support=2.0,
319
- max_length=2147483647,
320
- min_length=1,
321
- closed_pattern=False
322
- )
323
-
324
- # Print the result DataFrame.
325
- print(frequentpaths_out5.subsequence_data)
326
- print(frequentpaths_out5.seq_pattern_table)
327
- print(frequentpaths_out5.output)
328
-
329
- """
330
-
331
- # Start the timer to get the build time
332
- _start_time = time.time()
333
-
334
- self.data = data
335
- self.min_support = min_support
336
- self.time_column = time_column
337
- self.path_filters = path_filters
338
- self.groupby_columns = groupby_columns
339
- self.item_column = item_column
340
- self.item_definition_table = item_definition_table
341
- self.path_column = path_column
342
- self.max_length = max_length
343
- self.min_length = min_length
344
- self.closed_pattern = closed_pattern
345
- self.item_definition_columns = item_definition_columns
346
- self.partition_columns = partition_columns
347
- self.data_sequence_column = data_sequence_column
348
- self.item_definition_table_sequence_column = item_definition_table_sequence_column
349
-
350
- # Create TeradataPyWrapperUtils instance which contains validation functions.
351
- self.__awu = AnalyticsWrapperUtils()
352
- self.__aed_utils = AedUtils()
353
-
354
- # Create argument information matrix to do parameter checking
355
- self.__arg_info_matrix = []
356
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
357
- self.__arg_info_matrix.append(["min_support", self.min_support, False, (float)])
358
- self.__arg_info_matrix.append(["time_column", self.time_column, True, (str)])
359
- self.__arg_info_matrix.append(["path_filters", self.path_filters, True, (str,list)])
360
- self.__arg_info_matrix.append(["groupby_columns", self.groupby_columns, True, (str,list)])
361
- self.__arg_info_matrix.append(["item_column", self.item_column, True, (str,list)])
362
- self.__arg_info_matrix.append(["item_definition_table", self.item_definition_table, True, (DataFrame)])
363
- self.__arg_info_matrix.append(["path_column", self.path_column, True, (str)])
364
- self.__arg_info_matrix.append(["max_length", self.max_length, True, (int)])
365
- self.__arg_info_matrix.append(["min_length", self.min_length, True, (int)])
366
- self.__arg_info_matrix.append(["closed_pattern", self.closed_pattern, True, (bool)])
367
- self.__arg_info_matrix.append(["item_definition_columns", self.item_definition_columns, True, (str)])
368
- self.__arg_info_matrix.append(["partition_columns", self.partition_columns, False, (str,list)])
369
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
370
- self.__arg_info_matrix.append(["item_definition_table_sequence_column", self.item_definition_table_sequence_column, True, (str,list)])
371
-
372
- if inspect.stack()[1][3] != '_from_model_catalog':
373
- # Perform the function validations
374
- self.__validate()
375
- # Generate the ML query
376
- self.__form_tdml_query()
377
- # Execute ML query
378
- self.__execute()
379
- # Get the prediction type
380
- self._prediction_type = self.__awu._get_function_prediction_type(self)
381
-
382
- # End the timer to get the build time
383
- _end_time = time.time()
384
-
385
- # Calculate the build time
386
- self._build_time = (int)(_end_time - _start_time)
387
-
388
- def __validate(self):
389
- """
390
- Function to validate sqlmr function arguments, which verifies missing
391
- arguments, input argument and table types. Also processes the
392
- argument values.
393
- """
394
-
395
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
396
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
397
-
398
- # Make sure that a non-NULL value has been supplied correct type of argument
399
- self.__awu._validate_argument_types(self.__arg_info_matrix)
400
-
401
- # Check to make sure input table types are strings or data frame objects or of valid type.
402
- self.__awu._validate_input_table_datatype(self.data, "data", None)
403
- self.__awu._validate_input_table_datatype(self.item_definition_table, "item_definition_table", None)
404
-
405
- # Check whether the input columns passed to the argument are not empty.
