teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,557 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Rohit Agrawal (rohit.agrawal@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.7
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.options.configure import configure
|
|
30
|
-
|
|
31
|
-
class SVMSparse:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
data = None,
|
|
35
|
-
sample_id_column = None,
|
|
36
|
-
attribute_column = None,
|
|
37
|
-
value_column = None,
|
|
38
|
-
label_column = None,
|
|
39
|
-
cost = 1.0,
|
|
40
|
-
bias = 0.0,
|
|
41
|
-
hash = False,
|
|
42
|
-
hash_buckets = None,
|
|
43
|
-
class_weights = None,
|
|
44
|
-
max_step = 100,
|
|
45
|
-
epsilon = 0.01,
|
|
46
|
-
seed = 0,
|
|
47
|
-
data_sequence_column = None,
|
|
48
|
-
force_mapreduce = False):
|
|
49
|
-
"""
|
|
50
|
-
DESCRIPTION:
|
|
51
|
-
The SVMSparse function takes training data (in sparse format) and
|
|
52
|
-
outputs a predictive model in binary format, which is input to the
|
|
53
|
-
functions SVMSparsePredict and SVMSparseSummary.
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
PARAMETERS:
|
|
57
|
-
data:
|
|
58
|
-
Required Argument.
|
|
59
|
-
Specifies the name of the teradataml DataFrame that contains
|
|
60
|
-
the training samples.
|
|
61
|
-
|
|
62
|
-
sample_id_column:
|
|
63
|
-
Required Argument.
|
|
64
|
-
Specifies the name of the column in data, teradataml DataFrame
|
|
65
|
-
that contains the identifiers of the training samples.
|
|
66
|
-
Types: str
|
|
67
|
-
|
|
68
|
-
attribute_column:
|
|
69
|
-
Required Argument.
|
|
70
|
-
Specifies the name of the column in data, teradataml DataFrame
|
|
71
|
-
that contains the attributes of the samples.
|
|
72
|
-
Types: str
|
|
73
|
-
|
|
74
|
-
value_column:
|
|
75
|
-
Optional Argument. Required when teradataml is connected to
|
|
76
|
-
Vantage 1.3 version.
|
|
77
|
-
Specifies the name of the column in data, teradataml DataFrame
|
|
78
|
-
that contains the attribute values.
|
|
79
|
-
Types: str
|
|
80
|
-
|
|
81
|
-
label_column:
|
|
82
|
-
Required Argument.
|
|
83
|
-
Specifies the name of the column in data, teradataml DataFrame
|
|
84
|
-
that contains the classes of the samples.
|
|
85
|
-
Types: str
|
|
86
|
-
|
|
87
|
-
cost:
|
|
88
|
-
Optional Argument.
|
|
89
|
-
Specifies the regularization parameter in the SVM soft-margin loss function:
|
|
90
|
-
Cost must be greater than 0.0.
|
|
91
|
-
Default Value: 1.0
|
|
92
|
-
Types: float
|
|
93
|
-
|
|
94
|
-
bias:
|
|
95
|
-
Optional Argument.
|
|
96
|
-
Specifies a non-negative value. If the value is greater than zero, each sample
|
|
97
|
-
x in the training set will be converted to (x, b); that is, it will
|
|
98
|
-
add another dimension containing the bias value b. This argument
|
|
99
|
-
addresses situations where not all samples center at 0.
|
|
100
|
-
Default Value: 0.0
|
|
101
|
-
Types: float
|
|
102
|
-
|
|
103
|
-
hash:
|
|
104
|
-
Optional Argument.
|
|
105
|
-
Specifies whether to use hash projection on attributes. hash
|
|
106
|
-
projection can accelerate processing speed but can slightly decrease
|
|
107
|
-
accuracy.
|
|
108
|
-
Note: You must use hash projection if the dataset has more
|
|
109
|
-
features than fit into memory.
|
|
110
|
-
Default Value: False
|
|
111
|
-
Types: bool
|
|
112
|
-
|
|
113
|
-
hash_buckets:
|
|
114
|
-
Optional Argument.
|
|
115
|
-
Valid only if hash is True. Specifies the number of buckets for
|
|
116
|
-
hash projection. In most cases, the function can determine the
|
|
117
|
-
appropriate number of buckets from the scale of the input data set.
