teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -0,0 +1,175 @@
1
+ import sys
2
+ import numpy as np
3
+ import pickle
4
+ import base64
5
+
6
+ DELIMITER = '\t'
7
+
8
+ def get_value(value):
9
+ ret_val = value
10
+ try:
11
+ ret_val = float(value.replace(' ', ''))
12
+ except Exception as ex:
13
+ # If the value can't be converted to float, then it is string.
14
+ pass
15
+ return ret_val
16
+
17
+
18
+ def get_values_list(values, ignore_none=True):
19
+ ret_vals = []
20
+ for val in values:
21
+ if val == "" and ignore_none:
22
+ # Empty cell value in the database table.
23
+ continue
24
+ ret_vals.append(get_value(val))
25
+
26
+ return ret_vals
27
+
28
+ def convert_to_type(val, typee):
29
+ if typee == 'int':
30
+ return int(val)
31
+ if typee == 'float':
32
+ val = get_value(val)
33
+ return float(val)
34
+ if typee == 'bool':
35
+ return bool(val)
36
+ return str(val)
37
+
38
+ def get_classes_as_list(classes, actual_type):
39
+ if classes == "None":
40
+ return None
41
+ if actual_type == "None":
42
+ sys.exit("type of class elements is None where class elements exists.")
43
+
44
+ # separated by '--'
45
+ classes = classes.split("--")
46
+
47
+ for idx, cls in enumerate(classes):
48
+ classes[idx] = convert_to_type(cls, actual_type)
49
+
50
+ return classes
51
+
52
+
53
+ def splitter(strr, delim=",", convert_to="str"):
54
+ """
55
+ Split the string based on delimiter and convert to the type specified.
56
+ """
57
+ if strr == "None":
58
+ return []
59
+ return [convert_to_type(i, convert_to) for i in strr.split(delim)]
60
+
61
+ # Arguments to the Script
62
+ if len(sys.argv) != 10:
63
+ # 10 arguments command line arguments should be passed to this file.
64
+ # 1: file to be run
65
+ # 2. function name
66
+ # 3. No of feature columns.
67
+ # 4. No of class labels.
68
+ # 5. Comma separated indices of partition columns.
69
+ # 6. Comma separated types of the partition columns.
70
+ # 7. Model file prefix to generated model file using partition columns.
71
+ # 8. classes (separated by '--') - should be converted to list. "None" if no classes exists.
72
+ # 9. type of elements in passed in classes. "None" if no classes exists.
73
+ # 10. Flag to check the system type. True, means Lake, Enterprise otherwise
74
+ sys.exit("10 arguments command line arguments should be passed: file to be run,"
75
+ " function name, no of feature columns, no of class labels, comma separated indices"
76
+ " and types of partition columns, model file prefix ,"
77
+ " classes, type of elements in classes and flag to check lake or enterprise.")
78
+
79
+ is_lake_system = eval(sys.argv[9])
80
+ if not is_lake_system:
81
+ db = sys.argv[0].split("/")[1]
82
+ function_name = sys.argv[1]
83
+ n_f_cols = int(sys.argv[2])
84
+ n_c_labels = int(sys.argv[3])
85
+ data_partition_column_types = splitter(sys.argv[5])
86
+ data_partition_column_indices = splitter(sys.argv[4], convert_to="int") # indices are integers.
87
+ model_file_prefix = sys.argv[6]
88
+ class_type = sys.argv[8]
89
+ classes = get_classes_as_list(sys.argv[7], class_type)
90
+
91
+ model = None
92
+
93
+ # Data Format (n_features, k_labels, one data_partition_column):
94
+ # feature1, feature2, ..., featuren, label1, label2, ... labelk, data_partition_column1, ...,
95
+ # data_partition_columnn
96
+ # There can be no labels also.
97
+
98
+ # Read data from table through STO and build features and labels.
