teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,558 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.20
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
- from teradataml.common.formula import Formula
30
-
31
- class GLM:
32
-
33
- def __init__(self,
34
- formula = None,
35
- family = "gaussian",
36
- linkfunction = "CANONICAL",
37
- data = None,
38
- weights = "1.0",
39
- threshold = 0.01,
40
- maxit = 25,
41
- step = False,
42
- intercept = True,
43
- data_sequence_column = None):
44
- """
45
- DESCRIPTION:
46
- The generalized linear model (GLM) is an extension of the linear
47
- regression model that enables the linear equation to be related to
48
- the dependent variables by a link function. GLM performs linear
49
- regression analysis for distribution functions using a user-specified
50
- distribution family and link function. GLM selects the link function
51
- based upon the distribution family and the assumed nonlinear
52
- distribution of expected outcomes. The teradataml DataFrame in
53
- Background describes the supported link function combinations.
54
-
55
-
56
- PARAMETERS:
57
- formula:
58
- Required Argument.
59
- A string consisting of "formula". Specifies the model to be fitted. Only
60
- basic formula of the "col1 ~ col2 + col3 +..." form is supported and
61
- all variables must be from the same virtual data frame object. The
62
- response should be column of type real, numeric, integer or boolean.
63
- Types: str
64
-
65
- family:
66
- Optional Argument.
67
- Specifies the distribution exponential family
68
- Default Value: "gaussian"
69
- Permitted Values: LOGISTIC, BINOMIAL, POISSON, GAUSSIAN, GAMMA,
70
- INVERSE_GAUSSIAN, NEGATIVE_BINOMIAL
71
- Types: str
72
-
73
- linkfunction:
74
- Optional Argument.
75
- The canonical link functions (default link functions) and the link
76
- functions that are allowed.
77
- Default Value: "CANONICAL"
78
- Permitted Values: CANONICAL, IDENTITY, INVERSE, LOG,
79
- COMPLEMENTARY_LOG_LOG, SQUARE_ROOT, INVERSE_MU_SQUARED, LOGIT,
80
- PROBIT, CAUCHIT
81
- Types: str
82
-
83
- data:
84
- Required Argument.
85
- Specifies the name of the teradataml DataFrame that contains the
86
- columns.
87
-
88
- weights:
89
- Optional Argument.
90
- Specifies the name of an input teradataml DataFrame column that
91
- contains the weights to assign to responses. The default value is
92
- 1.You can use non-NULL weights to indicate that different
93
- observations have different dispersions (with the weights being
94
- inversely proportional to the dispersions).Equivalently, when the
95
- weights are positive integers wi, each response yi is the mean of wi
96
- unit-weight observations. A binomial GLM uses prior weights to give
97
- the number of trials when the response is the proportion of
98
- successes. A Poisson GLM rarely uses weights. If the weight is less
99
- than the response value, then the function throws an exception.
100
- Therefore, if the response value is greater than 1 (the default
101
- weight), then you must specify a weight that is greater than or equal
102
- to the response value.
103
- Default Value: "1.0"
104
- Types: str
105
-
106
- threshold:
107
- Optional Argument.
108
- Specifies the convergence threshold.
109
- Default Value: 0.01
110
- Types: float
111
-
112
- maxit:
113
- Optional Argument.
114
- Specifies the maximum number of iterations that the algorithm runs
115
- before quitting if the convergence threshold has not been met.
116
- Default Value: 25
117
- Types: int
118
-
119
- step:
120
- Optional Argument.
121
- Specifies whether the function uses a step. If the function uses a
122
- step, then it runs with the GLM model that has the lowest Akaike
123
- information criterion (AIC) score, drops one predictor from the
124
- current predictor group, and repeats this process until no predictor
125
- remains.
126
- Default Value: False
127
- Types: bool
128
-
129
- intercept:
130
- Optional Argument.
131
- Specifies whether the function uses an intercept. For example, in
132
- ß0+ß1*X1+ß2*X2+ ....+ßpXp, the intercept is ß0.