|
|
118
|
-
However, if the dataset has a very large number of features, you
|
|
119
|
-
might have to specify buckets_number to accelerate the function.
|
|
120
|
-
Types: int
|
|
121
|
-
|
|
122
|
-
class_weights:
|
|
123
|
-
Optional Argument.
|
|
124
|
-
Specifies the weights for different classes. The format is:
|
|
125
|
-
"classlabel m:weight m, classlabel n:weight n". If weight for a class
|
|
126
|
-
is given, the cost parameter for this class is weight * cost. A
|
|
127
|
-
weight larger than 1 often increases the accuracy of the
|
|
128
|
-
corresponding class; however, it may decrease global accuracy.
|
|
129
|
-
Classes not assigned a weight in this argument is assigned a weight
|
|
130
|
-
of 1.0.
|
|
131
|
-
Types: str OR list of Strings (str)
|
|
132
|
-
|
|
133
|
-
max_step:
|
|
134
|
-
Optional Argument.
|
|
135
|
-
Specifies a positive integer value that specifies the maximum number of
|
|
136
|
-
iterations of the training process. One step means that each sample
|
|
137
|
-
is seen once by the trainer. The input value must be in the range (0,
|
|
138
|
-
10000].
|
|
139
|
-
Default Value: 100
|
|
140
|
-
Types: int
|
|
141
|
-
|
|
142
|
-
epsilon:
|
|
143
|
-
Optional Argument.
|
|
144
|
-
Specifies the termination criterion. When the difference between the values of the
|
|
145
|
-
loss function in two sequential iterations is less than this number,
|
|
146
|
-
the function stops. epsilon must be greater than 0.0.
|
|
147
|
-
Default Value: 0.01
|
|
148
|
-
Types: float
|
|
149
|
-
|
|
150
|
-
seed:
|
|
151
|
-
Optional Argument.
|
|
152
|
-
A long integer value used to order the training set randomly and
|
|
153
|
-
consistently. This value can be used to ensure that the same model
|
|
154
|
-
will be generated if the function is run multiple times in a given
|
|
155
|
-
database with the same arguments. The input value must be in the
|
|
156
|
-
range [0, 9223372036854775807].
|
|
157
|
-
Default Value: 0
|
|
158
|
-
Types: int
|
|
159
|
-
|
|
160
|
-
data_sequence_column:
|
|
161
|
-
Optional Argument.
|
|
162
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
163
|
-
the input argument "data". The argument is used to ensure
|
|
164
|
-
deterministic results for functions which produce results that vary
|
|
165
|
-
from run to run.
|
|
166
|
-
Types: str OR list of Strings (str)
|
|
167
|
-
|
|
168
|
-
force_mapreduce:
|
|
169
|
-
Optional Argument.
|
|
170
|
-
Specifies whether the function is to use MapReduce. If set to
|
|
171
|
-
'False', a lighter version of the function runs for faster results.
|
|
172
|
-
Note:
|
|
173
|
-
1. The model may be different with "force_mapreduce" set to 'True' and
|
|
174
|
-
"force_mapreduce" set to 'False'.
|
|
175
|
-
2. "force_mapreduce" argument support is only available when teradataml
|
|
176
|
-
is connected to Vantage 1.3 version.
|
|
177
|
-
Default Value: False
|
|
178
|
-
Types: bool
|
|
179
|
-
|
|
180
|
-
RETURNS:
|
|
181
|
-
Instance of SVMSparse.
|
|
182
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
183
|
-
references, such as SVMSparseObj.<attribute_name>.
|
|
184
|
-
Output teradataml DataFrame attribute names are:
|
|
185
|
-
1. model_table
|
|
186
|
-
2. output
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
RAISES:
|
|
190
|
-
TeradataMlException, TypeError, ValueError
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
EXAMPLES:
|
|
194
|
-
# Load the data to run the example.
|
|
195
|
-
load_example_data("SVMSparse","svm_iris_input_train")
|
|
196
|
-
|
|
197
|
-
# Create teradataml DataFrame
|
|
198
|
-
svm_iris_input_train = DataFrame.from_table("svm_iris_input_train")
|
|
199
|
-
|
|
200
|
-
# Example 1
|
|
201
|
-
svm_sparse_out = SVMSparse(data=svm_iris_input_train,
|
|
202
|
-
sample_id_column='id',
|
|
203
|
-
attribute_column='attribute',
|
|
204
|
-
label_column='species',
|
|
205
|
-
value_column='value1',
|
|
206
|
-
max_step=150,
|
|
207
|
-
seed=0,
|
|
208
|
-
)
|
|
209
|
-
# Print the result DataFrame
|
|
210
|
-
print(svm_sparse_out.model_table)
|
|
211
|
-
print(svm_sparse_out.output)
|
|
212
|
-
|
|
213
|
-
"""
|
|
214
|
-
|
|
215
|
-
# Start the timer to get the build time
|
|
216
|
-
_start_time = time.time()
|
|
217
|
-
|
|
218
|
-
self.data = data
|
|
219
|
-
self.sample_id_column = sample_id_column
|
|
220
|
-
self.attribute_column = attribute_column
|
|
221
|
-
self.value_column = value_column
|
|
222
|
-
self.label_column = label_column
|
|
223
|
-
self.cost = cost
|
|
224
|
-
self.bias = bias
|
|
225
|
-
self.hash = hash
|
|
226
|
-
self.hash_buckets = hash_buckets
|
|
227
|
-
self.class_weights = class_weights
|
|
228
|
-
self.max_step = max_step
|
|
229
|
-
self.epsilon = epsilon
|
|
230
|
-
self.seed = seed
|
|
231
|
-
self.force_mapreduce = force_mapreduce
|
|
232
|
-
self.data_sequence_column = data_sequence_column
|
|
233
|
-
|
|
234
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
235
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
236
|
-
self.__aed_utils = AedUtils()
|
|
237
|
-
|
|
238
|
-
# Create argument information matrix to do parameter checking
|
|
239
|
-
self.__arg_info_matrix = []
|
|
240
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
241
|
-
self.__arg_info_matrix.append(["sample_id_column", self.sample_id_column, False, (str)])
|
|
242
|
-
self.__arg_info_matrix.append(["attribute_column", self.attribute_column, False, (str)])
|
|
243
|
-
self.__arg_info_matrix.append(["value_column", self.value_column, configure._vantage_version != "vantage1.3", (str)])
|
|
244
|
-
self.__arg_info_matrix.append(["label_column", self.label_column, False, (str)])
|
|
245
|
-
self.__arg_info_matrix.append(["cost", self.cost, True, (float)])
|
|
246
|
-
self.__arg_info_matrix.append(["bias", self.bias, True, (float)])
|
|
247
|
-
self.__arg_info_matrix.append(["hash", self.hash, True, (bool)])
|
|
248
|
-
self.__arg_info_matrix.append(["hash_buckets", self.hash_buckets, True, (int)])
|
|
249
|
-
self.__arg_info_matrix.append(["class_weights", self.class_weights, True, (str,list)])
|
|
250
|
-
self.__arg_info_matrix.append(["max_step", self.max_step, True, (int)])
|
|
251
|
-
self.__arg_info_matrix.append(["epsilon", self.epsilon, True, (float)])
|
|
252
|
-
self.__arg_info_matrix.append(["seed", self.seed, True, (int)])
|
|
253
|
-
self.__arg_info_matrix.append(["force_mapreduce", self.force_mapreduce, True, (bool)])
|
|
254
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
255
|
-
|
|
256
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
257
|
-
# Perform the function validations
|
|
258
|
-
self.__validate()
|
|
259
|
-
# Generate the ML query
|
|
260
|
-
self.__form_tdml_query()
|
|
261
|
-
# Execute ML query
|
|
262
|
-
self.__execute()
|
|
263
|
-
# Get the prediction type
|
|
264
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
265
|
-
|
|
266
|
-
# End the timer to get the build time
|
|
267
|
-
_end_time = time.time()
|
|
268
|
-
|
|
269
|
-
# Calculate the build time
|
|
270
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
271
|
-
|
|
272
|
-
def __validate(self):
|
|
273
|
-
"""
|
|
274
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
275
|
-
arguments, input argument and table types. Also processes the
|
|
276
|
-
argument values.