99
+ features = []
100
+ labels = []
101
+ data_partition_column_values = []
102
+
103
+
104
+ while 1:
105
+ try:
106
+ line = input()
107
+ if line == '': # Exit if user provides blank line
108
+ break
109
+ else:
110
+ values = line.split(DELIMITER)
111
+ features.append(get_values_list(values[:n_f_cols]))
112
+ if n_c_labels > 0:
113
+ labels.append(get_values_list(values[n_f_cols:(n_f_cols+n_c_labels)]))
114
+ if not data_partition_column_values:
115
+ # Partition column values is same for all rows. Hence, only read once.
116
+ for i, val in enumerate(data_partition_column_indices):
117
+ data_partition_column_values.append(
118
+ convert_to_type(values[val], typee=data_partition_column_types[i])
119
+ )
120
+
121
+ # Prepare the corresponding model file name and extract model.
122
+ partition_join = "_".join([str(x) for x in data_partition_column_values])
123
+ # Replace '-' with '_' as '-' because partition_columns can be negative.
124
+ partition_join = partition_join.replace("-", "_")
125
+
126
+ model_file_path = f"{model_file_prefix}_{partition_join}"\
127
+ if is_lake_system else \
128
+ f"./{db}/{model_file_prefix}_{partition_join}"
129
+
130
+ with open(model_file_path, "rb") as fp:
131
+ model = pickle.loads(fp.read())
132
+
133
+ if model is None:
134
+ sys.exit("Model file is not installed in Vantage.")
135
+
136
+ except EOFError: # Exit if reached EOF or CTRL-D
137
+ break
138
+
139
+ if not len(features):
140
+ sys.exit(0)
141
+
142
+ # Fit/partial_fit the model to the data.
143
+ if function_name == "partial_fit":
144
+ if labels and classes:
145
+ model.partial_fit(np.array(features), np.array(labels), classes=classes)
146
+ elif labels:
147
+ model.partial_fit(np.array(features), np.array(labels))
148
+ elif classes:
149
+ model.partial_fit(np.array(features), classes=classes)
150
+ else:
151
+ model.partial_fit(np.array(features))
152
+ elif function_name == "fit":
153
+ # For IsotonicRegression, fit() accepts training target as
154
+ # y: array-like of shape (n_samples,).
155
+ if labels:
156
+ labels = np.array(labels).reshape(-1) \
157
+ if model.__class__.__name__ == "IsotonicRegression" else np.array(labels)
158
+ model.fit(np.array(features), labels)
159
+ else:
160
+ model.fit(np.array(features))
161
+
162
+ model_str = pickle.dumps(model)
163
+
164
+ if is_lake_system:
165
+ model_file_path = f"/tmp/{model_file_prefix}_{partition_join}.pickle"
166
+
167
+ # Write to file in Vantage, to be used in predict/scoring.
168
+ with open(model_file_path, "wb") as fp:
169
+ fp.write(model_str)
170
+
171
+ model_data = model_file_path if is_lake_system \
172
+ else base64.b64encode(model_str)
173
+
174
+ # Print the model to be read from script.
175
+ print(*(data_partition_column_values + [model_data]), sep=DELIMITER)
@@ -0,0 +1,135 @@
1
+ import sys
2
+ import numpy as np
3
+ import pickle
4
+ import math
5
+
6
+ DELIMITER = '\t'
7
+
8
+ def get_value(value):
9
+ ret_val = value
10
+ try:
11
+ ret_val = float(value.replace(' ', ''))
12
+ except Exception as ex:
13
+ # If the value can't be converted to float, then it is string.
14
+ pass
15
+ return ret_val
16
+
17
+ def get_values_list(values, ignore_none=True):
18
+ ret_vals = []
19
+ for val in values:
20
+ if val == "" and ignore_none:
21
+ # Empty cell value in the database table.
