teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,565 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.8
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
- from teradataml.analytics.mle.ScaleMap import ScaleMap
30
-
31
- class Scale:
32
-
33
- def __init__(self,
34
- object = None,
35
- data = None,
36
- method = None,
37
- scale_global = False,
38
- accumulate = None,
39
- multiplier = 1.0,
40
- intercept = "0",
41
- input_columns = None,
42
- object_sequence_column = None,
43
- data_sequence_column = None,
44
- object_order_column = None,
45
- data_order_column = None):
46
- """
47
- DESCRIPTION:
48
- The Scale function uses statistical information from the ScaleMap
49
- function to scale the input data set.
50
-
51
-
52
- PARAMETERS:
53
- object:
54
- Required Argument.
55
- Specifies the teradataml DataFrame containing statistic input
56
- generated by ScaleMap or instance of ScaleMap.
57
-
58
- object_order_column:
59
- Optional Argument.
60
- Specifies Order By columns for data.
61
- Values to this argument can be provided as a list, if multiple
62
- columns are used for ordering.
63
- Types: str OR list of Strings (str)
64
-
65
- data:
66
- Required Argument.
67
- Specifies the input teradataml DataFrame for scale function.
68
-
69
- data_order_column:
70
- Optional Argument.
71
- Specifies Order By columns for data.
72
- Values to this argument can be provided as a list, if multiple
73
- columns are used for ordering.
74
- Types: str OR list of Strings (str)
75
-
76
- method:
77
- Required Argument.
78
- Specify one or more methods used to scale the dataset. If you specify multiple methods,
79
- the output teradataml DataFrame includes the column scalemethod
80
- (which contains the method name) and a row for each input-row/method combination.
81
- Permitted Values: MEAN, SUM, USTD, STD, RANGE, MIDRANGE, MAXABS.
82
- Types: str or list of Strings (str)
83
-
84
- scale_global:
85
- Optional Argument.
86
- Specifies whether all input columns are scaled to the same location
87
- and scale. (Each input column is scaled separately).
88
- Default Value: False
89
- Types: bool
90
-
91
- accumulate:
92
- Optional Argument.
93
- Specifies the input teradataml DataFrame columns to copy to the
94
- output table. By default, the function copies no input teradataml
95
- DataFrame columns to the output table.
96
- Types: str OR list of Strings (str)
97
-
98
- multiplier:
99
- Optional Argument.
100
- Specifies one or more multiplying factors to apply to the input
101
- variables-multiplier in the following formula:
102
- X' = intercept + multiplier * (X - location)/scale
103
- If you specify only one multiplier, it applies to all columns specified
104
- by the input_columns argument. If you specify multiple multiplying factors,
105
- each multiplier applies to the corresponding input column. For example, the first multiplier
106
- applies to the first column specified by the input_columns argument,
107
- the second multiplier applies to the second input column, and so on.
108
- Default Value: 1.0
109
- Types: float OR list of floats
110
-
111
- intercept:
112
- Optional Argument.
113
- Specifies one or more addition factors incrementing the scaled
114
- results-intercept in the following formula:
115
- X' = intercept + multiplier * (X - location)/scale
116
- If you specify only one intercept, it applies to all columns specified
117
- by the input_columns argument. If you specify multiple addition factors,
118
- each intercept applies to the corresponding input column.
119
- The syntax of intercept is:
120
- [-]{number | min | mean | max }
121
- where min, mean, and max are the scale_global minimum,
122
- maximum, mean values in the corresponding columns.
123
- The function scales the values of min, mean, and max.
124
- The formula for computing the scaled scale_global minimum is:
125
- scaledmin = (minX - location)/scale
126
- The formulas for computing the scaled scale_global mean and maximum
127
- are analogous to the preceding formula.
128
- For example, if intercept is "- min" and multiplier is 1,
129
- the scaled result is transformed to a nonnegative sequence according
130
- to this formula, where scaledmin is the scaled value:
131
- X' = -scaledmin + 1 * (X - location)/scale.
132
- Default Value: "0"
133
- Types: str or list of Strings (str)
134
-
135
- input_columns:
136
- Optional Argument.
