teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
teradataml/analytics/mle/GLM.py
DELETED
|
@@ -1,558 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.20
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.common.formula import Formula
|
|
30
|
-
|
|
31
|
-
class GLM:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
formula = None,
|
|
35
|
-
family = "gaussian",
|
|
36
|
-
linkfunction = "CANONICAL",
|
|
37
|
-
data = None,
|
|
38
|
-
weights = "1.0",
|
|
39
|
-
threshold = 0.01,
|
|
40
|
-
maxit = 25,
|
|
41
|
-
step = False,
|
|
42
|
-
intercept = True,
|
|
43
|
-
data_sequence_column = None):
|
|
44
|
-
"""
|
|
45
|
-
DESCRIPTION:
|
|
46
|
-
The generalized linear model (GLM) is an extension of the linear
|
|
47
|
-
regression model that enables the linear equation to be related to
|
|
48
|
-
the dependent variables by a link function. GLM performs linear
|
|
49
|
-
regression analysis for distribution functions using a user-specified
|
|
50
|
-
distribution family and link function. GLM selects the link function
|
|
51
|
-
based upon the distribution family and the assumed nonlinear
|
|
52
|
-
distribution of expected outcomes. The teradataml DataFrame in
|
|
53
|
-
Background describes the supported link function combinations.
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
PARAMETERS:
|
|
57
|
-
formula:
|
|
58
|
-
Required Argument.
|
|
59
|
-
A string consisting of "formula". Specifies the model to be fitted. Only
|
|
60
|
-
basic formula of the "col1 ~ col2 + col3 +..." form is supported and
|
|
61
|
-
all variables must be from the same virtual data frame object. The
|
|
62
|
-
response should be column of type real, numeric, integer or boolean.
|
|
63
|
-
Types: str
|
|
64
|
-
|
|
65
|
-
family:
|
|
66
|
-
Optional Argument.
|
|
67
|
-
Specifies the distribution exponential family
|
|
68
|
-
Default Value: "gaussian"
|
|
69
|
-
Permitted Values: LOGISTIC, BINOMIAL, POISSON, GAUSSIAN, GAMMA,
|
|
70
|
-
INVERSE_GAUSSIAN, NEGATIVE_BINOMIAL
|
|
71
|
-
Types: str
|
|
72
|
-
|
|
73
|
-
linkfunction:
|
|
74
|
-
Optional Argument.
|
|
75
|
-
The canonical link functions (default link functions) and the link
|
|
76
|
-
functions that are allowed.
|
|
77
|
-
Default Value: "CANONICAL"
|
|
78
|
-
Permitted Values: CANONICAL, IDENTITY, INVERSE, LOG,
|
|
79
|
-
COMPLEMENTARY_LOG_LOG, SQUARE_ROOT, INVERSE_MU_SQUARED, LOGIT,
|
|
80
|
-
PROBIT, CAUCHIT
|
|
81
|
-
Types: str
|
|
82
|
-
|
|
83
|
-
data:
|
|
84
|
-
Required Argument.
|
|
85
|
-
Specifies the name of the teradataml DataFrame that contains the
|
|
86
|
-
columns.
|
|
87
|
-
|
|
88
|
-
weights:
|
|
89
|
-
Optional Argument.
|
|
90
|
-
Specifies the name of an input teradataml DataFrame column that
|
|
91
|
-
contains the weights to assign to responses. The default value is
|
|
92
|
-
1.You can use non-NULL weights to indicate that different
|
|
93
|
-
observations have different dispersions (with the weights being
|
|
94
|
-
inversely proportional to the dispersions).Equivalently, when the
|
|
95
|
-
weights are positive integers wi, each response yi is the mean of wi
|
|
96
|
-
unit-weight observations. A binomial GLM uses prior weights to give
|
|
97
|
-
the number of trials when the response is the proportion of
|
|
98
|
-
successes. A Poisson GLM rarely uses weights. If the weight is less
|
|
99
|
-
than the response value, then the function throws an exception.
|
|
100
|
-
Therefore, if the response value is greater than 1 (the default
|
|
101
|
-
weight), then you must specify a weight that is greater than or equal
|
|
102
|
-
to the response value.
|
|
103
|
-
Default Value: "1.0"
|
|
104
|
-
Types: str
|
|
105
|
-
|
|
106
|
-
threshold:
|
|
107
|
-
Optional Argument.
