teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,553 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Rohit Agrawal (rohit.agrawal@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.7
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
- from teradataml.analytics.mle.SVMSparse import SVMSparse
30
-
31
- class SVMSparsePredict:
32
-
33
- def __init__(self,
34
- object = None,
35
- newdata = None,
36
- sample_id_column = None,
37
- attribute_column = None,
38
- value_column = None,
39
- accumulate_label = None,
40
- output_response_probdist = True,
41
- output_responses = None,
42
- output_class_num = None,
43
- newdata_sequence_column = None,
44
- object_sequence_column = None,
45
- newdata_partition_column = None,
46
- newdata_order_column = None,
47
- object_order_column = None):
48
- """
49
- DESCRIPTION:
50
- The SVMSparsePredictor function takes the model generated by the
51
- SVMSparse, a trainer function and a set of test samples (in sparse
52
- format) and outputs a prediction for each sample.
53
-
54
- Note: This function is available only when teradataml is connected to
55
- Vantage 1.1 or later versions.
56
-
57
- PARAMETERS:
58
- object:
59
- Required Argument.
60
- Specifies the teradataml DataFrame containing the model data
61
- generated by SVMSparse or instance of SVMSparse, which contains
62
- the model.
63
-
64
- object_order_column:
65
- Optional Argument.
66
- Specifies Order By columns for object.
67
- Values to this argument can be provided as a list, if multiple
68
- columns are used for ordering.
69
- Types: str OR list of Strings (str)
70
-
71
- newdata:
72
- Required Argument.
73
- Specifies the teradataml DataFrame containing the input test data.
74
-
75
- newdata_partition_column:
76
- Required Argument.
77
- Specifies Partition By columns for newdata.
78
- Values to this argument can be provided as a list, if multiple columns
79
- are used for partition.
80
- Types: str OR list of Strings (str)
81
-
82
- newdata_order_column:
83
- Optional Argument.
84
- Specifies Order By columns for newdata.
85
- Values to this argument can be provided as a list, if multiple
86
- columns are used for ordering.
87
- Types: str OR list of Strings (str)
88
-
89
- sample_id_column:
90
- Required Argument.
91
- Specifies the name of the column in newdata, teradataml DataFrame
92
- that contains the identifiers of the test samples. The data
93
- must be partitioned by this column.
94
- Types: str
95
-
96
- attribute_column:
97
- Required Argument.
98
- Specifies the name of the column in newdata, teradataml DataFrame
99
- that contains the attributes of the test samples.
100
- Types: str
101
-
102
- value_column:
103
- Optional Argument.
104
- Specifies the name of the column in newdata, teradataml DataFrame
105
- that contains the attribute values. By default, each attribute
106
- has the value 1.
107
- Types: str
108
-
109
- accumulate_label:
110
- Optional Argument.
111
- Specifies the name of the column in newdata, teradataml DataFrame
112
- to copy to the output table.
113
- Types: str OR list of Strings (str)
114
-
115
- output_response_probdist:
116
- Optional Argument.
117
- Specifies whether to display output probability for the predicted
118
- category.
119
- Note: "output_response_probdist" argument support is only available when
120
- teradataml is connected to Vantage 1.1.1 or later versions.
121
- Default Value: True
122
- Types: bool
123
-
124
- output_responses:
125
- Optional Argument.
126
- Specifies responses in the input table.
127
- This argument can only be used when output_response_probdist is True.
128
- Note:
129
- 1. "output_responses" argument support is only available when teradataml is
130
- connected to Vantage 1.1.1 or later versions.
131
- 2. "output_responses" can not be specified along with "output_class_num".
132
- 3. This argument requires the "output_response_probdist" argument to be set to True.
133
- Types: str OR list of Strings (str)
134
-
135
- output_class_num:
136
- Optional Argument.
137
- Valid only for multiple-class models. Specifies the number of class
138
- labels to appear in the output table, with its corresponding
139
- prediction confidence.
140
- Note:
141
- 1. With Vantage version prior to 1.1.1, the argument defaults to
142
- the value 1.
143
- 2. "output_class_num" cannot be specified along with "output_responses".
144
- Types: int
145
-
146
- newdata_sequence_column:
147
- Optional Argument.