|
|
277
|
-
"""
|
|
278
|
-
|
|
279
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
280
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
281
|
-
|
|
282
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
283
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
284
|
-
|
|
285
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
286
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
287
|
-
|
|
288
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
289
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
290
|
-
self.__awu._validate_input_columns_not_empty(self.sample_id_column, "sample_id_column")
|
|
291
|
-
self.__awu._validate_dataframe_has_argument_columns(self.sample_id_column, "sample_id_column", self.data, "data", False)
|
|
292
|
-
|
|
293
|
-
self.__awu._validate_input_columns_not_empty(self.attribute_column, "attribute_column")
|
|
294
|
-
self.__awu._validate_dataframe_has_argument_columns(self.attribute_column, "attribute_column", self.data, "data", False)
|
|
295
|
-
|
|
296
|
-
self.__awu._validate_input_columns_not_empty(self.label_column, "label_column")
|
|
297
|
-
self.__awu._validate_dataframe_has_argument_columns(self.label_column, "label_column", self.data, "data", False)
|
|
298
|
-
self.__awu._validate_input_columns_not_empty(self.value_column, "value_column")
|
|
299
|
-
self.__awu._validate_dataframe_has_argument_columns(self.value_column, "value_column", self.data, "data", False)
|
|
300
|
-
|
|
301
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
302
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
303
|
-
|
|
304
|
-
|
|
305
|
-
def __form_tdml_query(self):
|
|
306
|
-
"""
|
|
307
|
-
Function to generate the analytical function queries. The function defines
|
|
308
|
-
variables and list of arguments required to form the query.
|
|
309
|
-
"""
|
|
310
|
-
# Generate temp table names for output table parameters if any.
|
|
311
|
-
self.__model_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_svmsparse0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
312
|
-
|
|
313
|
-
# Output table arguments list
|
|
314
|
-
self.__func_output_args_sql_names = ["ModelTable"]
|
|
315
|
-
self.__func_output_args = [self.__model_table_temp_tablename]
|
|
316
|
-
|
|
317
|
-
# Model Cataloging related attributes.
|
|
318
|
-
self._sql_specific_attributes = {}
|
|
319
|
-
self._sql_formula_attribute_mapper = {}
|
|
320
|
-
self._target_column = None
|
|
321
|
-
self._algorithm_name = None
|
|
322
|
-
|
|
323
|
-
# Generate lists for rest of the function arguments
|
|
324
|
-
self.__func_other_arg_sql_names = []
|
|
325
|
-
self.__func_other_args = []
|
|
326
|
-
self.__func_other_arg_json_datatypes = []
|
|
327
|
-
|
|
328
|
-
self.__func_other_arg_sql_names.append("IDColumn")
|
|
329
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.sample_id_column, "\""), "'"))
|
|
330
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
331
|
-
|
|
332
|
-
self.__func_other_arg_sql_names.append("AttributeNameColumn")
|
|
333
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attribute_column, "\""), "'"))
|
|
334
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
335
|
-
|
|
336
|
-
self.__func_other_arg_sql_names.append("ResponseColumn")
|
|
337
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.label_column, "\""), "'"))
|
|
338
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
339
|
-
|
|
340
|
-
if self.value_column is not None:
|
|
341
|
-
self.__func_other_arg_sql_names.append("AttributeValueColumn")
|
|
342
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.value_column, "\""), "'"))
|
|
343
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
344
|
-
|
|
345
|
-
if self.hash is not None and self.hash != False:
|
|
346
|
-
self.__func_other_arg_sql_names.append("HashProjection")
|
|
347
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.hash, "'"))
|
|
348
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
349
|
-
|
|
350
|
-
if self.hash_buckets is not None:
|
|
351
|
-
self.__func_other_arg_sql_names.append("HashBuckets")
|
|
352
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.hash_buckets, "'"))
|
|
353
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
354
|
-
|
|
355
|
-
if self.force_mapreduce is not None and self.force_mapreduce != False:
|
|
356
|
-
self.__func_other_arg_sql_names.append("ForceMapReduce")
|
|
357
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.force_mapreduce, "'"))
|
|
358
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
359
|
-
|
|
360
|
-
if self.cost is not None and self.cost != 1.0:
|
|
361
|
-
self.__func_other_arg_sql_names.append("Cost")
|
|
362
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.cost, "'"))
|
|
363
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
364
|
-
|
|
365
|
-