137
- Specifies the input teradataml DataFrame columns that contain the
138
- attribute values of the samples. The attribute values must be numeric
139
- values between -1e308 and 1e308. If a value is outside this range,
140
- the function treats it as infinity.
141
- The default input columns are all columns of the statistic teradataml DataFrame
142
- (of the ScaleMap function) except stattype.
143
- Types: str OR list of Strings (str)
144
-
145
- object_sequence_column:
146
- Optional Argument.
147
- Specifies the list of column(s) that uniquely identifies each row of
148
- the input argument "object". The argument is used to ensure
149
- deterministic results for functions which produce results that vary
150
- from run to run.
151
- Types: str OR list of Strings (str)
152
-
153
- data_sequence_column:
154
- Optional Argument.
155
- Specifies the list of column(s) that uniquely identifies each row of
156
- the input argument "data". The argument is used to ensure
157
- deterministic results for functions which produce results that vary
158
- from run to run.
159
- Types: str OR list of Strings (str)
160
-
161
- RETURNS:
162
- Instance of Scale.
163
- Output teradataml DataFrames can be accessed using attribute
164
- references, such as ScaleObj.<attribute_name>.
165
- Output teradataml DataFrame attribute name is:
166
- result
167
-
168
-
169
- RAISES:
170
- TeradataMlException
171
-
172
- EXAMPLES:
173
- # Load example data.
174
- # The table 'scale_housing' and 'scale_housing_test' contains house properties
175
- # like the number of bedrooms, lot size, the number of bathrooms, number of stories etc.
176
- # The table 'scale_stat' is the statistic data(genererated by ScaleMap function) of the scale_housing data.
177
- load_example_data("scalemap", "scale_housing")
178
- load_example_data("scale", ["scale_stat", "scale_housing_test"])
179
-
180
- # Create teradataml DataFrame objects.
181
- scale_housing = DataFrame.from_table("scale_housing")
182
- scale_housing_test = DataFrame.from_table("scale_housing_test")
183
- scale_stat = DataFrame.from_table("scale_stat")
184
-
185
- # Example 1 - This example scales (normalizes) input data using the
186
- # midrange method and the default values for the arguments Intercept
187
- # and Multiplier (0 and 1, respectively).
188
- scale_map_out = ScaleMap(data = scale_housing,
189
- input_columns = ['price','lotsize','bedrooms','bathrms','stories']
190
- )
191
-
192
- scale_out1 = Scale(object=scale_map_out,
193
- data=scale_housing,
194
- method="midrange",
195
- accumulate="id"
196
- )
197
- # Print the result DataFrame
198
- print(scale_out1)
199
-
200
- # Example 2 - This example uses a teradataml DataFrame as input for object argument and
201
- # the Intercept argument has the value "-min" (where min is the scale_global minimum value)
202
- # and we also specify different Multiplier values for corresponding columns.
203
- scale_out2 = Scale(object = scale_stat,
204
- data = scale_housing,
205
- method = "midrange",
206
- accumulate = "id",
207
- multiplier = [1.0,2.0,3.0,4.0,5.0],
208
- intercept = "-min"
209
- )
210
-
211
- # Print the result DataFrame
212
- print(scale_out2)
213
-
214
- # Example 3 - This example uses the statistics created by ScaleMap on a training data set
215
- # (scale_housing) and then uses these statistics to scale a similar
216
- # test data set(scale_housing_test).
217
- scale_out3 = Scale(object = scale_stat,
218
- data = scale_housing_test,
219
- method = "midrange",
220
- accumulate = "id"
221
- )
222
-
223
- # Example 4 - This example uses the Scale function to scale data (using
224
- # the maxabs method) before inputting it to the function KMeans, which
225
- # outputs the centroids of the clusters in the dataset.
