teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,553 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Rohit Agrawal (rohit.agrawal@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.7
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.analytics.mle.SVMSparse import SVMSparse
|
|
30
|
-
|
|
31
|
-
class SVMSparsePredict:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
object = None,
|
|
35
|
-
newdata = None,
|
|
36
|
-
sample_id_column = None,
|
|
37
|
-
attribute_column = None,
|
|
38
|
-
value_column = None,
|
|
39
|
-
accumulate_label = None,
|
|
40
|
-
output_response_probdist = True,
|
|
41
|
-
output_responses = None,
|
|
42
|
-
output_class_num = None,
|
|
43
|
-
newdata_sequence_column = None,
|
|
44
|
-
object_sequence_column = None,
|
|
45
|
-
newdata_partition_column = None,
|
|
46
|
-
newdata_order_column = None,
|
|
47
|
-
object_order_column = None):
|
|
48
|
-
"""
|
|
49
|
-
DESCRIPTION:
|
|
50
|
-
The SVMSparsePredictor function takes the model generated by the
|
|
51
|
-
SVMSparse, a trainer function and a set of test samples (in sparse
|
|
52
|
-
format) and outputs a prediction for each sample.
|
|
53
|
-
|
|
54
|
-
Note: This function is available only when teradataml is connected to
|
|
55
|
-
Vantage 1.1 or later versions.
|
|
56
|
-
|
|
57
|
-
PARAMETERS:
|
|
58
|
-
object:
|
|
59
|
-
Required Argument.
|
|
60
|
-
Specifies the teradataml DataFrame containing the model data
|
|
61
|
-
generated by SVMSparse or instance of SVMSparse, which contains
|
|
62
|
-
the model.
|
|
63
|
-
|
|
64
|
-
object_order_column:
|
|
65
|
-
Optional Argument.
|
|
66
|
-
Specifies Order By columns for object.
|
|
67
|
-
Values to this argument can be provided as a list, if multiple
|
|
68
|
-
columns are used for ordering.
|
|
69
|
-
Types: str OR list of Strings (str)
|
|
70
|
-
|
|
71
|
-
newdata:
|
|
72
|
-
Required Argument.
|
|
73
|
-
Specifies the teradataml DataFrame containing the input test data.
|
|
74
|
-
|
|
75
|
-
newdata_partition_column:
|
|
76
|
-
Required Argument.
|
|
77
|
-
Specifies Partition By columns for newdata.
|
|
78
|
-
Values to this argument can be provided as a list, if multiple columns
|
|
79
|
-
are used for partition.
|
|
80
|
-
Types: str OR list of Strings (str)
|
|
81
|
-
|
|
82
|
-
newdata_order_column:
|
|
83
|
-
Optional Argument.
|
|
84
|
-
Specifies Order By columns for newdata.
|
|
85
|
-
Values to this argument can be provided as a list, if multiple
|
|
86
|
-
columns are used for ordering.
|
|
87
|
-
Types: str OR list of Strings (str)
|
|
88
|
-
|
|
89
|
-
sample_id_column:
|
|
90
|
-
Required Argument.
|
|
91
|
-
Specifies the name of the column in newdata, teradataml DataFrame
|
|
92
|
-
that contains the identifiers of the test samples. The data
|
|
93
|
-
must be partitioned by this column.
|
|
94
|
-
Types: str
|
|
95
|
-
|
|
96
|
-
attribute_column:
|
|
97
|
-
Required Argument.
|
|
98
|
-
Specifies the name of the column in newdata, teradataml DataFrame
|
|
99
|
-
that contains the attributes of the test samples.
|
|
100
|
-
Types: str
|
|
101
|
-
|
|
102
|
-
value_column:
|
|
103
|
-
Optional Argument.
|
|
104
|
-
Specifies the name of the column in newdata, teradataml DataFrame
|
|
105
|
-
that contains the attribute values. By default, each attribute
|
|
106
|
-
has the value 1.
|
|
107
|
-
Types: str
|
|
108
|
-
|
|
109
|
-
accumulate_label:
|
|
110
|
-
Optional Argument.
|
|
111
|
-
Specifies the name of the column in newdata, teradataml DataFrame
|
|
112
|
-
to copy to the output table.
|
|
113
|
-
Types: str OR list of Strings (str)
|
|
114
|
-
|
|
115
|
-
output_response_probdist:
|
|
116
|
-
Optional Argument.
|
|
117
|
-
Specifies whether to display output probability for the predicted
|
|
118
|
-
category.
|
|
119
|
-
Note: "output_response_probdist" argument support is only available when
|
|
120
|
-
teradataml is connected to Vantage 1.1.1 or later versions.