133
- Default Value: True
134
- Types: bool
135
-
136
- data_sequence_column:
137
- Optional Argument.
138
- Specifies the list of column(s) that uniquely identifies each row of
139
- the input argument "data". The argument is used to ensure
140
- deterministic results for functions which produce results that vary
141
- from run to run.
142
- Types: str OR list of Strings (str)
143
-
144
- RETURNS:
145
- Instance of GLM.
146
- Output teradataml DataFrames can be accessed using attribute
147
- references, such as GLMObj.<attribute_name>.
148
- Output teradataml DataFrame attribute name is:
149
- 1. coefficients
150
- 2. output
151
-
152
-
153
- RAISES:
154
- TeradataMlException
155
-
156
-
157
- EXAMPLES:
158
- # Load the data to run the example.
159
- load_example_data("GLM", ["admissions_train", "housing_train"])
160
-
161
- # Create teradataml DataFrame objects.
162
- admissions_train = DataFrame.from_table("admissions_train")
163
- housing_train = DataFrame.from_table("housing_train")
164
-
165
- # Example 1 -
166
- glm_out1 = GLM(formula = "admitted ~ stats + masters + gpa + programming",
167
- family = "LOGISTIC",
168
- linkfunction = "LOGIT",
169
- data = admissions_train,
170
- weights = "1",
171
- threshold = 0.01,
172
- maxit = 25,
173
- step = False,
174
- intercept = True
175
- )
176
-
177
- # Print the output dataframes
178
- # STDOUT DataFrame
179
- print(glm_out1.output)
180
-
181
- # GLM Model, coefficients DataFrame
182
- print(glm_out1.coefficients)
183
-
184
- # Example 2 -
185
- glm_out2 = GLM(formula = "admitted ~ stats + masters + gpa + programming",
186
- family = "LOGISTIC",
187
- linkfunction = "LOGIT",
188
- data = admissions_train,
189
- weights = "1",
190
- threshold = 0.01,
191
- maxit = 25,
192
- step = True,
193
- intercept = True
194
- )
195
-
196
- # Print all output dataframes
197
- print(glm_out2.output)
198
-
199
- # Example 3 -
200
- glm_out3 = GLM(formula = "price ~ recroom + lotsize + stories + garagepl + gashw + bedrooms + driveway + airco + homestyle + bathrms + fullbase + prefarea",
201
- family = "GAUSSIAN",
202
- linkfunction = "IDENTITY",
203
- data = housing_train,
204
- weights = "1",
205
- threshold = 0.01,
206
- maxit = 25,
207
- step = False,
208
- intercept = True
209
- )
210
-
211
- # Print all output dataframes
212
- print(glm_out3.output)
213
- print(glm_out1.coefficients)
214
-
215
- """
216
-
217
- # Start the timer to get the build time
218
- _start_time = time.time()
219
-
220
- self.formula = formula
221
- self.family = family
222
- self.linkfunction = linkfunction
223
- self.data = data
224
- self.weights = weights
225
- self.threshold = threshold
226
- self.maxit = maxit
227
- self.step = step
228
- self.intercept = intercept
229
- self.data_sequence_column = data_sequence_column
230
-
231
- # Create TeradataPyWrapperUtils instance which contains validation functions.
232
- self.__awu = AnalyticsWrapperUtils()
233
- self.__aed_utils = AedUtils()
234
-
235
- # Create argument information matrix to do parameter checking
236
- self.__arg_info_matrix = []
237
- self.__arg_info_matrix.append(["formula", self.formula, False, "formula"])
238
- self.__arg_info_matrix.append(["family", self.family, True, (str)])
239
- self.__arg_info_matrix.append(["linkfunction", self.linkfunction, True, (str)])
240
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
241
- self.__arg_info_matrix.append(["weights", self.weights, True, (str)])
242
- self.__arg_info_matrix.append(["threshold", self.threshold, True, (float)])
243
- self.__arg_info_matrix.append(["maxit", self.maxit, True, (int)])
244
- self.__arg_info_matrix.append(["step", self.step, True, (bool)])
245
- self.__arg_info_matrix.append(["intercept", self.intercept, True, (bool)])
246
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
247
-
248
- if inspect.stack()[1][3] != '_from_model_catalog':
249
- # Perform the function validations
250
- self.__validate()
251
- # Generate the ML query
252
- self.__form_tdml_query()
253
- # Execute ML query
254
- self.__execute()
255
- # Get the prediction type
256
- self._prediction_type = self.__awu._get_function_prediction_type(self)
257
-
258
- # End the timer to get the build time
259
- _end_time = time.time()
260
-
261
- # Calculate the build time
262
- self._build_time = (int)(_end_time - _start_time)
263
-
264
- def __validate(self):
265
- """
266
- Function to validate sqlmr function arguments, which verifies missing
267
- arguments, input argument and table types. Also processes the
268
- argument values.