148
- Specifies the list of column(s) that uniquely identifies each row of
149
- the input argument "newdata". The argument is used to ensure
150
- deterministic results for functions which produce results that vary
151
- from run to run.
152
- Types: str OR list of Strings (str)
153
-
154
- object_sequence_column:
155
- Optional Argument.
156
- Specifies the list of column(s) that uniquely identifies each row of
157
- the input argument "object". The argument is used to ensure
158
- deterministic results for functions which produce results that vary
159
- from run to run.
160
- Types: str OR list of Strings (str)
161
-
162
- RETURNS:
163
- Instance of SVMSparsePredict.
164
- Output teradataml DataFrames can be accessed using attribute
165
- references, such as SVMSparsePredictObj.<attribute_name>.
166
- Output teradataml DataFrame attribute name is: result
167
-
168
-
169
- RAISES:
170
- TeradataMlException
171
-
172
-
173
- EXAMPLES:
174
- # Load the data to run the example.
175
- load_example_data("SVMSparsePredict",["svm_iris_input_train","svm_iris_input_test"])
176
-
177
- # Create teradataml DataFrame
178
- svm_iris_input_train = DataFrame.from_table("svm_iris_input_train")
179
- svm_iris_input_test = DataFrame.from_table("svm_iris_input_test")
180
-
181
- # Create SparseSVMTrainer object.
182
- # SVMSparse takes training data, svm_iris_input_train, which contains four iris attributes
183
- # (sepal length, sepal width, petal length, and petal width), grouped into three categories
184
- # (setosa, versicolor, and virginica) and outputs a predictive model.
185
- svm_train = SVMSparse(data=svm_iris_input_train,
186
- sample_id_column='id',
187
- attribute_column='attribute',
188
- label_column='species',
189
- value_column='value1',
190
- max_step=150,
191
- seed=0,
192
- )
193
-
194
- # Example 1 - This example takes the model, svm_train, generated by the function SVMSparse
195
- # and a set of test samples, svm_iris_input_test, and outputs a prediction for each sample.
196
- svm_sparse_predict_result = SVMSparsePredict(newdata=svm_iris_input_test,
197
- newdata_partition_column=['id'],
198
- object=svm_train,
199
- attribute_column='attribute',
200
- sample_id_column='id',
201
- value_column='value1',
202
- accumulate_label='species'
203
- )
204
-
205
- # Print the result DataFrame
206
- print(svm_sparse_predict_result.result)
207
-
208
- """
209
-
210
- # Start the timer to get the build time
211
- _start_time = time.time()
212
-
213
- self.object = object
214
- self.newdata = newdata
215
- self.sample_id_column = sample_id_column
216
- self.attribute_column = attribute_column
217
- self.value_column = value_column
218
- self.accumulate_label = accumulate_label
219
- self.output_response_probdist = output_response_probdist
220
- self.output_responses = output_responses
221
- self.output_class_num = output_class_num
222
- self.newdata_sequence_column = newdata_sequence_column
223
- self.object_sequence_column = object_sequence_column
224
- self.newdata_partition_column = newdata_partition_column
225
- self.newdata_order_column = newdata_order_column
226
- self.object_order_column = object_order_column
227
-
228
- # Create TeradataPyWrapperUtils instance which contains validation functions.