226
- load_example_data("KMeans", "computers_train1")
227
- computers_train1 = DataFrame.from_table("computers_train1")
228
-
229
- scale_map_out4 = ScaleMap(data=computers_train1,
230
- input_columns=['price','speed','hd','ram'],
231
- miss_value='OMIT'
232
- )
233
-
234
- scale_out4 = Scale(object=scale_map_out4,
235
- data=computers_train1,
236
- method="maxabs",
237
- accumulate="id"
238
- )
239
- # Use the scaled data as input to KMeans to get clusters
240
- kmeans_out = KMeans(data = scale_out4.result,
241
- centers = 8,
242
- iter_max = 10,
243
- threshold = 0.05
244
- )
245
- # Print the result DataFrame
246
- print(kmeans_out)
247
-
248
- """
249
-
250
- # Start the timer to get the build time
251
- _start_time = time.time()
252
-
253
- self.object = object
254
- self.data = data
255
- self.method = method
256
- self.scale_global = scale_global
257
- self.accumulate = accumulate
258
- self.multiplier = multiplier
259
- self.intercept = intercept
260
- self.input_columns = input_columns
261
- self.object_sequence_column = object_sequence_column
262
- self.data_sequence_column = data_sequence_column
263
- self.object_order_column = object_order_column
264
- self.data_order_column = data_order_column
265
-
266
- # Create TeradataPyWrapperUtils instance which contains validation functions.
267
- self.__awu = AnalyticsWrapperUtils()
268
- self.__aed_utils = AedUtils()
269
-
270
- # Create argument information matrix to do parameter checking
271
- self.__arg_info_matrix = []
272
- self.__arg_info_matrix.append(["object", self.object, False, (DataFrame)])
273
- self.__arg_info_matrix.append(["object_order_column", self.object_order_column, True, (str,list)])
274
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
275
- self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
276
- self.__arg_info_matrix.append(["method", self.method, False, (str,list)])
277
- self.__arg_info_matrix.append(["scale_global", self.scale_global, True, (bool)])
278
- self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
279
- self.__arg_info_matrix.append(["multiplier", self.multiplier, True, (float,list)])
280
- self.__arg_info_matrix.append(["intercept", self.intercept, True, (str,list)])
281
- self.__arg_info_matrix.append(["input_columns", self.input_columns, True, (str,list)])
282
- self.__arg_info_matrix.append(["object_sequence_column", self.object_sequence_column, True, (str,list)])
283
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
284
-
285
- if inspect.stack()[1][3] != '_from_model_catalog':
286
- # Perform the function validations
287
- self.__validate()
288
- # Generate the ML query
289
- self.__form_tdml_query()
290
- # Execute ML query
291
- self.__execute()
292
- # Get the prediction type
293
- self._prediction_type = self.__awu._get_function_prediction_type(self)
294
-
295
- # End the timer to get the build time
296
- _end_time = time.time()
297
-
298
- # Calculate the build time
299
- self._build_time = (int)(_end_time - _start_time)
300
-
301
- def __validate(self):
302
- """
303
- Function to validate sqlmr function arguments, which verifies missing
304
- arguments, input argument and table types. Also processes the
305
- argument values.
306
- """
307
- if isinstance(self.object, ScaleMap):
308
- self.object = self.object._mlresults[0]
309
-
310
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
311
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
312
-
313
- # Make sure that a non-NULL value has been supplied correct type of argument
314
- self.__awu._validate_argument_types(self.__arg_info_matrix)
315
-
316
- # Check to make sure input table types are strings or data frame objects or of valid type.
317
- self.__awu._validate_input_table_datatype(self.object, "object", ScaleMap)
318
- self.__awu._validate_input_table_datatype(self.data, "data", None)
319
-
320
- # Check for permitted values
321
- method_permitted_values = ["MEAN", "SUM", "USTD", "STD", "RANGE", "MIDRANGE", "MAXABS"]
322
- self.__awu._validate_permitted_values(self.method, method_permitted_values, "method")
323
-
324
- # Check whether the input columns passed to the argument are not empty.
325
- # Also check whether the input columns passed to the argument valid or not.