|
|
121
|
-
Default Value: True
|
|
122
|
-
Types: bool
|
|
123
|
-
|
|
124
|
-
output_responses:
|
|
125
|
-
Optional Argument.
|
|
126
|
-
Specifies responses in the input table.
|
|
127
|
-
This argument can only be used when output_response_probdist is True.
|
|
128
|
-
Note:
|
|
129
|
-
1. "output_responses" argument support is only available when teradataml is
|
|
130
|
-
connected to Vantage 1.1.1 or later versions.
|
|
131
|
-
2. "output_responses" can not be specified along with "output_class_num".
|
|
132
|
-
3. This argument requires the "output_response_probdist" argument to be set to True.
|
|
133
|
-
Types: str OR list of Strings (str)
|
|
134
|
-
|
|
135
|
-
output_class_num:
|
|
136
|
-
Optional Argument.
|
|
137
|
-
Valid only for multiple-class models. Specifies the number of class
|
|
138
|
-
labels to appear in the output table, with its corresponding
|
|
139
|
-
prediction confidence.
|
|
140
|
-
Note:
|
|
141
|
-
1. With Vantage version prior to 1.1.1, the argument defaults to
|
|
142
|
-
the value 1.
|
|
143
|
-
2. "output_class_num" cannot be specified along with "output_responses".
|
|
144
|
-
Types: int
|
|
145
|
-
|
|
146
|
-
newdata_sequence_column:
|
|
147
|
-
Optional Argument.
|
|
148
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
149
|
-
the input argument "newdata". The argument is used to ensure
|
|
150
|
-
deterministic results for functions which produce results that vary
|
|
151
|
-
from run to run.
|
|
152
|
-
Types: str OR list of Strings (str)
|
|
153
|
-
|
|
154
|
-
object_sequence_column:
|
|
155
|
-
Optional Argument.
|
|
156
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
157
|
-
the input argument "object". The argument is used to ensure
|
|
158
|
-
deterministic results for functions which produce results that vary
|
|
159
|
-
from run to run.
|
|
160
|
-
Types: str OR list of Strings (str)
|
|
161
|
-
|
|
162
|
-
RETURNS:
|
|
163
|
-
Instance of SVMSparsePredict.
|
|
164
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
165
|
-
references, such as SVMSparsePredictObj.<attribute_name>.
|
|
166
|
-
Output teradataml DataFrame attribute name is: result
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
RAISES:
|
|
170
|
-
TeradataMlException
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
EXAMPLES:
|
|
174
|
-
# Load the data to run the example.
|
|
175
|
-
load_example_data("SVMSparsePredict",["svm_iris_input_train","svm_iris_input_test"])
|
|
176
|
-
|
|
177
|
-
# Create teradataml DataFrame
|
|
178
|
-
svm_iris_input_train = DataFrame.from_table("svm_iris_input_train")
|
|
179
|
-
svm_iris_input_test = DataFrame.from_table("svm_iris_input_test")
|
|
180
|
-
|
|
181
|
-
# Create SparseSVMTrainer object.
|
|
182
|
-
# SVMSparse takes training data, svm_iris_input_train, which contains four iris attributes
|
|
183
|
-
# (sepal length, sepal width, petal length, and petal width), grouped into three categories
|
|
184
|
-
# (setosa, versicolor, and virginica) and outputs a predictive model.
|
|
185
|
-
svm_train = SVMSparse(data=svm_iris_input_train,
|
|
186
|
-
sample_id_column='id',
|
|
187
|
-
attribute_column='attribute',
|
|
188
|
-
label_column='species',
|
|
189
|
-
value_column='value1',
|
|
190
|
-
max_step=150,
|
|
191
|
-
seed=0,
|
|
192
|
-
)