if self.bias is not None and self.bias != 0.0:
|
|
366
|
-
self.__func_other_arg_sql_names.append("Bias")
|
|
367
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.bias, "'"))
|
|
368
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
369
|
-
|
|
370
|
-
if self.class_weights is not None:
|
|
371
|
-
self.__func_other_arg_sql_names.append("ClassWeights")
|
|
372
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.class_weights, "'"))
|
|
373
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
374
|
-
|
|
375
|
-
if self.max_step is not None and self.max_step != 100:
|
|
376
|
-
self.__func_other_arg_sql_names.append("MaxStep")
|
|
377
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_step, "'"))
|
|
378
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
379
|
-
|
|
380
|
-
if self.epsilon is not None and self.epsilon != 0.01:
|
|
381
|
-
self.__func_other_arg_sql_names.append("Epsilon")
|
|
382
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.epsilon, "'"))
|
|
383
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
384
|
-
|
|
385
|
-
if self.seed is not None and self.seed != 0:
|
|
386
|
-
self.__func_other_arg_sql_names.append("Seed")
|
|
387
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seed, "'"))
|
|
388
|
-
self.__func_other_arg_json_datatypes.append("LONG")
|
|
389
|
-
|
|
390
|
-
# Generate lists for rest of the function arguments
|
|
391
|
-
sequence_input_by_list = []
|
|
392
|
-
if self.data_sequence_column is not None:
|
|
393
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
394
|
-
|
|
395
|
-
if len(sequence_input_by_list) > 0:
|
|
396
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
397
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
398
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
399
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
400
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
401
|
-
|
|
402
|
-
|
|
403
|
-
# Declare empty lists to hold input table information.
|
|
404
|
-
self.__func_input_arg_sql_names = []
|
|
405
|
-
self.__func_input_table_view_query = []
|
|
406
|
-
self.__func_input_dataframe_type = []
|
|
407
|
-
self.__func_input_distribution = []
|
|
408
|
-
self.__func_input_partition_by_cols = []
|
|
409
|
-
self.__func_input_order_by_cols = []
|
|
410
|
-
|
|
411
|
-
# Process data
|
|
412
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
413
|
-
self.__func_input_distribution.append("NONE")
|
|
414
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
415
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
416
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
417
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
418
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
419
|
-
|
|
420
|
-
function_name = "SVMSparse"
|
|
421
|
-
# Create instance to generate SQLMR.
|
|
422
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
423
|
-
self.__func_input_arg_sql_names,
|
|
424
|
-
self.__func_input_table_view_query,
|
|
425
|
-
self.__func_input_dataframe_type,
|
|
426
|
-
self.__func_input_distribution,
|
|
427
|
-
self.__func_input_partition_by_cols,
|
|
428
|
-
self.__func_input_order_by_cols,
|
|
429
|
-
self.__func_other_arg_sql_names,
|
|
430
|
-
self.__func_other_args,
|
|
431
|
-
self.__func_other_arg_json_datatypes,
|
|
432
|
-
self.__func_output_args_sql_names,
|
|
433
|
-
self.__func_output_args,
|
|
434
|
-
engine="ENGINE_ML")
|
|
435
|
-
# Invoke call to SQL-MR generation.
|
|
436
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
437
|
-
|
|
438
|
-
# Print SQL-MR query if requested to do so.
|
|
439
|
-
if display.print_sqlmr_query:
|
|
440
|
-
print(self.sqlmr_query)
|
|
441
|
-
|
|
442
|
-
# Set the algorithm name for Model Cataloging.
|
|
443
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
444
|
-
|
|
445
|
-
def __execute(self):
|
|
446
|
-
"""
|
|
447
|
-
Function to execute SQL-MR queries.
|
|
448
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
449
|
-
"""
|
|
450
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
451
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
452
|
-
try:
|
|
453
|
-
# Generate the output.
|
|
454
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
455
|
-
except Exception as emsg:
|
|
456
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
457
|
-
|
|
458
|
-
# Update output table data frames.
|
|
459
|
-
self._mlresults = []
|
|
460
|
-
self.model_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__model_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__model_table_temp_tablename))
|
|
461
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
462
|
-
self._mlresults.append(self.model_table)
|
|
463
|
-
self._mlresults.append(self.output)
|
|
464
|
-
|
|
465
|
-
def show_query(self):
|
|
466
|
-
"""
|
|
467
|
-
Function to return the underlying SQL query.