|
|
108
|
-
Specifies the convergence threshold.
|
|
109
|
-
Default Value: 0.01
|
|
110
|
-
Types: float
|
|
111
|
-
|
|
112
|
-
maxit:
|
|
113
|
-
Optional Argument.
|
|
114
|
-
Specifies the maximum number of iterations that the algorithm runs
|
|
115
|
-
before quitting if the convergence threshold has not been met.
|
|
116
|
-
Default Value: 25
|
|
117
|
-
Types: int
|
|
118
|
-
|
|
119
|
-
step:
|
|
120
|
-
Optional Argument.
|
|
121
|
-
Specifies whether the function uses a step. If the function uses a
|
|
122
|
-
step, then it runs with the GLM model that has the lowest Akaike
|
|
123
|
-
information criterion (AIC) score, drops one predictor from the
|
|
124
|
-
current predictor group, and repeats this process until no predictor
|
|
125
|
-
remains.
|
|
126
|
-
Default Value: False
|
|
127
|
-
Types: bool
|
|
128
|
-
|
|
129
|
-
intercept:
|
|
130
|
-
Optional Argument.
|
|
131
|
-
Specifies whether the function uses an intercept. For example, in
|
|
132
|
-
ß0+ß1*X1+ß2*X2+ ....+ßpXp, the intercept is ß0.
|
|
133
|
-
Default Value: True
|
|
134
|
-
Types: bool
|
|
135
|
-
|
|
136
|
-
data_sequence_column:
|
|
137
|
-
Optional Argument.
|
|
138
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
139
|
-
the input argument "data". The argument is used to ensure
|
|
140
|
-
deterministic results for functions which produce results that vary
|
|
141
|
-
from run to run.
|
|
142
|
-
Types: str OR list of Strings (str)
|
|
143
|
-
|
|
144
|
-
RETURNS:
|
|
145
|
-
Instance of GLM.
|
|
146
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
147
|
-
references, such as GLMObj.<attribute_name>.
|
|
148
|
-
Output teradataml DataFrame attribute name is:
|
|
149
|
-
1. coefficients
|
|
150
|
-
2. output
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
RAISES:
|
|
154
|
-
TeradataMlException
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
EXAMPLES:
|
|
158
|
-
# Load the data to run the example.
|
|
159
|
-
load_example_data("GLM", ["admissions_train", "housing_train"])
|
|
160
|
-
|
|
161
|
-
# Create teradataml DataFrame objects.
|
|
162
|
-
admissions_train = DataFrame.from_table("admissions_train")
|
|
163
|
-
housing_train = DataFrame.from_table("housing_train")
|
|
164
|
-
|
|
165
|
-
# Example 1 -
|
|
166
|
-
glm_out1 = GLM(formula = "admitted ~ stats + masters + gpa + programming",
|
|
167
|
-
family = "LOGISTIC",
|
|
168
|
-
linkfunction = "LOGIT",
|
|
169
|
-
data = admissions_train,
|
|
170
|
-
weights = "1",
|
|
171
|
-
threshold = 0.01,
|
|
172
|
-
maxit = 25,
|
|
173
|
-
step = False,
|
|
174
|
-
intercept = True
|
|
175
|
-
)
|
|
176
|
-
|
|
177
|
-
# Print the output dataframes
|
|
178
|
-
# STDOUT DataFrame
|
|
179
|
-
print(glm_out1.output)
|
|
180
|
-
|
|
181
|
-
# GLM Model, coefficients DataFrame
|
|
182
|
-
print(glm_out1.coefficients)
|
|
183
|
-
|
|
184
|
-
# Example 2 -
|
|
185
|
-
glm_out2 = GLM(formula = "admitted ~ stats + masters + gpa + programming",
|
|
186
|
-
family = "LOGISTIC",
|
|
187
|
-
linkfunction = "LOGIT",
|
|
188
|
-
data = admissions_train,
|
|
189
|
-
weights = "1",
|
|
190
|
-
threshold = 0.01,
|
|
191
|
-
maxit = 25,
|
|
192
|
-
step = True,
|
|
193
|
-
intercept = True
|
|
194
|
-
)
|
|
195
|
-
|
|
196
|
-
# Print all output dataframes
|
|
197
|
-
print(glm_out2.output)
|
|
198
|
-
|
|
199
|
-
# Example 3 -
|
|
200
|
-
glm_out3 = GLM(formula = "price ~ recroom + lotsize + stories + garagepl + gashw + bedrooms + driveway + airco + homestyle + bathrms + fullbase + prefarea",
|
|
201
|
-
family = "GAUSSIAN",
|
|
202
|
-
linkfunction = "IDENTITY",
|
|
203
|
-
data = housing_train,
|
|
204
|
-
weights = "1",
|
|
205
|
-
threshold = 0.01,
|
|
206
|
-
maxit = 25,
|
|
207
|
-
step = False,
|
|
208
|
-
intercept = True
|
|
209
|
-
)
|
|
210
|
-
|
|
211
|
-
# Print all output dataframes
|
|
212
|
-
print(glm_out3.output)
|
|
213
|
-
print(glm_out1.coefficients)
|
|
214
|
-
|
|
215
|
-
"""
|
|
216
|
-
|
|
217
