teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,565 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.8
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.analytics.mle.ScaleMap import ScaleMap
|
|
30
|
-
|
|
31
|
-
class Scale:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
object = None,
|
|
35
|
-
data = None,
|
|
36
|
-
method = None,
|
|
37
|
-
scale_global = False,
|
|
38
|
-
accumulate = None,
|
|
39
|
-
multiplier = 1.0,
|
|
40
|
-
intercept = "0",
|
|
41
|
-
input_columns = None,
|
|
42
|
-
object_sequence_column = None,
|
|
43
|
-
data_sequence_column = None,
|
|
44
|
-
object_order_column = None,
|
|
45
|
-
data_order_column = None):
|
|
46
|
-
"""
|
|
47
|
-
DESCRIPTION:
|
|
48
|
-
The Scale function uses statistical information from the ScaleMap
|
|
49
|
-
function to scale the input data set.
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
PARAMETERS:
|
|
53
|
-
object:
|
|
54
|
-
Required Argument.
|
|
55
|
-
Specifies the teradataml DataFrame containing statistic input
|
|
56
|
-
generated by ScaleMap or instance of ScaleMap.
|
|
57
|
-
|
|
58
|
-
object_order_column:
|
|
59
|
-
Optional Argument.
|
|
60
|
-
Specifies Order By columns for data.
|
|
61
|
-
Values to this argument can be provided as a list, if multiple
|
|
62
|
-
columns are used for ordering.
|
|
63
|
-
Types: str OR list of Strings (str)
|
|
64
|
-
|
|
65
|
-
data:
|
|
66
|
-
Required Argument.
|
|
67
|
-
Specifies the input teradataml DataFrame for scale function.
|
|
68
|
-
|
|
69
|
-
data_order_column:
|
|
70
|
-
Optional Argument.
|
|
71
|
-
Specifies Order By columns for data.
|
|
72
|
-
Values to this argument can be provided as a list, if multiple
|
|
73
|
-
columns are used for ordering.
|
|
74
|
-
Types: str OR list of Strings (str)
|
|
75
|
-
|
|
76
|
-
method:
|
|
77
|
-
Required Argument.
|
|
78
|
-
Specify one or more methods used to scale the dataset. If you specify multiple methods,
|
|
79
|
-
the output teradataml DataFrame includes the column scalemethod
|
|
80
|
-
(which contains the method name) and a row for each input-row/method combination.
|
|
81
|
-
Permitted Values: MEAN, SUM, USTD, STD, RANGE, MIDRANGE, MAXABS.
|
|
82
|
-
Types: str or list of Strings (str)
|
|
83
|
-
|
|
84
|
-
scale_global:
|
|
85
|
-
Optional Argument.
|
|
86
|
-
Specifies whether all input columns are scaled to the same location
|
|
87
|
-
and scale. (Each input column is scaled separately).
|
|
88
|
-
Default Value: False
|
|
89
|
-
Types: bool
|
|
90
|
-
|
|
91
|
-
accumulate:
|
|
92
|
-
Optional Argument.
|
|
93
|
-
Specifies the input teradataml DataFrame columns to copy to the
|
|
94
|
-
output table. By default, the function copies no input teradataml
|
|
95
|
-
DataFrame columns to the output table.
|
|
96
|
-
Types: str OR list of Strings (str)
|
|
97
|
-
|
|
98
|
-
multiplier:
|
|
99
|
-
Optional Argument.
|
|
100
|
-
Specifies one or more multiplying factors to apply to the input
|
|
101
|
-
variables-multiplier in the following formula:
|
|
102
|
-
X' = intercept + multiplier * (X - location)/scale
|
|
103
|
-
If you specify only one multiplier, it applies to all columns specified
|
|
104
|
-
by the input_columns argument. If you specify multiple multiplying factors,
|
|
105
|
-
each multiplier applies to the corresponding input column. For example, the first multiplier
|
|
106
|
-
applies to the first column specified by the input_columns argument,
|
|
107
|
-
the second multiplier applies to the second input column, and so on.
|
|
108
|
-
Default Value: 1.0
|
|
109
|
-
Types: float OR list of floats
|
|
110
|
-
|
|
111
|
-
intercept:
|
|
112
|
-
Optional Argument.