269
- """
270
-
271
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
272
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
273
-
274
- # Make sure that a non-NULL value has been supplied correct type of argument
275
- self.__awu._validate_argument_types(self.__arg_info_matrix)
276
-
277
- # Check to make sure input table types are strings or data frame objects or of valid type.
278
- self.__awu._validate_input_table_datatype(self.data, "data", None)
279
-
280
- # Check for permitted values
281
- family_permitted_values = ["LOGISTIC", "BINOMIAL", "POISSON", "GAUSSIAN", "GAMMA", "INVERSE_GAUSSIAN", "NEGATIVE_BINOMIAL"]
282
- self.__awu._validate_permitted_values(self.family, family_permitted_values, "family")
283
-
284
- linkfunction_permitted_values = ["CANONICAL", "IDENTITY", "INVERSE", "LOG", "COMPLEMENTARY_LOG_LOG", "SQUARE_ROOT", "INVERSE_MU_SQUARED", "LOGIT", "PROBIT", "CAUCHIT"]
285
- self.__awu._validate_permitted_values(self.linkfunction, linkfunction_permitted_values, "linkfunction")
286
-
287
- # Check whether the input columns passed to the argument are not empty.
288
- # Also check whether the input columns passed to the argument valid or not.
289
- self.__awu._validate_input_columns_not_empty(self.weights, "weights")
290
-
291
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
292
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
293
-
294
-
295
- def __form_tdml_query(self):
296
- """
297
- Function to generate the analytical function queries. The function defines
298
- variables and list of arguments required to form the query.
299
- """
300
- # Generate temp table names for output table parameters if any.
301
- self.__coefficients_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_glm0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
302
-
303
- # Output table arguments list
304
- self.__func_output_args_sql_names = ["OutputTable"]
305
- self.__func_output_args = [self.__coefficients_temp_tablename]
306
-
307
- # Model Cataloging related attributes.
308
- self._sql_specific_attributes = {}
309
- self._sql_formula_attribute_mapper = {}
310
- self._target_column = None
311
- self._algorithm_name = None
312
-
313
- # Generate lists for rest of the function arguments
314
- self.__func_other_arg_sql_names = []
315
- self.__func_other_args = []
316
- self.__func_other_arg_json_datatypes = []
317
-
318
- if self.weights is not None and self.weights != "1.0":
319
- self.__func_other_arg_sql_names.append("WeightColumn")
320
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.weights, "'"))
321
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
322
-
323
- if self.family is not None:
324
- self.__func_other_arg_sql_names.append("Family")
325
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.family, "'"))
326
- self.__func_other_arg_json_datatypes.append("STRING")
327
-
328
- if self.linkfunction is not None and self.linkfunction != "CANONICAL":
329
- self.__func_other_arg_sql_names.append("LinkFunction")
330
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.linkfunction, "'"))
331
- self.__func_other_arg_json_datatypes.append("STRING")
332
-
333
- if self.threshold is not None and self.threshold != 0.01:
334
- self.__func_other_arg_sql_names.append("StopThreshold")
335
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.threshold, "'"))
336
- self.__func_other_arg_json_datatypes.append("DOUBLE")
337
-
338
- if self.maxit is not None and self.maxit != 25:
339
- self.__func_other_arg_sql_names.append("MaxIterNum")
340
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.maxit, "'"))
341
- self.__func_other_arg_json_datatypes.append("INTEGER")
342
-
343
- if self.intercept is not None and self.intercept != True:
344
- self.__func_other_arg_sql_names.append("Intercept")
345
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.intercept, "'"))
346
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
347
-
348
- if self.step is not None and self.step != False:
349
- self.__func_other_arg_sql_names.append("Step")
350
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.step, "'"))
351