326
- self.__awu._validate_input_columns_not_empty(self.input_columns, "input_columns")
327
- self.__awu._validate_dataframe_has_argument_columns(self.input_columns, "input_columns", self.data, "data", False)
328
-
329
- self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
330
- self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.data, "data", False)
331
-
332
- self.__awu._validate_input_columns_not_empty(self.object_sequence_column, "object_sequence_column")
333
- self.__awu._validate_dataframe_has_argument_columns(self.object_sequence_column, "object_sequence_column", self.object, "object", False)
334
-
335
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
336
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
337
-
338
- self.__awu._validate_input_columns_not_empty(self.object_order_column, "object_order_column")
339
- self.__awu._validate_dataframe_has_argument_columns(self.object_order_column, "object_order_column", self.object, "object", False)
340
-
341
- self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
342
- self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
343
-
344
-
345
- def __form_tdml_query(self):
346
- """
347
- Function to generate the analytical function queries. The function defines
348
- variables and list of arguments required to form the query.
349
- """
350
-
351
- # Output table arguments list
352
- self.__func_output_args_sql_names = []
353
- self.__func_output_args = []
354
-
355
- # Model Cataloging related attributes.
356
- self._sql_specific_attributes = {}
357
- self._sql_formula_attribute_mapper = {}
358
- self._target_column = None
359
- self._algorithm_name = None
360
-
361
- # Generate lists for rest of the function arguments
362
- self.__func_other_arg_sql_names = []
363
- self.__func_other_args = []
364
- self.__func_other_arg_json_datatypes = []
365
-
366
- if self.input_columns is not None:
367
- self.__func_other_arg_sql_names.append("TargetColumns")
368
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.input_columns, "\""), "'"))
369
- self.__func_other_arg_json_datatypes.append("COLUMNS")
370
-
371
- if self.accumulate is not None:
372
- self.__func_other_arg_sql_names.append("Accumulate")
373
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
374
- self.__func_other_arg_json_datatypes.append("COLUMNS")
375
-
376
- self.__func_other_arg_sql_names.append("ScaleMethod")
377
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.method, "'"))
378
- self.__func_other_arg_json_datatypes.append("STRING")
379
-
380
- if self.scale_global is not None and self.scale_global != False:
381
- self.__func_other_arg_sql_names.append("GlobalScale")
382
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.scale_global, "'"))
383
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
384
-
385
- if self.multiplier is not None and self.multiplier != 1.0:
386
- self.__func_other_arg_sql_names.append("Multiplier")
387
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.multiplier, "'"))
388
- self.__func_other_arg_json_datatypes.append("DOUBLE")
389
-
390
- if self.intercept is not None and self.intercept != "0":
391
- self.__func_other_arg_sql_names.append("Intercept")
392
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.intercept, "'"))
393
- self.__func_other_arg_json_datatypes.append("STRING")
394
-
395
- # Generate lists for rest of the function arguments
396
- sequence_input_by_list = []
397
- if self.object_sequence_column is not None:
398
- sequence_input_by_list.append("statistic:" + UtilFuncs._teradata_collapse_arglist(self.object_sequence_column, ""))
399
-
400
- if self.data_sequence_column is not None:
401
- sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
402
-
403
- if len(sequence_input_by_list) > 0:
404
- self.__func_other_arg_sql_names.append("SequenceInputBy")
405
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
406
- self.__func_other_args.append(sequence_input_by_arg_value)
407
- self.__func_other_arg_json_datatypes.append("STRING")
408
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
409
-
410
-
411
- # Declare empty lists to hold input table information.
412
- self.__func_input_arg_sql_names = []
413
- self.__func_input_table_view_query = []
414
- self.__func_input_dataframe_type = []
415
- self.__func_input_distribution = []
416
- self.__func_input_partition_by_cols = []
417
- self.__func_input_order_by_cols = []
418
-
419
- # Process object
420
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.object, False)
421
- self.__func_input_distribution.append("DIMENSION")
422
- self.__func_input_arg_sql_names.append("statistic")
423
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
424
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
425
- self.__func_input_partition_by_cols.append("NA_character_")
426
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.object_order_column, "\""))
427
-
428
- # Process data
429
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
430
- self.__func_input_distribution.append("FACT")
431
- self.__func_input_arg_sql_names.append("input")
432
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
433
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
434
- self.__func_input_partition_by_cols.append("ANY")
435
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
436
-
437
- function_name = "Scale"
438
- # Create instance to generate SQLMR.