|
|
113
|
-
Specifies one or more addition factors incrementing the scaled
|
|
114
|
-
results-intercept in the following formula:
|
|
115
|
-
X' = intercept + multiplier * (X - location)/scale
|
|
116
|
-
If you specify only one intercept, it applies to all columns specified
|
|
117
|
-
by the input_columns argument. If you specify multiple addition factors,
|
|
118
|
-
each intercept applies to the corresponding input column.
|
|
119
|
-
The syntax of intercept is:
|
|
120
|
-
[-]{number | min | mean | max }
|
|
121
|
-
where min, mean, and max are the scale_global minimum,
|
|
122
|
-
maximum, mean values in the corresponding columns.
|
|
123
|
-
The function scales the values of min, mean, and max.
|
|
124
|
-
The formula for computing the scaled scale_global minimum is:
|
|
125
|
-
scaledmin = (minX - location)/scale
|
|
126
|
-
The formulas for computing the scaled scale_global mean and maximum
|
|
127
|
-
are analogous to the preceding formula.
|
|
128
|
-
For example, if intercept is "- min" and multiplier is 1,
|
|
129
|
-
the scaled result is transformed to a nonnegative sequence according
|
|
130
|
-
to this formula, where scaledmin is the scaled value:
|
|
131
|
-
X' = -scaledmin + 1 * (X - location)/scale.
|
|
132
|
-
Default Value: "0"
|
|
133
|
-
Types: str or list of Strings (str)
|
|
134
|
-
|
|
135
|
-
input_columns:
|
|
136
|
-
Optional Argument.
|
|
137
|
-
Specifies the input teradataml DataFrame columns that contain the
|
|
138
|
-
attribute values of the samples. The attribute values must be numeric
|
|
139
|
-
values between -1e308 and 1e308. If a value is outside this range,
|
|
140
|
-
the function treats it as infinity.
|
|
141
|
-
The default input columns are all columns of the statistic teradataml DataFrame
|
|
142
|
-
(of the ScaleMap function) except stattype.
|
|
143
|
-
Types: str OR list of Strings (str)
|
|
144
|
-
|
|
145
|
-
object_sequence_column:
|
|
146
|
-
Optional Argument.
|
|
147
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
148
|
-
the input argument "object". The argument is used to ensure
|
|
149
|
-
deterministic results for functions which produce results that vary
|
|
150
|
-
from run to run.
|
|
151
|
-
Types: str OR list of Strings (str)
|
|
152
|
-
|
|
153
|
-
data_sequence_column:
|
|
154
|
-
Optional Argument.
|
|
155
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
156
|
-
the input argument "data". The argument is used to ensure
|
|
157
|
-
deterministic results for functions which produce results that vary
|
|
158
|
-
from run to run.
|
|
159
|
-
Types: str OR list of Strings (str)
|
|
160
|
-
|
|
161
|
-
RETURNS:
|
|
162
|
-
Instance of Scale.
|
|
163
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
164
|
-
references, such as ScaleObj.<attribute_name>.
|
|
165
|
-
Output teradataml DataFrame attribute name is:
|
|
166
|
-
result
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
RAISES:
|
|
170
|
-
TeradataMlException
|
|
171
|
-
|
|
172
|
-
EXAMPLES:
|
|
173
|
-
# Load example data.
|
|
174
|
-
# The table 'scale_housing' and 'scale_housing_test' contains house properties
|
|
175
|
-
# like the number of bedrooms, lot size, the number of bathrooms, number of stories etc.
|
|
176
|
-
# The table 'scale_stat' is the statistic data(genererated by ScaleMap function) of the scale_housing data.
|
|
177
|
-
load_example_data("scalemap", "scale_housing")
|
|
178
|
-
load_example_data("scale", ["scale_stat", "scale_housing_test"])
|
|
179
|
-
|
|
180
|
-
# Create teradataml DataFrame objects.
|
|
181
|
-
scale_housing = DataFrame.from_table("scale_housing")
|
|
182
|
-
scale_housing_test = DataFrame.from_table("scale_housing_test")
|
|
183
|
-
scale_stat = DataFrame.from_table("scale_stat")