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
352
-
353
- # Generate lists for rest of the function arguments
354
- sequence_input_by_list = []
355
- if self.data_sequence_column is not None:
356
- sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
357
-
358
- if len(sequence_input_by_list) > 0:
359
- self.__func_other_arg_sql_names.append("SequenceInputBy")
360
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
361
- self.__func_other_args.append(sequence_input_by_arg_value)
362
- self.__func_other_arg_json_datatypes.append("STRING")
363
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
364
-
365
- # Let's process formula argument
366
- self.formula = self.__awu._validate_formula_notation(self.formula, self.data, "formula")
367
- # Target Column
368
- self._target_column = self.formula._get_dependent_vars()
369
- # all input columns
370
- __all_columns = self.__awu._get_columns_by_type(self.formula, self.data, "all")
371
- if len(__all_columns) > 0:
372
- self.__func_other_arg_sql_names.append("InputColumns")
373
- all_columns_list = UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(__all_columns, "\""), "'")
374
- self.__func_other_args.append(all_columns_list)
375
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
376
- self._sql_specific_attributes["InputColumns"] = all_columns_list
377
- self._sql_formula_attribute_mapper["InputColumns"] = "__all_columns"
378
-
379
- # categorical input columns
380
- __categorical_columns = self.__awu._get_columns_by_type(self.formula, self.data, "categorical")
381
- if len(__categorical_columns) > 0:
382
- self.__func_other_arg_sql_names.append("CategoricalColumns")
383
- categorical_columns_list = UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(__categorical_columns, "\""), "'")
384
- self.__func_other_args.append(categorical_columns_list)
385
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
386
- self._sql_specific_attributes["CategoricalColumns"] = categorical_columns_list
387
- self._sql_formula_attribute_mapper["CategoricalColumns"] = "__categorical_columns"
388
-
389
-
390
- # Declare empty lists to hold input table information.
391
- self.__func_input_arg_sql_names = []
392
- self.__func_input_table_view_query = []
393
- self.__func_input_dataframe_type = []
394
- self.__func_input_distribution = []
395
- self.__func_input_partition_by_cols = []
396
- self.__func_input_order_by_cols = []
397
-
398
- # Process data
399
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
400
- self.__func_input_distribution.append("NONE")
401
- self.__func_input_arg_sql_names.append("InputTable")
402
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
403
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
404
- self.__func_input_partition_by_cols.append("NA_character_")
405
- self.__func_input_order_by_cols.append("NA_character_")
406
-
407
- function_name = "GLM"
408
- # Create instance to generate SQLMR.
409
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
410
- self.__func_input_arg_sql_names,
411
- self.__func_input_table_view_query,
412
- self.__func_input_dataframe_type,
413
- self.__func_input_distribution,
414
- self.__func_input_partition_by_cols,
415
- self.__func_input_order_by_cols,
416
- self.__func_other_arg_sql_names,
417
- self.__func_other_args,
418
- self.__func_other_arg_json_datatypes,
419
- self.__func_output_args_sql_names,
420
- self.__func_output_args,
421
- engine="ENGINE_ML")
422
- # Invoke call to SQL-MR generation.
423
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
424
-
425
- # Print SQL-MR query if requested to do so.
426
- if display.print_sqlmr_query:
427
- print(self.sqlmr_query)
428
-
429
- # Set the algorithm name for Model Cataloging.
430
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
431
-
432
- def __execute(self):
433
- """
434
- Function to execute SQL-MR queries.
435
- Create DataFrames for the required SQL-MR outputs.
436
- """
437
- # Generate STDOUT table name and add it to the output table list.
438
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
439
- try:
440
- # Generate the output.