229
- self.__awu = AnalyticsWrapperUtils()
230
- self.__aed_utils = AedUtils()
231
-
232
- # Create argument information matrix to do parameter checking
233
- self.__arg_info_matrix = []
234
- self.__arg_info_matrix.append(["object", self.object, False, (DataFrame)])
235
- self.__arg_info_matrix.append(["object_order_column", self.object_order_column, True, (str,list)])
236
- self.__arg_info_matrix.append(["newdata", self.newdata, False, (DataFrame)])
237
- self.__arg_info_matrix.append(["newdata_partition_column", self.newdata_partition_column, False, (str,list)])
238
- self.__arg_info_matrix.append(["newdata_order_column", self.newdata_order_column, True, (str,list)])
239
- self.__arg_info_matrix.append(["sample_id_column", self.sample_id_column, False, (str)])
240
- self.__arg_info_matrix.append(["attribute_column", self.attribute_column, False, (str)])
241
- self.__arg_info_matrix.append(["value_column", self.value_column, True, (str)])
242
- self.__arg_info_matrix.append(["accumulate_label", self.accumulate_label, True, (str,list)])
243
- self.__arg_info_matrix.append(["output_response_probdist", self.output_response_probdist, True, (bool)])
244
- self.__arg_info_matrix.append(["output_responses", self.output_responses, True, (str,list)])
245
- self.__arg_info_matrix.append(["output_class_num", self.output_class_num, True, (int)])
246
- self.__arg_info_matrix.append(["newdata_sequence_column", self.newdata_sequence_column, True, (str,list)])
247
- self.__arg_info_matrix.append(["object_sequence_column", self.object_sequence_column, True, (str,list)])
248
-
249
- if inspect.stack()[1][3] != '_from_model_catalog':
250
- # Perform the function validations
251
- self.__validate()
252
- # Generate the ML query
253
- self.__form_tdml_query()
254
- # Execute ML query
255
- self.__execute()
256
- # Get the prediction type
257
- self._prediction_type = self.__awu._get_function_prediction_type(self)
258
-
259
- # End the timer to get the build time
260
- _end_time = time.time()
261
-
262
- # Calculate the build time
263
- self._build_time = (int)(_end_time - _start_time)
264
-
265
- def __validate(self):
266
- """
267
- Function to validate sqlmr function arguments, which verifies missing
268
- arguments, input argument and table types. Also processes the
269
- argument values.
270
- """
271
- if isinstance(self.object, SVMSparse):
272
- self.object = self.object._mlresults[0]
273
-
274
- # Cannot use output_responses and output_class_num together
275
- if self.output_responses is not None and self.output_class_num is not None:
276
- raise TeradataMlException(
277
- Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT, "output_responses",
278
- "output_class_num"),
279
- MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
280
-
281
- # To use output_responses, output_response_probdist must be set to True
282
- if self.output_response_probdist is False and self.output_responses is not None:
283
- raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
284
- 'output_response_probdist=True',
285
- 'output_responses'),
286
- MessageCodes.DEPENDENT_ARG_MISSING)
287
-
288
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
289
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
290
-
291
- # Make sure that a non-NULL value has been supplied correct type of argument
292
- self.__awu._validate_argument_types(self.__arg_info_matrix)
293
-
294
- # Check to make sure input table types are strings or data frame objects or of valid type.
295
- self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
296
- self.__awu._validate_input_table_datatype(self.object, "object", SVMSparse)
297
-
298
- # Check whether the input columns passed to the argument are not empty.
299
- # Also check whether the input columns passed to the argument valid or not.
300
- self.__awu._validate_input_columns_not_empty(self.attribute_column, "attribute_column")
301
- self.__awu._validate_dataframe_has_argument_columns(self.attribute_column, "attribute_column", self.newdata, "newdata", False)
302
-
303
- self.__awu._validate_input_columns_not_empty(self.sample_id_column, "sample_id_column")
304
- self.__awu._validate_dataframe_has_argument_columns(self.sample_id_column, "sample_id_column", self.newdata, "newdata", False)
305
-
306
- self.__awu._validate_input_columns_not_empty(self.value_column, "value_column")
307
- self.__awu._validate_dataframe_has_argument_columns(self.value_column, "value_column", self.newdata, "newdata", False)
308
-
309
- self.__awu._validate_input_columns_not_empty(self.accumulate_label, "accumulate_label")
310
- self.__awu._validate_dataframe_has_argument_columns(self.accumulate_label, "accumulate_label", self.newdata, "newdata", False)
311
-
312
- self.__awu._validate_input_columns_not_empty(self.newdata_sequence_column, "newdata_sequence_column")
313
- self.__awu._validate_dataframe_has_argument_columns(self.newdata_sequence_column, "newdata_sequence_column", self.newdata, "newdata", False)
314
-
315
- self.__awu._validate_input_columns_not_empty(self.object_sequence_column, "object_sequence_column")
316
- self.__awu._validate_dataframe_has_argument_columns(self.object_sequence_column, "object_sequence_column", self.object, "object", False)
317
-
318
- self.__awu._validate_input_columns_not_empty(self.newdata_partition_column, "newdata_partition_column")
319
- self.__awu._validate_dataframe_has_argument_columns(self.newdata_partition_column, "newdata_partition_column", self.newdata, "newdata", True)
320
-
321
- self.__awu._validate_input_columns_not_empty(self.newdata_order_column, "newdata_order_column")
322
- self.__awu._validate_dataframe_has_argument_columns(self.newdata_order_column, "newdata_order_column", self.newdata, "newdata", False)
323
-
324
- self.__awu._validate_input_columns_not_empty(self.object_order_column, "object_order_column")
325
- self.__awu._validate_dataframe_has_argument_columns(self.object_order_column, "object_order_column", self.object, "object", False)
326
-
327
-
328
- def __form_tdml_query(self):
329
- """
330
- Function to generate the analytical function queries. The function defines
331
- variables and list of arguments required to form the query.