|
|
184
|
-
|
|
185
|
-
# Example 1 - This example scales (normalizes) input data using the
|
|
186
|
-
# midrange method and the default values for the arguments Intercept
|
|
187
|
-
# and Multiplier (0 and 1, respectively).
|
|
188
|
-
scale_map_out = ScaleMap(data = scale_housing,
|
|
189
|
-
input_columns = ['price','lotsize','bedrooms','bathrms','stories']
|
|
190
|
-
)
|
|
191
|
-
|
|
192
|
-
scale_out1 = Scale(object=scale_map_out,
|
|
193
|
-
data=scale_housing,
|
|
194
|
-
method="midrange",
|
|
195
|
-
accumulate="id"
|
|
196
|
-
)
|
|
197
|
-
# Print the result DataFrame
|
|
198
|
-
print(scale_out1)
|
|
199
|
-
|
|
200
|
-
# Example 2 - This example uses a teradataml DataFrame as input for object argument and
|
|
201
|
-
# the Intercept argument has the value "-min" (where min is the scale_global minimum value)
|
|
202
|
-
# and we also specify different Multiplier values for corresponding columns.
|
|
203
|
-
scale_out2 = Scale(object = scale_stat,
|
|
204
|
-
data = scale_housing,
|
|
205
|
-
method = "midrange",
|
|
206
|
-
accumulate = "id",
|
|
207
|
-
multiplier = [1.0,2.0,3.0,4.0,5.0],
|
|
208
|
-
intercept = "-min"
|
|
209
|
-
)
|
|
210
|
-
|
|
211
|
-
# Print the result DataFrame
|
|
212
|
-
print(scale_out2)
|
|
213
|
-
|
|
214
|
-
# Example 3 - This example uses the statistics created by ScaleMap on a training data set
|
|
215
|
-
# (scale_housing) and then uses these statistics to scale a similar
|
|
216
|
-
# test data set(scale_housing_test).
|
|
217
|
-
scale_out3 = Scale(object = scale_stat,
|
|
218
|
-
data = scale_housing_test,
|
|
219
|
-
method = "midrange",
|
|
220
|
-
accumulate = "id"
|
|
221
|
-
)
|
|
222
|
-
|
|
223
|
-
# Example 4 - This example uses the Scale function to scale data (using
|
|
224
|
-
# the maxabs method) before inputting it to the function KMeans, which
|
|
225
|
-
# outputs the centroids of the clusters in the dataset.
|
|
226
|
-
load_example_data("KMeans", "computers_train1")
|
|
227
|
-
computers_train1 = DataFrame.from_table("computers_train1")
|
|
228
|
-
|
|
229
|
-
scale_map_out4 = ScaleMap(data=computers_train1,
|
|
230
|
-
input_columns=['price','speed','hd','ram'],
|
|
231
|
-
miss_value='OMIT'
|
|
232
|
-
)
|
|
233
|
-
|
|
234
|
-
scale_out4 = Scale(object=scale_map_out4,
|
|
235
|
-
data=computers_train1,
|
|
236
|
-
method="maxabs",
|
|
237
|
-
accumulate="id"
|
|
238
|
-
)
|
|
239
|
-
# Use the scaled data as input to KMeans to get clusters
|
|
240
|
-
kmeans_out = KMeans(data = scale_out4.result,
|
|
241
|
-
centers = 8,
|
|
242
|
-
iter_max = 10,
|
|
243
|
-
threshold = 0.05
|
|
244
|
-
)
|
|
245
|
-
# Print the result DataFrame
|
|
246
|
-
print(kmeans_out)
|
|
247
|
-
|
|
248
|
-
"""
|
|
249
|
-
|
|
250
|
-
# Start the timer to get the build time
|
|
251
|
-
_start_time = time.time()
|
|
252
|
-
|
|
253
|
-
self.object = object
|
|
254
|
-
self.data = data
|
|
255
|
-
self.method = method
|
|
256
|
-
self.scale_global = scale_global
|
|
257
|
-
self.accumulate = accumulate
|
|
258
|
-
self.multiplier = multiplier
|
|
259
|
-
self.intercept = intercept
|
|
260
|
-
self.input_columns = input_columns
|
|
261
|
-
self.object_sequence_column = object_sequence_column
|
|
262
|
-
self.data_sequence_column = data_sequence_column
|
|
263
|
-
self.object_order_column = object_order_column
|
|
264
|
-
self.data_order_column = data_order_column
|
|
265
|
-
|
|
266
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
267
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
268
|
-
self.__aed_utils = AedUtils()
|
|
269
|
-
|
|
270
|
-
# Create argument information matrix to do parameter checking
|
|
271
|
-
self.__arg_info_matrix = []
|
|
272
|
-
self.__arg_info_matrix.append(["object", self.object, False, (DataFrame)])
|
|
273
|
-
self.__arg_info_matrix.append(["object_order_column", self.object_order_column, True, (str,list)])
|
|
274
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