22
+ continue
23
+ ret_vals.append(get_value(val))
24
+
25
+ return ret_vals
26
+
27
+ def convert_to_type(val, typee):
28
+ if typee == 'int':
29
+ return int(val)
30
+ if typee == 'float':
31
+ return float(val)
32
+ if typee == 'bool':
33
+ return bool(val)
34
+ return str(val)
35
+
36
+ def splitter(strr, delim=",", convert_to="str"):
37
+ """
38
+ Split the string based on delimiter and convert to the type specified.
39
+ """
40
+ if strr == "None":
41
+ return []
42
+ return [convert_to_type(i, convert_to) for i in strr.split(delim)]
43
+
44
+ # Arguments to the Script
45
+ if len(sys.argv) != 7:
46
+ # 6 arguments command line arguments should be passed to this file.
47
+ # 1: file to be run
48
+ # 2. No of feature columns.
49
+ # 3. No of class labels.
50
+ # 4. Comma separated indices of partition columns.
51
+ # 5. Comma separated types of the partition columns.
52
+ # 6. Model file prefix to generated model file using partition columns.
53
+ # 7. Flag to check the system type. True, means Lake, Enterprise otherwise.
54
+ sys.exit("7 arguments should be passed to this file - file to be run, "\
55
+ "no of feature columns, no of class labels, comma separated indices and types of "\
56
+ "partition columns, model file prefix to generate model file using partition "\
57
+ "columns and flag to check lake or enterprise.")
58
+
59
+ is_lake_system = eval(sys.argv[6])
60
+ if not is_lake_system:
61
+ db = sys.argv[0].split("/")[1]
62
+ n_f_cols = int(sys.argv[1])
63
+ n_c_labels = int(sys.argv[2])
64
+ model_file_prefix = sys.argv[5]
65
+ data_partition_column_types = splitter(sys.argv[4])
66
+ data_partition_column_indices = splitter(sys.argv[3], convert_to="int") # indices are integers.
67
+
68
+ model = None
69
+
70
+ # Data Format (n_features, k_labels, one data_partition_columns):
71
+ # feature1, feature2, ..., featuren, label1, label2, ... labelk, data_partition_column1, ...,
72
+ # data_partition_columnn.
73
+ # There can be no labels also.
74
+
75
+ # Read data from table through STO and build features and labels.
76
+ features = []
77
+ labels = []
78
+ data_partition_column_values = []
79
+
80
+
81
+ while 1:
82
+ try:
83
+ line = input()
84
+ if line == '': # Exit if user provides blank line
85
+ break
86
+ else:
87
+ values = line.split(DELIMITER)
88
+ features.append(get_values_list(values[:n_f_cols]))
89
+ if n_c_labels > 0:
90
+ labels.append(get_values_list(values[n_f_cols:(n_f_cols+n_c_labels)]))
91
+ if not data_partition_column_values:
92
+ # Partition column values is same for all rows. Hence, only read once.
93
+ for i, val in enumerate(data_partition_column_indices):
94
+ data_partition_column_values.append(
95
+ convert_to_type(values[val], typee=data_partition_column_types[i])
96
+ )
97
+
98
+ # Prepare the corresponding model file name and extract model.
99
+ partition_join = "_".join([str(x) for x in data_partition_column_values])
100
+ # Replace '-' with '_' as '-' because partition_columns can be negative.
101
+ partition_join = partition_join.replace("-", "_")
102
+
103
+ model_file_path = f"{model_file_prefix}_{partition_join}" \
104
+ if is_lake_system else \
105
+ f"./{db}/{model_file_prefix}_{partition_join}"
106
+
107
+ with open(model_file_path, "rb") as fp:
108
+ model = pickle.loads(fp.read())
109
+
110
+ if model is None:
111
+ sys.exit("Model file is not installed in Vantage.")
112
+
113
+ except EOFError: # Exit if reached EOF or CTRL-D
114
+ break
115
+
116
+ if not len(features):
117
+ sys.exit(0)
118
+
119
+ # write code to call fit_predict with features and labels when n_c_labels > 0
120
+ if n_c_labels > 0:
121
+ predictions = model.fit_predict(np.array(features), np.array(labels))
122
+ else:
123
+ predictions = model.fit_predict(np.array(features))
124
+
125
+ # Export results to to the Databse through standard output
126
+ for i in range(len(predictions)):
127
+ if n_c_labels > 0:
128
+ # Add labels into output, if user passes it.