|
-
# Start the timer to get the build time
|
|
218
|
-
_start_time = time.time()
|
|
219
|
-
|
|
220
|
-
self.formula = formula
|
|
221
|
-
self.family = family
|
|
222
|
-
self.linkfunction = linkfunction
|
|
223
|
-
self.data = data
|
|
224
|
-
self.weights = weights
|
|
225
|
-
self.threshold = threshold
|
|
226
|
-
self.maxit = maxit
|
|
227
|
-
self.step = step
|
|
228
|
-
self.intercept = intercept
|
|
229
|
-
self.data_sequence_column = data_sequence_column
|
|
230
|
-
|
|
231
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
232
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
233
|
-
self.__aed_utils = AedUtils()
|
|
234
|
-
|
|
235
|
-
# Create argument information matrix to do parameter checking
|
|
236
|
-
self.__arg_info_matrix = []
|
|
237
|
-
self.__arg_info_matrix.append(["formula", self.formula, False, "formula"])
|
|
238
|
-
self.__arg_info_matrix.append(["family", self.family, True, (str)])
|
|
239
|
-
self.__arg_info_matrix.append(["linkfunction", self.linkfunction, True, (str)])
|
|
240
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
241
|
-
self.__arg_info_matrix.append(["weights", self.weights, True, (str)])
|
|
242
|
-
self.__arg_info_matrix.append(["threshold", self.threshold, True, (float)])
|
|
243
|
-
self.__arg_info_matrix.append(["maxit", self.maxit, True, (int)])
|
|
244
|
-
self.__arg_info_matrix.append(["step", self.step, True, (bool)])
|
|
245
|
-
self.__arg_info_matrix.append(["intercept", self.intercept, True, (bool)])
|
|
246
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
247
|
-
|
|
248
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
249
|
-
# Perform the function validations
|
|
250
|
-
self.__validate()
|
|
251
|
-
# Generate the ML query
|
|
252
|
-
self.__form_tdml_query()
|
|
253
|
-
# Execute ML query
|
|
254
|
-
self.__execute()
|
|
255
|
-
# Get the prediction type
|
|
256
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
257
|
-
|
|
258
|
-
# End the timer to get the build time
|
|
259
|
-
_end_time = time.time()
|
|
260
|
-
|
|
261
|
-
# Calculate the build time
|
|
262
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
263
|
-
|
|
264
|
-
def __validate(self):
|
|
265
|
-
"""
|
|
266
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
267
|
-
arguments, input argument and table types. Also processes the
|
|
268
|
-
argument values.
|
|
269
|
-
"""
|
|
270
|
-
|
|
271
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
272
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
273
|
-
|
|
274
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
275
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
276
|
-
|
|
277
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
278
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
279
|
-
|
|
280
|
-
# Check for permitted values
|
|
281
|
-
family_permitted_values = ["LOGISTIC", "BINOMIAL", "POISSON", "GAUSSIAN", "GAMMA", "INVERSE_GAUSSIAN", "NEGATIVE_BINOMIAL"]
|
|
282
|
-
self.__awu._validate_permitted_values(self.family, family_permitted_values, "family")
|
|
283
|
-
|
|
284
|
-
linkfunction_permitted_values = ["CANONICAL", "IDENTITY", "INVERSE", "LOG", "COMPLEMENTARY_LOG_LOG", "SQUARE_ROOT", "INVERSE_MU_SQUARED", "LOGIT", "PROBIT", "CAUCHIT"]
|
|
285
|
-
self.__awu._validate_permitted_values(self.linkfunction, linkfunction_permitted_values, "linkfunction")
|
|
286
|
-
|
|
287
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
288
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
289
|
-
self.__awu._validate_input_columns_not_empty(self.weights, "weights")
|
|
290
|
-
|
|
291
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
292
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
293
|
-
|
|
294
|
-
|
|
295
|
-
def __form_tdml_query(self):
|
|
296
|
-
"""
|
|
297
|
-
Function to generate the analytical function queries. The function defines
|
|
298
|
-
variables and list of arguments required to form the query.