275
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
|
|
276
|
-
self.__arg_info_matrix.append(["method", self.method, False, (str,list)])
|
|
277
|
-
self.__arg_info_matrix.append(["scale_global", self.scale_global, True, (bool)])
|
|
278
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
|
|
279
|
-
self.__arg_info_matrix.append(["multiplier", self.multiplier, True, (float,list)])
|
|
280
|
-
self.__arg_info_matrix.append(["intercept", self.intercept, True, (str,list)])
|
|
281
|
-
self.__arg_info_matrix.append(["input_columns", self.input_columns, True, (str,list)])
|
|
282
|
-
self.__arg_info_matrix.append(["object_sequence_column", self.object_sequence_column, True, (str,list)])
|
|
283
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
284
|
-
|
|
285
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
286
|
-
# Perform the function validations
|
|
287
|
-
self.__validate()
|
|
288
|
-
# Generate the ML query
|
|
289
|
-
self.__form_tdml_query()
|
|
290
|
-
# Execute ML query
|
|
291
|
-
self.__execute()
|
|
292
|
-
# Get the prediction type
|
|
293
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
294
|
-
|
|
295
|
-
# End the timer to get the build time
|
|
296
|
-
_end_time = time.time()
|
|
297
|
-
|
|
298
|
-
# Calculate the build time
|
|
299
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
300
|
-
|
|
301
|
-
def __validate(self):
|
|
302
|
-
"""
|
|
303
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
304
|
-
arguments, input argument and table types. Also processes the
|
|
305
|
-
argument values.
|
|
306
|
-
"""
|
|
307
|
-
if isinstance(self.object, ScaleMap):
|
|
308
|
-
self.object = self.object._mlresults[0]
|
|
309
|
-
|
|
310
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
311
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
312
|
-
|
|
313
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
314
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
315
|
-
|
|
316
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
317
|
-
self.__awu._validate_input_table_datatype(self.object, "object", ScaleMap)
|
|
318
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
319
|
-
|
|
320
|
-
# Check for permitted values
|
|
321
|
-
method_permitted_values = ["MEAN", "SUM", "USTD", "STD", "RANGE", "MIDRANGE", "MAXABS"]
|
|
322
|
-
self.__awu._validate_permitted_values(self.method, method_permitted_values, "method")
|
|
323
|
-
|
|
324
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
325
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
326
|
-
self.__awu._validate_input_columns_not_empty(self.input_columns, "input_columns")
|
|
327
|
-
self.__awu._validate_dataframe_has_argument_columns(self.input_columns, "input_columns", self.data, "data", False)
|
|
328
|
-
|
|
329
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
330
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.data, "data", False)
|
|
331
|
-
|
|
332
|
-
self.__awu._validate_input_columns_not_empty(self.object_sequence_column, "object_sequence_column")
|
|
333
|
-
self.__awu._validate_dataframe_has_argument_columns(self.object_sequence_column, "object_sequence_column", self.object, "object", False)
|
|
334
|
-
|
|
335
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
336
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
337
|
-
|
|
338
|
-
self.__awu._validate_input_columns_not_empty(self.object_order_column, "object_order_column")
|
|
339
|
-
self.__awu._validate_dataframe_has_argument_columns(self.object_order_column, "object_order_column", self.object, "object", False)
|
|
340
|
-
|
|
341
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
342
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
def __form_tdml_query(self):
|
|
346
|
-
"""
|
|
347
|
-
Function to generate the analytical function queries. The function defines
|
|
348
|
-
variables and list of arguments required to form the query.