129
+ result_list = features[i] + labels[i] + [predictions[i]]
130
+ else:
131
+ result_list = features[i] + [predictions[i]]
132
+ print(*(data_partition_column_values +
133
+ ['' if (val is None or math.isnan(val) or math.isinf(val))
134
+ else val for val in result_list]),
135
+ sep= DELIMITER)
@@ -0,0 +1,113 @@
1
+ import sys, json
2
+ import pickle, base64, importlib, numpy as np
3
+ from collections import OrderedDict
4
+
5
+ func_name = "<func_name>"
6
+ module_name = "<module_name>"
7
+ params = json.loads('<params>')
8
+
9
+ DELIMITER = '\t'
10
+
11
+ def get_value(value):
12
+ ret_val = value
13
+ try:
14
+ ret_val = float(value.replace(' ', ''))
15
+ except Exception as ex:
16
+ # If the value can't be converted to float, then it is string.
17
+ pass
18
+ return ret_val
19
+
20
+ def convert_to_type(val, typee):
21
+ if typee == 'int':
22
+ return int(val)
23
+ if typee == 'float':
24
+ return get_value(val)
25
+ if typee == 'bool':
26
+ return bool(val)
27
+ return str(val)
28
+
29
+ def splitter(strr, delim=",", convert_to="str"):
30
+ """
31
+ Split the string based on delimiter and convert to the type specified.
32
+ """
33
+ if strr == "None":
34
+ return []
35
+ return [convert_to_type(i, convert_to) for i in strr.split(delim)]
36
+
37
+ # Arguments to the Script.
38
+ if len(sys.argv) != 4:
39
+ # 4 arguments command line arguments should be passed to this file.
40
+ # 1: file to be run
41
+ # 2. Comma separated indices of partition columns.
42
+ # 3. Comma separated types of the partition columns.
43
+ # 4. Data columns information separted by "--" where each data column information is in the form
44
+ # "<arg_name>-<comma separated data indices>-<comma separated data types>".
45
+ sys.exit("4 arguments command line arguments should be passed: file to be run,"
46
+ " comma separated indices and types of partition columns, data columns information"
47
+ " separated by '--' where each data column information is in the form"
48
+ " '<arg_name>-<comma separated data indices>-<comma separated data types>'.")
49
+
50
+ db = sys.argv[0].split("/")[1]
51
+ data_partition_column_indices = splitter(sys.argv[1], convert_to="int") # indices are integers.
52
+ data_partition_column_types = splitter(sys.argv[2])
53
+
54
+ # Data related arguments information of indices and types.
55
+ data_args_indices_types = OrderedDict()
56
+
57
+ # Data related arguments values - prepare dictionary and populate data later.
58
+ data_args_values = {}
59
+
60
+ for data_arg in sys.argv[3].split("--"):
61
+ arg_name, indices, types = data_arg.split("-")
62
+ indices = splitter(indices, convert_to="int")
63
+ types = splitter(types)
64
+
65
+ data_args_indices_types[arg_name] = {"indices": indices, "types": types}
66
+ data_args_values[arg_name] = [] # Keeping empty for each data arg name and populate data later.
67
+
68
+ data_partition_column_values = []
69
+ data_present = False
70
+
71
+ # Read data - columns information is passed as command line argument and stored in
72
+ # data_args_indices_types dictionary.
73
+ while 1:
74
+ try:
75
+ line = input()
76
+ if line == '': # Exit if user provides blank line
77
+ break
78
+ else:
79
+ data_present = True
80
+ values = line.split(DELIMITER)
81
+ if not data_partition_column_values:
82
+ # Partition column values is same for all rows. Hence, only read once.