332
- """
333
-
334
- # Output table arguments list
335
- self.__func_output_args_sql_names = []
336
- self.__func_output_args = []
337
-
338
- # Model Cataloging related attributes.
339
- self._sql_specific_attributes = {}
340
- self._sql_formula_attribute_mapper = {}
341
- self._target_column = None
342
- self._algorithm_name = None
343
-
344
- # Generate lists for rest of the function arguments
345
- self.__func_other_arg_sql_names = []
346
- self.__func_other_args = []
347
- self.__func_other_arg_json_datatypes = []
348
-
349
- self.__func_other_arg_sql_names.append("AttributeColumn")
350
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attribute_column, "\""), "'"))
351
- self.__func_other_arg_json_datatypes.append("COLUMNS")
352
-
353
- self.__func_other_arg_sql_names.append("SampleIdColumn")
354
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.sample_id_column, "\""), "'"))
355
- self.__func_other_arg_json_datatypes.append("COLUMNS")
356
-
357
- if self.value_column is not None:
358
- self.__func_other_arg_sql_names.append("ValueColumn")
359
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.value_column, "\""), "'"))
360
- self.__func_other_arg_json_datatypes.append("COLUMNS")
361
-
362
- if self.accumulate_label is not None:
363
- self.__func_other_arg_sql_names.append("AccumulateLabel")
364
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate_label, "\""), "'"))
365
- self.__func_other_arg_json_datatypes.append("COLUMNS")
366
-
367
- if self.output_class_num is not None:
368
- self.__func_other_arg_sql_names.append("OutputClassNum")
369
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_class_num, "'"))
370
- self.__func_other_arg_json_datatypes.append("INTEGER")
371
-
372
- if self.output_response_probdist is not None and self.output_response_probdist != True:
373
- self.__func_other_arg_sql_names.append("OutputProb")
374
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_response_probdist, "'"))
375
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
376
-
377
- if self.output_responses is not None:
378
- self.__func_other_arg_sql_names.append("Responses")
379
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_responses, "'"))
380
- self.__func_other_arg_json_datatypes.append("STRING")
381
-
382
- # Generate lists for rest of the function arguments
383
- sequence_input_by_list = []
384
- if self.newdata_sequence_column is not None:
385
- sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.newdata_sequence_column, ""))
386
-
387
- if self.object_sequence_column is not None:
388
- sequence_input_by_list.append("model:" + UtilFuncs._teradata_collapse_arglist(self.object_sequence_column, ""))
389
-
390
- if len(sequence_input_by_list) > 0:
391
- self.__func_other_arg_sql_names.append("SequenceInputBy")
392
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
393
- self.__func_other_args.append(sequence_input_by_arg_value)
394
- self.__func_other_arg_json_datatypes.append("STRING")
395
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
396
-
397
-
398
- # Declare empty lists to hold input table information.
399
- self.__func_input_arg_sql_names = []
400
- self.__func_input_table_view_query = []
401
- self.__func_input_dataframe_type = []
402
- self.__func_input_distribution = []
403
- self.__func_input_partition_by_cols = []
404
- self.__func_input_order_by_cols = []
405
-
406
- # Process newdata
407
- self.newdata_partition_column = UtilFuncs._teradata_collapse_arglist(self.newdata_partition_column, "\"")
408
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.newdata, False)
409
- self.__func_input_distribution.append("FACT")
410
- self.__func_input_arg_sql_names.append("input")
411
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
412
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
413
- self.__func_input_partition_by_cols.append(self.newdata_partition_column)
414
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.newdata_order_column, "\""))
415
-
416
- # Process object
417
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.object, False)
418
- self.__func_input_distribution.append("DIMENSION")
419
- self.__func_input_arg_sql_names.append("model")
420
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
421
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
422
- self.__func_input_partition_by_cols.append("NA_character_")
423
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.object_order_column, "\""))
424
-
425
- function_name = "SVMSparsePredict"
426
- # Create instance to generate SQLMR.