|
|
349
|
-
"""
|
|
350
|
-
|
|
351
|
-
# Output table arguments list
|
|
352
|
-
self.__func_output_args_sql_names = []
|
|
353
|
-
self.__func_output_args = []
|
|
354
|
-
|
|
355
|
-
# Model Cataloging related attributes.
|
|
356
|
-
self._sql_specific_attributes = {}
|
|
357
|
-
self._sql_formula_attribute_mapper = {}
|
|
358
|
-
self._target_column = None
|
|
359
|
-
self._algorithm_name = None
|
|
360
|
-
|
|
361
|
-
# Generate lists for rest of the function arguments
|
|
362
|
-
self.__func_other_arg_sql_names = []
|
|
363
|
-
self.__func_other_args = []
|
|
364
|
-
self.__func_other_arg_json_datatypes = []
|
|
365
|
-
|
|
366
|
-
if self.input_columns is not None:
|
|
367
|
-
self.__func_other_arg_sql_names.append("TargetColumns")
|
|
368
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.input_columns, "\""), "'"))
|
|
369
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
370
|
-
|
|
371
|
-
if self.accumulate is not None:
|
|
372
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
373
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
374
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
375
|
-
|
|
376
|
-
self.__func_other_arg_sql_names.append("ScaleMethod")
|
|
377
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.method, "'"))
|
|
378
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
379
|
-
|
|
380
|
-
if self.scale_global is not None and self.scale_global != False:
|
|
381
|
-
self.__func_other_arg_sql_names.append("GlobalScale")
|
|
382
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.scale_global, "'"))
|
|
383
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
384
|
-
|
|
385
|
-
if self.multiplier is not None and self.multiplier != 1.0:
|
|
386
|
-
self.__func_other_arg_sql_names.append("Multiplier")
|
|
387
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.multiplier, "'"))
|
|
388
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
389
|
-
|
|
390
|
-
if self.intercept is not None and self.intercept != "0":
|
|
391
|
-
self.__func_other_arg_sql_names.append("Intercept")
|
|
392
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.intercept, "'"))
|
|
393
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
394
|
-
|
|
395
|
-
# Generate lists for rest of the function arguments
|
|
396
|
-
sequence_input_by_list = []
|
|
397
|
-
if self.object_sequence_column is not None:
|
|
398
|
-
sequence_input_by_list.append("statistic:" + UtilFuncs._teradata_collapse_arglist(self.object_sequence_column, ""))
|
|
399
|
-
|
|
400
|
-
if self.data_sequence_column is not None:
|
|
401
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
402
|
-
|
|
403
|
-
if len(sequence_input_by_list) > 0:
|
|
404
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
405
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
406
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
407
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
408
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
409
|
-
|
|
410
|
-
|
|
411
|
-
# Declare empty lists to hold input table information.
|
|
412
|
-
self.__func_input_arg_sql_names = []
|
|
413
|
-
self.__func_input_table_view_query = []
|
|
414
|
-
self.__func_input_dataframe_type = []
|
|
415
|
-
self.__func_input_distribution = []
|
|
416
|
-
self.__func_input_partition_by_cols = []
|
|
417
|
-
self.__func_input_order_by_cols = []
|
|
418
|
-
|
|
419
|
-
# Process object
|
|
420
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.object, False)
|
|
421
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
422
|
-
self.__func_input_arg_sql_names.append("statistic")
|
|
423
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
424
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
425
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
426
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.object_order_column, "\""))
|
|
427
|
-
|
|
428
|
-
# Process data
|
|
429
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
430
|
-
self.__func_input_distribution.append("FACT")
|
|
431
|
-
self.__func_input_arg_sql_names.append("input")
|
|
432
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
433
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
434
|
-
self.__func_input_partition_by_cols.append("ANY")
|
|
435
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
436
|
-
|
|
437
|
-
function_name = "Scale"
|
|
438
|
-
# Create instance to generate SQLMR.
|
|
439
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
440
|
-
self.__func_input_arg_sql_names,
|
|
441
|
-
self.__func_input_table_view_query,
|
|
442
|
-
self.__func_input_dataframe_type,
|
|
443
|
-
self.__func_input_distribution,
|
|
444
|
-
self.__func_input_partition_by_cols,
|
|
445
|
-
self.__func_input_order_by_cols,
|
|
446
|
-
self.__func_other_arg_sql_names,
|
|
447
|
-
self.__func_other_args,
|
|
448
|
-
self.__func_other_arg_json_datatypes,
|
|
449
|
-
self.__func_output_args_sql_names,
|
|
450
|
-
self.__func_output_args,
|
|
451
|
-
engine="ENGINE_ML")
|
|
452
|
-
# Invoke call to SQL-MR generation.
|
|
453
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
454
|
-
|
|
455
|
-
# Print SQL-MR query if requested to do so.
|
|
456
|
-
if display.print_sqlmr_query:
|
|
457
|
-
print(self.sqlmr_query)
|
|
458
|
-
|
|
459
|
-
# Set the algorithm name for Model Cataloging.
|
|
460
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
461
|
-
|
|
462
|
-
def __execute(self):
|
|
463
|
-
"""
|
|
464
|
-
Function to execute SQL-MR queries.