83
+ for i, val in enumerate(data_partition_column_indices):
84
+ data_partition_column_values.append(
85
+ convert_to_type(values[val], typee=data_partition_column_types[i])
86
+ )
87
+
88
+ # Prepare data dictionary containing only arguments related to data.
89
+ for arg_name in data_args_values:
90
+ data_indices = data_args_indices_types[arg_name]["indices"]
91
+ types = data_args_indices_types[arg_name]["types"]
92
+ cur_row = []
93
+ for idx, data_idx in enumerate(data_indices):
94
+ cur_row.append(convert_to_type(values[data_idx], types[idx]))
95
+ data_args_values[arg_name].append(cur_row)
96
+ except EOFError: # Exit if reached EOF or CTRL-D
97
+ break
98
+
99
+ if not data_present:
100
+ sys.exit(0)
101
+
102
+ # Update data as numpy arrays.
103
+ for arg_name in data_args_values:
104
+ np_values = np.array(data_args_values[arg_name])
105
+ data_args_values[arg_name] = np_values
106
+
107
+ # Combine all arguments.
108
+ all_args = {**data_args_values, **params}
109
+
110
+ module_ = importlib.import_module(module_name)
111
+ sklearn_model = getattr(module_, func_name)(**all_args)
112
+
113
+ print(*(data_partition_column_values + [base64.b64encode(pickle.dumps(sklearn_model))]), sep=DELIMITER)
@@ -0,0 +1,158 @@
1
+ import pickle
2
+ import math
3
+ import sys
4
+ import numpy as np
5
+ import base64
6
+
7
+ DELIMITER = '\t'
8
+
9
+
10
+ def get_value(value):
11
+ ret_val = value
12
+ try:
13
+ ret_val = round(float("".join(value.split())), 2)
14
+ except Exception as ex:
15
+ # If the value can't be converted to float, then it is string.
16
+ pass
17
+ return ret_val
18
+
19
+
20
+ def get_values_list(values, ignore_none=True):
21
+ ret_vals = []
22
+ for val in values:
23
+ if val == "" and ignore_none:
24
+ # Empty cell value in the database table.
25
+ continue
26
+ ret_vals.append(get_value(val))
27
+
28
+ return ret_vals
29
+
30
+ def convert_to_type(val, typee):
31
+ if typee == 'int':
32
+ return int(val)
33
+ if typee == 'float':
34
+ return float(val)
35
+ if typee == 'bool':
36
+ return eval(val)
37
+ return str(val)
38
+
39
+ def splitter(strr, delim=",", convert_to="str"):
40
+ """
41
+ Split the string based on delimiter and convert to the type specified.
42
+ """
43
+ if strr == "None":
44
+ return []
45
+ return [convert_to_type(i, convert_to) for i in strr.split(delim)]
46
+
47
+
48
+ # Arguments to the Script
49
+ if len(sys.argv) != 9:
50
+ # 9 arguments command line arguments should be passed to this file.
51
+ # 1: file to be run
52
+ # 2. function name
53
+ # 3. No of feature columns.
54
+ # 4. No of class labels.
55
+ # 5. No of group columns.
56
+ # 6. Comma separated indices of partition columns.
57
+ # 7. Comma separated types of the partition columns.
58
+ # 8. Model file prefix to generated model file using partition columns.
59
+ # 9. Flag to check the system type. True, means Lake, Enterprise otherwise.
60
+ sys.exit("9 arguments command line arguments should be passed: file to be run,"
61
+ " function name, no of feature columns, no of class labels, no of group columns,"
62
+ " comma separated indices and types of partition columns, model file prefix to"
63
+ " generated model file using partition columns and flag to check lake or enterprise.")
64
+
65
+
66
+ is_lake_system = eval(sys.argv[8])
67
+ if not is_lake_system:
68
+ db = sys.argv[0].split("/")[1]
69
+ function_name = sys.argv[1]
70
+ n_f_cols = int(sys.argv[2])
71
+ n_c_labels = int(sys.argv[3])
72
+ n_g_cols = int(sys.argv[4])
73
+ data_partition_column_types = splitter(sys.argv[6])
74
+ data_partition_column_indices = splitter(sys.argv[5], convert_to="int") # indices are integers.