441
- UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
442
- except Exception as emsg:
443
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
444
-
445
- # Update output table data frames.
446
- self._mlresults = []
447
- self.coefficients = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__coefficients_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__coefficients_temp_tablename))
448
- self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
449
- self._mlresults.append(self.coefficients)
450
- self._mlresults.append(self.output)
451
-
452
- def show_query(self):
453
- """
454
- Function to return the underlying SQL query.
455
- When model object is created using retrieve_model(), then None is returned.
456
- """
457
- return self.sqlmr_query
458
-
459
- def get_prediction_type(self):
460
- """
461
- Function to return the Prediction type of the algorithm.
462
- When model object is created using retrieve_model(), then the value returned is
463
- as saved in the Model Catalog.
464
- """
465
- return self._prediction_type
466
-
467
- def get_target_column(self):
468
- """
469
- Function to return the Target Column of the algorithm.
470
- When model object is created using retrieve_model(), then the value returned is
471
- as saved in the Model Catalog.
472
- """
473
- return self._target_column
474
-
475
- def get_build_time(self):
476
- """
477
- Function to return the build time of the algorithm in seconds.
478
- When model object is created using retrieve_model(), then the value returned is
479
- as saved in the Model Catalog.
480
- """
481
- return self._build_time
482
-
483
- def _get_algorithm_name(self):
484
- """
485
- Function to return the name of the algorithm.
486
- """
487
- return self._algorithm_name
488
-
489
- def _get_sql_specific_attributes(self):
490
- """
491
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
492
- """
493
- return self._sql_specific_attributes
494
-
495
- @classmethod
496
- def _from_model_catalog(cls,
497
- coefficients = None,
498
- output = None,
499
- **kwargs):
500
- """
501
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
502
- """
503
- kwargs.pop("coefficients", None)
504
- kwargs.pop("output", None)
505
-
506
- # Model Cataloging related attributes.
507
- target_column = kwargs.pop("__target_column", None)
508
- prediction_type = kwargs.pop("__prediction_type", None)
509
- algorithm_name = kwargs.pop("__algorithm_name", None)
510
- build_time = kwargs.pop("__build_time", None)
511
-
512
- # Initialize the formula attributes.
513
- __response_column = kwargs.pop("__response_column", None)
514
- __all_columns = kwargs.pop("__all_columns", None)
515
- __numeric_columns = kwargs.pop("__numeric_columns", None)
516
- __categorical_columns = kwargs.pop("__categorical_columns", None)
517
-
518
- # Let's create an object of this class.
519
- obj = cls(**kwargs)
520
- obj.coefficients = coefficients
521
- obj.output = output
522
-
523
- # Initialize the sqlmr_query class attribute.
524
- obj.sqlmr_query = None
525
-
526
- # Initialize the SQL specific Model Cataloging attributes.
527
- obj._sql_specific_attributes = None
528
- obj._target_column = target_column
529
- obj._prediction_type = prediction_type
530
- obj._algorithm_name = algorithm_name
531
- obj._build_time = build_time
532
-
533
- # Initialize the formula.
534
- if obj.formula is not None:
535
- obj.formula = Formula._from_formula_attr(obj.formula,
536
- __response_column,
537
- __all_columns,
538
- __categorical_columns,
539
- __numeric_columns)
540
-
541
- # Update output table data frames.
542
- obj._mlresults = []
543
- obj.coefficients = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.coefficients), source_type="table", database_name=UtilFuncs._extract_db_name(obj.coefficients))
544
- obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
545
- obj._mlresults.append(obj.coefficients)
546
- obj._mlresults.append(obj.output)
547
- return obj
548
-
549
- def __repr__(self):
550
- """
551
- Returns the string representation for a GLM class instance.
552
- """
553
- repr_string="############ STDOUT Output ############"
554
- repr_string = "{}\n\n{}".format(repr_string,self.output)
555
- repr_string="{}\n\n\n############ coefficients Output ############".format(repr_string)
556
- repr_string = "{}\n\n{}".format(repr_string,self.coefficients)
557
- return repr_string
558
-