|
|
299
|
-
"""
|
|
300
|
-
# Generate temp table names for output table parameters if any.
|
|
301
|
-
self.__coefficients_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_glm0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
302
|
-
|
|
303
|
-
# Output table arguments list
|
|
304
|
-
self.__func_output_args_sql_names = ["OutputTable"]
|
|
305
|
-
self.__func_output_args = [self.__coefficients_temp_tablename]
|
|
306
|
-
|
|
307
|
-
# Model Cataloging related attributes.
|
|
308
|
-
self._sql_specific_attributes = {}
|
|
309
|
-
self._sql_formula_attribute_mapper = {}
|
|
310
|
-
self._target_column = None
|
|
311
|
-
self._algorithm_name = None
|
|
312
|
-
|
|
313
|
-
# Generate lists for rest of the function arguments
|
|
314
|
-
self.__func_other_arg_sql_names = []
|
|
315
|
-
self.__func_other_args = []
|
|
316
|
-
self.__func_other_arg_json_datatypes = []
|
|
317
|
-
|
|
318
|
-
if self.weights is not None and self.weights != "1.0":
|
|
319
|
-
self.__func_other_arg_sql_names.append("WeightColumn")
|
|
320
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.weights, "'"))
|
|
321
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
322
|
-
|
|
323
|
-
if self.family is not None:
|
|
324
|
-
self.__func_other_arg_sql_names.append("Family")
|
|
325
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.family, "'"))
|
|
326
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
327
|
-
|
|
328
|
-
if self.linkfunction is not None and self.linkfunction != "CANONICAL":
|
|
329
|
-
self.__func_other_arg_sql_names.append("LinkFunction")
|
|
330
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.linkfunction, "'"))
|
|
331
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
332
|
-
|
|
333
|
-
if self.threshold is not None and self.threshold != 0.01:
|
|
334
|
-
self.__func_other_arg_sql_names.append("StopThreshold")
|
|
335
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.threshold, "'"))
|
|
336
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
337
|
-
|
|
338
|
-
if self.maxit is not None and self.maxit != 25:
|
|
339
|
-
self.__func_other_arg_sql_names.append("MaxIterNum")
|
|
340
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.maxit, "'"))
|
|
341
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
342
|
-
|
|
343
|
-
if self.intercept is not None and self.intercept != True:
|
|
344
|
-
self.__func_other_arg_sql_names.append("Intercept")
|
|
345
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.intercept, "'"))
|
|
346
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
347
|
-
|
|
348
|
-
if self.step is not None and self.step != False:
|
|
349
|
-
self.__func_other_arg_sql_names.append("Step")
|
|
350
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.step, "'"))
|
|
351
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
352
|
-
|
|
353
|
-
# Generate lists for rest of the function arguments
|
|
354
|
-
sequence_input_by_list = []
|
|
355
|
-
if self.data_sequence_column is not None:
|
|
356
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
357
|
-
|
|
358
|
-
if len(sequence_input_by_list) > 0:
|
|
359
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
360
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
361
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
362
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
363
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
364
|
-
|
|
365
|
-
# Let's process formula argument
|
|
366
|
-
self.formula = self.__awu._validate_formula_notation(self.formula, self.data, "formula")
|
|
367
|
-
# Target Column
|
|
368
|
-
self._target_column = self.formula._get_dependent_vars()
|
|
369
|
-
# all input columns
|
|
370
|
-
__all_columns = self.__awu._get_columns_by_type(self.formula, self.data, "all")
|
|
371
|
-
if len(__all_columns) > 0:
|
|
372
|
-
self.__func_other_arg_sql_names.append("InputColumns")
|
|
373
|
-
all_columns_list = UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(__all_columns, "\""), "'")
|
|
374
|
-
self.__func_other_args.append(all_columns_list)
|
|
375
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
376
|
-
self._sql_specific_attributes["InputColumns"] = all_columns_list
|
|
377
|
-
self._sql_formula_attribute_mapper["InputColumns"] = "__all_columns"
|
|
378
|
-
|
|
379
|
-
# categorical input columns
|
|
380
|
-
__categorical_columns = self.__awu._get_columns_by_type(self.formula, self.data, "categorical")
|
|
381
|
-
if len(__categorical_columns) > 0:
|
|
382
|
-
self.__func_other_arg_sql_names.append("CategoricalColumns")
|
|
383
|
-
categorical_columns_list = UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(__categorical_columns, "\""), "'")
|
|
384
|
-
self.__func_other_args.append(categorical_columns_list)
|
|
385
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
386
|
-
self._sql_specific_attributes["CategoricalColumns"] = categorical_columns_list
|
|
387
|
-
self._sql_formula_attribute_mapper["CategoricalColumns"] = "__categorical_columns"