439
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
440
- self.__func_input_arg_sql_names,
441
- self.__func_input_table_view_query,
442
- self.__func_input_dataframe_type,
443
- self.__func_input_distribution,
444
- self.__func_input_partition_by_cols,
445
- self.__func_input_order_by_cols,
446
- self.__func_other_arg_sql_names,
447
- self.__func_other_args,
448
- self.__func_other_arg_json_datatypes,
449
- self.__func_output_args_sql_names,
450
- self.__func_output_args,
451
- engine="ENGINE_ML")
452
- # Invoke call to SQL-MR generation.
453
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
454
-
455
- # Print SQL-MR query if requested to do so.
456
- if display.print_sqlmr_query:
457
- print(self.sqlmr_query)
458
-
459
- # Set the algorithm name for Model Cataloging.
460
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
461
-
462
- def __execute(self):
463
- """
464
- Function to execute SQL-MR queries.
465
- Create DataFrames for the required SQL-MR outputs.
466
- """
467
- # Generate STDOUT table name and add it to the output table list.
468
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
469
- try:
470
- # Generate the output.
471
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
472
- except Exception as emsg:
473
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
474
-
475
- # Update output table data frames.
476
- self._mlresults = []
477
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
478
- self._mlresults.append(self.result)
479
-
480
- def show_query(self):
481
- """
482
- Function to return the underlying SQL query.
483
- When model object is created using retrieve_model(), then None is returned.
484
- """
485
- return self.sqlmr_query
486
-
487
- def get_prediction_type(self):
488
- """
489
- Function to return the Prediction type of the algorithm.
490
- When model object is created using retrieve_model(), then the value returned is
491
- as saved in the Model Catalog.
492
- """
493
- return self._prediction_type
494
-
495
- def get_target_column(self):
496
- """
497
- Function to return the Target Column of the algorithm.
498
- When model object is created using retrieve_model(), then the value returned is
499
- as saved in the Model Catalog.
500
- """
501
- return self._target_column
502
-
503
- def get_build_time(self):
504
- """
505
- Function to return the build time of the algorithm in seconds.
506
- When model object is created using retrieve_model(), then the value returned is
507
- as saved in the Model Catalog.
508
- """
509
- return self._build_time
510
-
511
- def _get_algorithm_name(self):
512
- """
513
- Function to return the name of the algorithm.
514
- """
515
- return self._algorithm_name
516
-
517
- def _get_sql_specific_attributes(self):
518
- """
519
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
520
- """
521
- return self._sql_specific_attributes
522
-
523
- @classmethod
524
- def _from_model_catalog(cls,
525
- result = None,
526
- **kwargs):
527
- """
528
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
529
- """
530
- kwargs.pop("result", None)
531
-
532
- # Model Cataloging related attributes.
533
- target_column = kwargs.pop("__target_column", None)
534
- prediction_type = kwargs.pop("__prediction_type", None)
535
- algorithm_name = kwargs.pop("__algorithm_name", None)
536
- build_time = kwargs.pop("__build_time", None)
537
-
538
- # Let's create an object of this class.
539
- obj = cls(**kwargs)
540
- obj.result = result
541
-
542
- # Initialize the sqlmr_query class attribute.
543
- obj.sqlmr_query = None
544
-
545
- # Initialize the SQL specific Model Cataloging attributes.
546
- obj._sql_specific_attributes = None
547
- obj._target_column = target_column
548
- obj._prediction_type = prediction_type
549
- obj._algorithm_name = algorithm_name
550
- obj._build_time = build_time
551
-
552
- # Update output table data frames.
553
- obj._mlresults = []
554
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
555
- obj._mlresults.append(obj.result)
556
- return obj
557
-
558
- def __repr__(self):
559
- """
560
- Returns the string representation for a Scale class instance.
561
- """
562
- repr_string="############ STDOUT Output ############"
563
- repr_string = "{}\n\n{}".format(repr_string,self.result)
564
- return repr_string
565
-