|
|
468
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
469
|
-
"""
|
|
470
|
-
return self.sqlmr_query
|
|
471
|
-
|
|
472
|
-
def get_prediction_type(self):
|
|
473
|
-
"""
|
|
474
|
-
Function to return the Prediction type of the algorithm.
|
|
475
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
476
|
-
as saved in the Model Catalog.
|
|
477
|
-
"""
|
|
478
|
-
return self._prediction_type
|
|
479
|
-
|
|
480
|
-
def get_target_column(self):
|
|
481
|
-
"""
|
|
482
|
-
Function to return the Target Column of the algorithm.
|
|
483
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
484
|
-
as saved in the Model Catalog.
|
|
485
|
-
"""
|
|
486
|
-
return self._target_column
|
|
487
|
-
|
|
488
|
-
def get_build_time(self):
|
|
489
|
-
"""
|
|
490
|
-
Function to return the build time of the algorithm in seconds.
|
|
491
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
492
|
-
as saved in the Model Catalog.
|
|
493
|
-
"""
|
|
494
|
-
return self._build_time
|
|
495
|
-
|
|
496
|
-
def _get_algorithm_name(self):
|
|
497
|
-
"""
|
|
498
|
-
Function to return the name of the algorithm.
|
|
499
|
-
"""
|
|
500
|
-
return self._algorithm_name
|
|
501
|
-
|
|
502
|
-
def _get_sql_specific_attributes(self):
|
|
503
|
-
"""
|
|
504
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
505
|
-
"""
|
|
506
|
-
return self._sql_specific_attributes
|
|
507
|
-
|
|
508
|
-
@classmethod
|
|
509
|
-
def _from_model_catalog(cls,
|
|
510
|
-
model_table = None,
|
|
511
|
-
output = None,
|
|
512
|
-
**kwargs):
|
|
513
|
-
"""
|
|
514
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
515
|
-
"""
|
|
516
|
-
kwargs.pop("model_table", None)
|
|
517
|
-
kwargs.pop("output", None)
|
|
518
|
-
|
|
519
|
-
# Model Cataloging related attributes.
|
|
520
|
-
target_column = kwargs.pop("__target_column", None)
|
|
521
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
522
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
523
|
-
build_time = kwargs.pop("__build_time", None)
|
|
524
|
-
|
|
525
|
-
# Let's create an object of this class.
|
|
526
|
-
obj = cls(**kwargs)
|
|
527
|
-
obj.model_table = model_table
|
|
528
|
-
obj.output = output
|
|
529
|
-
|
|
530
|
-
# Initialize the sqlmr_query class attribute.
|
|
531
|
-
obj.sqlmr_query = None
|
|
532
|
-
|
|
533
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
534
|
-
obj._sql_specific_attributes = None
|
|
535
|
-
obj._target_column = target_column
|
|
536
|
-
obj._prediction_type = prediction_type
|
|
537
|
-
obj._algorithm_name = algorithm_name
|
|
538
|
-
obj._build_time = build_time
|
|
539
|
-
|
|
540
|
-
# Update output table data frames.
|
|
541
|
-
obj._mlresults = []
|
|
542
|
-
obj.model_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.model_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.model_table))
|
|
543
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
544
|
-
obj._mlresults.append(obj.model_table)
|
|
545
|
-
obj._mlresults.append(obj.output)
|
|
546
|
-
return obj
|
|
547
|
-
|
|
548
|
-
def __repr__(self):
|
|
549
|
-
"""
|
|
550
|
-
Returns the string representation for a SVMSparse class instance.
|
|
551
|
-
"""
|
|
552
|
-
repr_string="############ STDOUT Output ############"
|
|
553
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
554
|
-
repr_string="{}\n\n\n############ model_table Output ############".format(repr_string)
|
|
555
|
-
repr_string = "{}\n\n{}".format(repr_string,self.model_table)
|
|
556
|
-
return repr_string
|
|
557
|
-
|