|
|
388
|
-
|
|
389
|
-
|
|
390
|
-
# Declare empty lists to hold input table information.
|
|
391
|
-
self.__func_input_arg_sql_names = []
|
|
392
|
-
self.__func_input_table_view_query = []
|
|
393
|
-
self.__func_input_dataframe_type = []
|
|
394
|
-
self.__func_input_distribution = []
|
|
395
|
-
self.__func_input_partition_by_cols = []
|
|
396
|
-
self.__func_input_order_by_cols = []
|
|
397
|
-
|
|
398
|
-
# Process data
|
|
399
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
400
|
-
self.__func_input_distribution.append("NONE")
|
|
401
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
402
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
403
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
404
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
405
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
406
|
-
|
|
407
|
-
function_name = "GLM"
|
|
408
|
-
# Create instance to generate SQLMR.
|
|
409
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
410
|
-
self.__func_input_arg_sql_names,
|
|
411
|
-
self.__func_input_table_view_query,
|
|
412
|
-
self.__func_input_dataframe_type,
|
|
413
|
-
self.__func_input_distribution,
|
|
414
|
-
self.__func_input_partition_by_cols,
|
|
415
|
-
self.__func_input_order_by_cols,
|
|
416
|
-
self.__func_other_arg_sql_names,
|
|
417
|
-
self.__func_other_args,
|
|
418
|
-
self.__func_other_arg_json_datatypes,
|
|
419
|
-
self.__func_output_args_sql_names,
|
|
420
|
-
self.__func_output_args,
|
|
421
|
-
engine="ENGINE_ML")
|
|
422
|
-
# Invoke call to SQL-MR generation.
|
|
423
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
424
|
-
|
|
425
|
-
# Print SQL-MR query if requested to do so.
|
|
426
|
-
if display.print_sqlmr_query:
|
|
427
|
-
print(self.sqlmr_query)
|
|
428
|
-
|
|
429
|
-
# Set the algorithm name for Model Cataloging.
|
|
430
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
431
|
-
|
|
432
|
-
def __execute(self):
|
|
433
|
-
"""
|
|
434
|
-
Function to execute SQL-MR queries.
|
|
435
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
436
|
-
"""
|
|
437
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
438
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
439
|
-
try:
|
|
440
|
-
# Generate the output.
|
|
441
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
442
|
-
except Exception as emsg:
|
|
443
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
444
|
-
|
|
445
|
-
# Update output table data frames.
|
|
446
|
-
self._mlresults = []
|
|
447
|
-
self.coefficients = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__coefficients_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__coefficients_temp_tablename))
|
|
448
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
449
|
-
self._mlresults.append(self.coefficients)
|
|
450
|
-
self._mlresults.append(self.output)
|
|
451
|
-
|
|
452
|
-
def show_query(self):
|
|
453
|
-
"""
|
|
454
|
-
Function to return the underlying SQL query.
|
|
455
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
456
|
-
"""
|
|
457
|
-
return self.sqlmr_query
|
|
458
|
-
|
|
459
|
-
def get_prediction_type(self):
|
|
460
|
-
"""
|
|
461
|
-
Function to return the Prediction type of the algorithm.
|
|
462
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
463
|
-
as saved in the Model Catalog.
|
|
464
|
-
"""
|
|
465
|
-
return self._prediction_type
|
|
466
|
-
|
|
467
|
-
def get_target_column(self):
|
|
468
|
-
"""
|
|
469
|
-
Function to return the Target Column of the algorithm.