427
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
428
- self.__func_input_arg_sql_names,
429
- self.__func_input_table_view_query,
430
- self.__func_input_dataframe_type,
431
- self.__func_input_distribution,
432
- self.__func_input_partition_by_cols,
433
- self.__func_input_order_by_cols,
434
- self.__func_other_arg_sql_names,
435
- self.__func_other_args,
436
- self.__func_other_arg_json_datatypes,
437
- self.__func_output_args_sql_names,
438
- self.__func_output_args,
439
- engine="ENGINE_ML")
440
- # Invoke call to SQL-MR generation.
441
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
442
-
443
- # Print SQL-MR query if requested to do so.
444
- if display.print_sqlmr_query:
445
- print(self.sqlmr_query)
446
-
447
- # Set the algorithm name for Model Cataloging.
448
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
449
-
450
- def __execute(self):
451
- """
452
- Function to execute SQL-MR queries.
453
- Create DataFrames for the required SQL-MR outputs.
454
- """
455
- # Generate STDOUT table name and add it to the output table list.
456
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
457
- try:
458
- # Generate the output.
459
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
460
- except Exception as emsg:
461
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
462
-
463
- # Update output table data frames.
464
- self._mlresults = []
465
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
466
- self._mlresults.append(self.result)
467
-
468
- def show_query(self):
469
- """
470
- Function to return the underlying SQL query.
471
- When model object is created using retrieve_model(), then None is returned.
472
- """
473
- return self.sqlmr_query
474
-
475
- def get_prediction_type(self):
476
- """
477
- Function to return the Prediction type of the algorithm.
478
- When model object is created using retrieve_model(), then the value returned is
479
- as saved in the Model Catalog.
480
- """
481
- return self._prediction_type
482
-
483
- def get_target_column(self):
484
- """
485
- Function to return the Target Column of the algorithm.
486
- When model object is created using retrieve_model(), then the value returned is
487
- as saved in the Model Catalog.
488
- """
489
- return self._target_column
490
-
491
- def get_build_time(self):
492
- """
493
- Function to return the build time of the algorithm in seconds.
494
- When model object is created using retrieve_model(), then the value returned is
495
- as saved in the Model Catalog.
496
- """
497
- return self._build_time
498
-
499
- def _get_algorithm_name(self):
500
- """
501
- Function to return the name of the algorithm.
502
- """
503
- return self._algorithm_name
504
-
505
- def _get_sql_specific_attributes(self):
506
- """
507
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
508
- """
509
- return self._sql_specific_attributes
510
-
511
- @classmethod
512
- def _from_model_catalog(cls,
513
- result = None,
514
- **kwargs):
515
- """
516
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
517
- """
518
- kwargs.pop("result", None)
519
-
520
- # Model Cataloging related attributes.
521
- target_column = kwargs.pop("__target_column", None)
522
- prediction_type = kwargs.pop("__prediction_type", None)
523
- algorithm_name = kwargs.pop("__algorithm_name", None)
524
- build_time = kwargs.pop("__build_time", None)
525
-
526
- # Let's create an object of this class.
527
- obj = cls(**kwargs)
528
- obj.result = result
529
-
530
- # Initialize the sqlmr_query class attribute.
531
- obj.sqlmr_query = None
532
-
533
- # Initialize the SQL specific Model Cataloging attributes.
534
- obj._sql_specific_attributes = None
535
- obj._target_column = target_column
536
- obj._prediction_type = prediction_type
537
- obj._algorithm_name = algorithm_name
538
- obj._build_time = build_time
539
-
540
- # Update output table data frames.
541
- obj._mlresults = []
542
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
543
- obj._mlresults.append(obj.result)
544
- return obj
545
-
546
- def __repr__(self):
547
- """
548
- Returns the string representation for a SVMSparsePredict class instance.
549
- """
550
- repr_string="############ STDOUT Output ############"
551
- repr_string = "{}\n\n{}".format(repr_string,self.result)
552
- return repr_string
553
-