|
|
465
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
466
|
-
"""
|
|
467
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
468
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
469
|
-
try:
|
|
470
|
-
# Generate the output.
|
|
471
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
472
|
-
except Exception as emsg:
|
|
473
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
474
|
-
|
|
475
|
-
# Update output table data frames.
|
|
476
|
-
self._mlresults = []
|
|
477
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
478
|
-
self._mlresults.append(self.result)
|
|
479
|
-
|
|
480
|
-
def show_query(self):
|
|
481
|
-
"""
|
|
482
|
-
Function to return the underlying SQL query.
|
|
483
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
484
|
-
"""
|
|
485
|
-
return self.sqlmr_query
|
|
486
|
-
|
|
487
|
-
def get_prediction_type(self):
|
|
488
|
-
"""
|
|
489
|
-
Function to return the Prediction type of the algorithm.
|
|
490
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
491
|
-
as saved in the Model Catalog.
|
|
492
|
-
"""
|
|
493
|
-
return self._prediction_type
|
|
494
|
-
|
|
495
|
-
def get_target_column(self):
|
|
496
|
-
"""
|
|
497
|
-
Function to return the Target Column of the algorithm.
|
|
498
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
499
|
-
as saved in the Model Catalog.
|
|
500
|
-
"""
|
|
501
|
-
return self._target_column
|
|
502
|
-
|
|
503
|
-
def get_build_time(self):
|
|
504
|
-
"""
|
|
505
|
-
Function to return the build time of the algorithm in seconds.
|
|
506
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
507
|
-
as saved in the Model Catalog.
|
|
508
|
-
"""
|
|
509
|
-
return self._build_time
|
|
510
|
-
|
|
511
|
-
def _get_algorithm_name(self):
|
|
512
|
-
"""
|
|
513
|
-
Function to return the name of the algorithm.
|
|
514
|
-
"""
|
|
515
|
-
return self._algorithm_name
|
|
516
|
-
|
|
517
|
-
def _get_sql_specific_attributes(self):
|
|
518
|
-
"""
|
|
519
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
520
|
-
"""
|
|
521
|
-
return self._sql_specific_attributes
|
|
522
|
-
|
|
523
|
-
@classmethod
|
|
524
|
-
def _from_model_catalog(cls,
|
|
525
|
-
result = None,
|
|
526
|
-
**kwargs):
|
|
527
|
-
"""
|
|
528
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
529
|
-
"""
|
|
530
|
-
kwargs.pop("result", None)
|
|
531
|
-
|
|
532
|
-
# Model Cataloging related attributes.
|
|
533
|
-
target_column = kwargs.pop("__target_column", None)
|
|
534
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
535
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
536
|
-
build_time = kwargs.pop("__build_time", None)
|
|
537
|
-
|
|
538
|
-
# Let's create an object of this class.
|
|
539
|
-
obj = cls(**kwargs)
|
|
540
|
-
obj.result = result
|
|
541
|
-
|
|
542
|
-
# Initialize the sqlmr_query class attribute.
|
|
543
|
-
obj.sqlmr_query = None
|
|
544
|
-
|
|
545
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
546
|
-
obj._sql_specific_attributes = None
|
|
547
|
-
obj._target_column = target_column
|
|
548
|
-
obj._prediction_type = prediction_type
|
|
549
|
-
obj._algorithm_name = algorithm_name
|
|
550
|
-
obj._build_time = build_time
|
|
551
|
-
|
|
552
|
-
# Update output table data frames.
|
|
553
|
-
obj._mlresults = []
|
|
554
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
555
|
-
obj._mlresults.append(obj.result)
|
|
556
|
-
return obj
|
|
557
|
-
|
|
558
|
-
def __repr__(self):
|
|
559
|
-
"""
|
|
560
|
-
Returns the string representation for a Scale class instance.
|
|
561
|
-
"""
|
|
562
|
-
repr_string="############ STDOUT Output ############"
|
|
563
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
564
|
-
return repr_string
|
|
565
|
-
|