|
|
470
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
471
|
-
as saved in the Model Catalog.
|
|
472
|
-
"""
|
|
473
|
-
return self._target_column
|
|
474
|
-
|
|
475
|
-
def get_build_time(self):
|
|
476
|
-
"""
|
|
477
|
-
Function to return the build time of the algorithm in seconds.
|
|
478
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
479
|
-
as saved in the Model Catalog.
|
|
480
|
-
"""
|
|
481
|
-
return self._build_time
|
|
482
|
-
|
|
483
|
-
def _get_algorithm_name(self):
|
|
484
|
-
"""
|
|
485
|
-
Function to return the name of the algorithm.
|
|
486
|
-
"""
|
|
487
|
-
return self._algorithm_name
|
|
488
|
-
|
|
489
|
-
def _get_sql_specific_attributes(self):
|
|
490
|
-
"""
|
|
491
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
492
|
-
"""
|
|
493
|
-
return self._sql_specific_attributes
|
|
494
|
-
|
|
495
|
-
@classmethod
|
|
496
|
-
def _from_model_catalog(cls,
|
|
497
|
-
coefficients = None,
|
|
498
|
-
output = None,
|
|
499
|
-
**kwargs):
|
|
500
|
-
"""
|
|
501
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
502
|
-
"""
|
|
503
|
-
kwargs.pop("coefficients", None)
|
|
504
|
-
kwargs.pop("output", None)
|
|
505
|
-
|
|
506
|
-
# Model Cataloging related attributes.
|
|
507
|
-
target_column = kwargs.pop("__target_column", None)
|
|
508
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
509
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
510
|
-
build_time = kwargs.pop("__build_time", None)
|
|
511
|
-
|
|
512
|
-
# Initialize the formula attributes.
|
|
513
|
-
__response_column = kwargs.pop("__response_column", None)
|
|
514
|
-
__all_columns = kwargs.pop("__all_columns", None)
|
|
515
|
-
__numeric_columns = kwargs.pop("__numeric_columns", None)
|
|
516
|
-
__categorical_columns = kwargs.pop("__categorical_columns", None)
|
|
517
|
-
|
|
518
|
-
# Let's create an object of this class.
|
|
519
|
-
obj = cls(**kwargs)
|
|
520
|
-
obj.coefficients = coefficients
|
|
521
|
-
obj.output = output
|
|
522
|
-
|
|
523
|
-
# Initialize the sqlmr_query class attribute.
|
|
524
|
-
obj.sqlmr_query = None
|
|
525
|
-
|
|
526
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
527
|
-
obj._sql_specific_attributes = None
|
|
528
|
-
obj._target_column = target_column
|
|
529
|
-
obj._prediction_type = prediction_type
|
|
530
|
-
obj._algorithm_name = algorithm_name
|
|
531
|
-
obj._build_time = build_time
|
|
532
|
-
|
|
533
|
-
# Initialize the formula.
|
|
534
|
-
if obj.formula is not None:
|
|
535
|
-
obj.formula = Formula._from_formula_attr(obj.formula,
|
|
536
|
-
__response_column,
|
|
537
|
-
__all_columns,
|
|
538
|
-
__categorical_columns,
|
|
539
|
-
__numeric_columns)
|
|
540
|
-
|
|
541
|
-
# Update output table data frames.
|
|
542
|
-
obj._mlresults = []
|
|
543
|
-
obj.coefficients = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.coefficients), source_type="table", database_name=UtilFuncs._extract_db_name(obj.coefficients))
|
|
544
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
545
|
-
obj._mlresults.append(obj.coefficients)
|
|
546
|
-
obj._mlresults.append(obj.output)
|
|
547
|
-
return obj
|
|
548
|
-
|
|
549
|
-
def __repr__(self):
|
|
550
|
-
"""
|
|
551
|
-
Returns the string representation for a GLM class instance.
|
|
552
|
-
"""
|
|
553
|
-
repr_string="############ STDOUT Output ############"
|
|
554
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
555
|
-
repr_string="{}\n\n\n############ coefficients Output ############".format(repr_string)
|
|
556
|
-
repr_string = "{}\n\n{}".format(repr_string,self.coefficients)
|
|
557
|
-
return repr_string
|
|
558
|
-
|