406
- # Also check whether the input columns passed to the argument are valid or not.
407
- self.__awu._validate_input_columns_not_empty(self.partition_columns, "partition_columns")
408
- self.__awu._validate_dataframe_has_argument_columns(self.partition_columns, "partition_columns", self.data, "data", False)
409
-
410
- self.__awu._validate_input_columns_not_empty(self.time_column, "time_column")
411
- self.__awu._validate_dataframe_has_argument_columns(self.time_column, "time_column", self.data, "data", False)
412
-
413
- self.__awu._validate_input_columns_not_empty(self.groupby_columns, "groupby_columns")
414
- self.__awu._validate_dataframe_has_argument_columns(self.groupby_columns, "groupby_columns", self.data, "data", False)
415
-
416
- self.__awu._validate_input_columns_not_empty(self.item_column, "item_column")
417
- self.__awu._validate_dataframe_has_argument_columns(self.item_column, "item_column", self.data, "data", False)
418
-
419
- self.__awu._validate_input_columns_not_empty(self.path_column, "path_column")
420
- self.__awu._validate_dataframe_has_argument_columns(self.path_column, "path_column", self.data, "data", False)
421
-
422
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
423
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
424
-
425
- self.__awu._validate_input_columns_not_empty(self.item_definition_table_sequence_column, "item_definition_table_sequence_column")
426
- self.__awu._validate_dataframe_has_argument_columns(self.item_definition_table_sequence_column, "item_definition_table_sequence_column", self.item_definition_table, "item_definition_table", False)
427
-
428
-
429
- def __form_tdml_query(self):
430
- """
431
- Function to generate the analytical function queries. The function defines
432
- variables and list of arguments required to form the query.
433
- """
434
- # Generate temp table names for output table parameters if any.
435
- self.__subsequence_data_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_frequentpaths0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
436
- self.__seq_pattern_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_frequentpaths1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
437
-
438
- # Output table arguments list
439
- self.__func_output_args_sql_names = ["OutputTable", "SeqPatternTable"]
440
- self.__func_output_args = [self.__subsequence_data_temp_tablename, self.__seq_pattern_table_temp_tablename]
441
-
442
- # Model Cataloging related attributes.
443
- self._sql_specific_attributes = {}
444
- self._sql_formula_attribute_mapper = {}
445
- self._target_column = None
446
- self._algorithm_name = None
447
-
448
- # Generate lists for rest of the function arguments
449
- self.__func_other_arg_sql_names = []
450
- self.__func_other_args = []
451
- self.__func_other_arg_json_datatypes = []
452
-
453
- self.__func_other_arg_sql_names.append("PartitionColumns")
454
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.partition_columns, "\""), "'"))
455
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
456
-
457
- if self.time_column is not None:
458
- self.__func_other_arg_sql_names.append("TimeColumn")
459
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.time_column, "\""), "'"))
460
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
461
-
462
- if self.groupby_columns is not None:
463
- self.__func_other_arg_sql_names.append("GroupByColumns")
464
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.groupby_columns, "\""), "'"))
465
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
466
-
467
- if self.item_column is not None:
468
- self.__func_other_arg_sql_names.append("ItemColumn")
469
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.item_column, "\""), "'"))
470
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
471
-
472
- if self.path_column is not None:
473
- self.__func_other_arg_sql_names.append("PathColumn")
474
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.path_column, "\""), "'"))
475
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
476
-
477
- self.__func_other_arg_sql_names.append("MinSupport")
478
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.min_support, "'"))
479
- self.__func_other_arg_json_datatypes.append("DOUBLE")
480
-
481
- if self.path_filters is not None:
482
- self.__func_other_arg_sql_names.append("PathFilters")
483
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.path_filters, "'"))
484
- self.__func_other_arg_json_datatypes.append("STRING")
485
-
486
- if self.item_definition_columns is not None:
487