75
+ model_file_prefix = sys.argv[7]
76
+
77
+
78
+ model = None
79
+ data_partition_column_values = []
80
+
81
+ # Data Format (n_features, k_labels, one data_partition_column):
82
+ # feature1, feature2, ..., featuren, label1, label2, ... labelk, data_partition_column1, ...,
83
+ # data_partition_columnn.
84
+ # labels are optional.
85
+
86
+ features = []
87
+ labels = []
88
+ groups = []
89
+ while 1:
90
+ try:
91
+ line = input()
92
+ if line == '': # Exit if user provides blank line
93
+ break
94
+ else:
95
+ values = line.split(DELIMITER)
96
+ if not data_partition_column_values:
97
+ # Partition column values is same for all rows. Hence, only read once.
98
+ for i, val in enumerate(data_partition_column_indices):
99
+ data_partition_column_values.append(
100
+ convert_to_type(values[val], typee=data_partition_column_types[i])
101
+ )
102
+
103
+ # Prepare the corresponding model file name and extract model.
104
+ partition_join = "_".join([str(x) for x in data_partition_column_values])
105
+ # Replace '-' with '_' as '-' because partition_columns can be negative.
106
+ partition_join = partition_join.replace("-", "_")
107
+
108
+ model_file_path = f"{model_file_prefix}_{partition_join}" \
109
+ if is_lake_system else \
110
+ f"./{db}/{model_file_prefix}_{partition_join}"
111
+
112
+ with open(model_file_path, "rb") as fp:
113
+ model = pickle.loads(fp.read())
114
+
115
+ if not model:
116
+ sys.exit("Model file is not installed in Vantage.")
117
+
118
+ start = 0
119
+ if n_f_cols > 0:
120
+ features.append(get_values_list(values[:n_f_cols]))
121
+ start = start + n_f_cols
122
+ if n_c_labels > 0:
123
+ labels.append(get_values_list(values[start:(start+n_c_labels)]))
124
+ start = start + n_c_labels
125
+ if n_g_cols > 0:
126
+ groups.append(get_values_list(values[start:(start+n_g_cols)]))
127
+
128
+ except EOFError: # Exit if reached EOF or CTRL-D
129
+ break
130
+
131
+ if len(features) == 0:
132
+ sys.exit(0)
133
+
134
+ features = np.array(features) if len(features) > 0 else None
135
+ labels = np.array(labels).flatten() if len(labels) > 0 else None
136
+ groups = np.array(groups).flatten() if len(groups) > 0 else None
137
+
138
+ if function_name == "split":
139
+ # Printing both train and test data instead of just indices unlike sklearn.
140
+ # Generator is created based on split_id and type of split (train/test) in client.
141
+ split_id = 1
142
+ for train_idx, test_idx in model.split(features, labels, groups):
143
+ X_train, X_test = features[train_idx], features[test_idx]
144
+ y_train, y_test = labels[train_idx], labels[test_idx]
145
+ for X, y in zip(X_train, y_train):
146
+ print(*(data_partition_column_values + [split_id, "train"] +
147
+ ['' if (val is None or math.isnan(val) or math.isinf(val)) else val
148
+ for val in X] + [y]
149
+ ),sep=DELIMITER)
150
+ for X, y in zip(X_test, y_test):
151
+ print(*(data_partition_column_values + [split_id, "test"] +
152
+ ['' if (val is None or math.isnan(val) or math.isinf(val)) else val
153
+ for val in X] + [y]
154
+ ),sep=DELIMITER)
155
+ split_id += 1
156
+ else:
157
+ val = getattr(model, function_name)(features, labels, groups)
158
+ print(*(data_partition_column_values + [val]), sep=DELIMITER)