- self.__func_other_arg_sql_names.append("ItemDefinitionColumns")
488
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.item_definition_columns, "'"))
489
- self.__func_other_arg_json_datatypes.append("STRING")
490
-
491
- if self.max_length is not None and self.max_length != 2147483647:
492
- self.__func_other_arg_sql_names.append("MaxLength")
493
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_length, "'"))
494
- self.__func_other_arg_json_datatypes.append("INTEGER")
495
-
496
- if self.min_length is not None and self.min_length != 1:
497
- self.__func_other_arg_sql_names.append("MinLength")
498
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.min_length, "'"))
499
- self.__func_other_arg_json_datatypes.append("INTEGER")
500
-
501
- if self.closed_pattern is not None and self.closed_pattern != False:
502
- self.__func_other_arg_sql_names.append("ClosedPattern")
503
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.closed_pattern, "'"))
504
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
505
-
506
- # Generate lists for rest of the function arguments
507
- sequence_input_by_list = []
508
- if self.data_sequence_column is not None:
509
- sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
510
-
511
- if self.item_definition_table_sequence_column is not None:
512
- sequence_input_by_list.append("ItemDefinitionTable:" + UtilFuncs._teradata_collapse_arglist(self.item_definition_table_sequence_column, ""))
513
-
514
- if len(sequence_input_by_list) > 0:
515
- self.__func_other_arg_sql_names.append("SequenceInputBy")
516
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
517
- self.__func_other_args.append(sequence_input_by_arg_value)
518
- self.__func_other_arg_json_datatypes.append("STRING")
519
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
520
-
521
-
522
- # Declare empty lists to hold input table information.
523
- self.__func_input_arg_sql_names = []
524
- self.__func_input_table_view_query = []
525
- self.__func_input_dataframe_type = []
526
- self.__func_input_distribution = []
527
- self.__func_input_partition_by_cols = []
528
- self.__func_input_order_by_cols = []
529
-
530
- # Process data
531
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
532
- self.__func_input_distribution.append("NONE")
533
- self.__func_input_arg_sql_names.append("InputTable")
534
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
535
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
536
- self.__func_input_partition_by_cols.append("NA_character_")
537
- self.__func_input_order_by_cols.append("NA_character_")
538
-
539
- # Process item_definition_table
540
- if self.item_definition_table is not None:
541
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.item_definition_table, False)
542
- self.__func_input_distribution.append("NONE")
543
- self.__func_input_arg_sql_names.append("ItemDefinitionTable")
544
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
545
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
546
- self.__func_input_partition_by_cols.append("NA_character_")
547
- self.__func_input_order_by_cols.append("NA_character_")
548
-
549
- function_name = "FrequentPaths"
550
- # Create instance to generate SQLMR.
551
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
552
- self.__func_input_arg_sql_names,
553
- self.__func_input_table_view_query,
554
- self.__func_input_dataframe_type,
555
- self.__func_input_distribution,
556
- self.__func_input_partition_by_cols,
557
- self.__func_input_order_by_cols,
558
- self.__func_other_arg_sql_names,
559
- self.__func_other_args,
560
- self.__func_other_arg_json_datatypes,
561
- self.__func_output_args_sql_names,
562
- self.__func_output_args,
563
- engine="ENGINE_ML")
564
- # Invoke call to SQL-MR generation.
565
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
566
-
567
- # Print SQL-MR query if requested to do so.
568
- if display.print_sqlmr_query:
569
- print(self.sqlmr_query)
570
-
571
- # Set the algorithm name for Model Cataloging.
572
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
573
-
574
- def __execute(self):
575
- """
576
- Function to execute SQL-MR queries.
577
- Create DataFrames for the required SQL-MR outputs.
578
- """
579
- # Generate STDOUT table name and add it to the output table list.
580
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
581
- try:
582
- # Generate the output.
583
- UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
584
- except Exception as emsg:
585
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
586
-
587
- # Update output table data frames.
588
- self._mlresults = []
589
- self.subsequence_data = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__subsequence_data_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__subsequence_data_temp_tablename))
590
- self.seq_pattern_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__seq_pattern_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__seq_pattern_table_temp_tablename))
591
- self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
592
- self._mlresults.append(self.subsequence_data)
593
- self._mlresults.append(self.seq_pattern_table)
594
- self._mlresults.append(self.output)
595
-
596
- def show_query(self):
597
- """
598
- Function to return the underlying SQL query.
599
- When model object is created using retrieve_model(), then None is returned.
600
- """
601
- return self.sqlmr_query
602
-
603
- def get_prediction_type(self):
604
- """
605
- Function to return the Prediction type of the algorithm.
606
- When model object is created using retrieve_model(), then the value returned is
607
- as saved in the Model Catalog.
608
- """
609
- return self._prediction_type
610
-
611
- def get_target_column(self):
612
- """
613
- Function to return the Target Column of the algorithm.
614
- When model object is created using retrieve_model(), then the value returned is
615
- as saved in the Model Catalog.
616
- """
617
- return self._target_column
618
-
619
- def get_build_time(self):
620
- """
621
- Function to return the build time of the algorithm in seconds.
622
- When model object is created using retrieve_model(), then the value returned is
623
- as saved in the Model Catalog.
624
- """
625
- return self._build_time
626
-
627
- def _get_algorithm_name(self):
628
- """
629
- Function to return the name of the algorithm.
630
- """
631
- return self._algorithm_name
632
-
633
- def _get_sql_specific_attributes(self):
634
- """
635
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
636
- """
637
- return self._sql_specific_attributes
638
-
639
- @classmethod
640
- def _from_model_catalog(cls,
641
- subsequence_data = None,
642
- seq_pattern_table = None,
643
- output = None,
644
- **kwargs):
645
- """
646
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
647
- """
648
- kwargs.pop("subsequence_data", None)
649
- kwargs.pop("seq_pattern_table", None)
650
- kwargs.pop("output", None)
651
-
652
- # Model Cataloging related attributes.
653
- target_column = kwargs.pop("__target_column", None)
654
- prediction_type = kwargs.pop("__prediction_type", None)
655
- algorithm_name = kwargs.pop("__algorithm_name", None)
656
- build_time = kwargs.pop("__build_time", None)
657
-
658
- # Let's create an object of this class.
659
- obj = cls(**kwargs)
660
- obj.subsequence_data = subsequence_data
661
- obj.seq_pattern_table = seq_pattern_table
662
- obj.output = output
663
-
664
- # Initialize the sqlmr_query class attribute.
665
- obj.sqlmr_query = None
666
-
667
- # Initialize the SQL specific Model Cataloging attributes.
668
- obj._sql_specific_attributes = None
669
- obj._target_column = target_column
670
- obj._prediction_type = prediction_type
671
- obj._algorithm_name = algorithm_name
672
- obj._build_time = build_time
673
-
674
- # Update output table data frames.
675
- obj._mlresults = []
676
- obj.subsequence_data = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.subsequence_data), source_type="table", database_name=UtilFuncs._extract_db_name(obj.subsequence_data))
677
- obj.seq_pattern_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.seq_pattern_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.seq_pattern_table))
678
- obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
679
- obj._mlresults.append(obj.subsequence_data)
680
- obj._mlresults.append(obj.seq_pattern_table)
681
- obj._mlresults.append(obj.output)
682
- return obj
683
-
684
- def __repr__(self):
685
- """
686
- Returns the string representation for a FrequentPaths class instance.
687
- """
688
- repr_string="############ STDOUT Output ############"
689
- repr_string = "{}\n\n{}".format(repr_string,self.output)
690
- repr_string="{}\n\n\n############ subsequence_data Output ############".format(repr_string)
691
- repr_string = "{}\n\n{}".format(repr_string,self.subsequence_data)
692
- repr_string="{}\n\n\n############ seq_pattern_table Output ############".format(repr_string)
693
- repr_string = "{}\n\n{}".format(repr_string,self.seq_pattern_table)
694
- return repr_string
695
-