|
|
193
|
-
|
|
194
|
-
# Example 1 - This example takes the model, svm_train, generated by the function SVMSparse
|
|
195
|
-
# and a set of test samples, svm_iris_input_test, and outputs a prediction for each sample.
|
|
196
|
-
svm_sparse_predict_result = SVMSparsePredict(newdata=svm_iris_input_test,
|
|
197
|
-
newdata_partition_column=['id'],
|
|
198
|
-
object=svm_train,
|
|
199
|
-
attribute_column='attribute',
|
|
200
|
-
sample_id_column='id',
|
|
201
|
-
value_column='value1',
|
|
202
|
-
accumulate_label='species'
|
|
203
|
-
)
|
|
204
|
-
|
|
205
|
-
# Print the result DataFrame
|
|
206
|
-
print(svm_sparse_predict_result.result)
|
|
207
|
-
|
|
208
|
-
"""
|
|
209
|
-
|
|
210
|
-
# Start the timer to get the build time
|
|
211
|
-
_start_time = time.time()
|
|
212
|
-
|
|
213
|
-
self.object = object
|
|
214
|
-
self.newdata = newdata
|
|
215
|
-
self.sample_id_column = sample_id_column
|
|
216
|
-
self.attribute_column = attribute_column
|
|
217
|
-
self.value_column = value_column
|
|
218
|
-
self.accumulate_label = accumulate_label
|
|
219
|
-
self.output_response_probdist = output_response_probdist
|
|
220
|
-
self.output_responses = output_responses
|
|
221
|
-
self.output_class_num = output_class_num
|
|
222
|
-
self.newdata_sequence_column = newdata_sequence_column
|
|
223
|
-
self.object_sequence_column = object_sequence_column
|
|
224
|
-
self.newdata_partition_column = newdata_partition_column
|
|
225
|
-
self.newdata_order_column = newdata_order_column
|
|
226
|
-
self.object_order_column = object_order_column
|
|
227
|
-
|
|
228
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
229
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
230
|
-
self.__aed_utils = AedUtils()
|
|
231
|
-
|
|
232
|
-
# Create argument information matrix to do parameter checking
|
|
233
|
-
self.__arg_info_matrix = []
|
|
234
|
-
self.__arg_info_matrix.append(["object", self.object, False, (DataFrame)])
|
|
235
|
-
self.__arg_info_matrix.append(["object_order_column", self.object_order_column, True, (str,list)])
|
|
236
|
-
self.__arg_info_matrix.append(["newdata", self.newdata, False, (DataFrame)])
|
|
237
|
-
self.__arg_info_matrix.append(["newdata_partition_column", self.newdata_partition_column, False, (str,list)])
|
|
238
|
-
self.__arg_info_matrix.append(["newdata_order_column", self.newdata_order_column, True, (str,list)])
|
|
239
|
-
self.__arg_info_matrix.append(["sample_id_column", self.sample_id_column, False, (str)])
|
|
240
|
-
self.__arg_info_matrix.append(["attribute_column", self.attribute_column, False, (str)])
|
|
241
|
-
self.__arg_info_matrix.append(["value_column", self.value_column, True, (str)])
|
|
242
|
-
self.__arg_info_matrix.append(["accumulate_label", self.accumulate_label, True, (str,list)])
|
|
243
|
-
self.__arg_info_matrix.append(["output_response_probdist", self.output_response_probdist, True, (bool)])
|
|
244
|
-
self.__arg_info_matrix.append(["output_responses", self.output_responses, True, (str,list)])
|
|
245
|
-
self.__arg_info_matrix.append(["output_class_num", self.output_class_num, True, (int)])
|
|
246
|
-
self.__arg_info_matrix.append(["newdata_sequence_column", self.newdata_sequence_column, True, (str,list)])
|
|
247
|
-
self.__arg_info_matrix.append(["object_sequence_column", self.object_sequence_column, True, (str,list)])
|
|
248
|
-
|
|
249
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
250
|
-
# Perform the function validations
|
|
251
|
-
self.__validate()
|
|
252
|
-
# Generate the ML query
|
|
253
|
-
self.__form_tdml_query()
|
|
254
|
-
# Execute ML query
|
|
255
|
-
self.__execute()
|
|
256
|
-
# Get the prediction type
|
|
257
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
258
|
-
|
|
259
|
-
# End the timer to get the build time
|
|
260
|
-
_end_time = time.time()
|
|
261
|
-
|
|
262
|
-
# Calculate the build time
|
|
263
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
264
|
-
|
|
265
|
-
def __validate(self):
|
|
266
|
-
"""
|
|
267
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
268
|
-
arguments, input argument and table types. Also processes the
|
|
269
|
-
argument values.
|
|
270
|
-
"""
|
|
271
|
-
if isinstance(self.object, SVMSparse):
|
|
272
|
-
self.object = self.object._mlresults[0]
|
|
273
|
-
|
|
274
|
-
# Cannot use output_responses and output_class_num together
|
|
275
|
-
if self.output_responses is not None and self.output_class_num is not None:
|
|
276
|
-
raise TeradataMlException(
|
|
277
|
-
Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT, "output_responses",
|
|
278
|
-
"output_class_num"),
|
|
279
|
-
MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
|
|
280
|
-
|
|
281
|
-
# To use output_responses, output_response_probdist must be set to True
|
|
282
|
-
if self.output_response_probdist is False and self.output_responses is not None:
|
|
283
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
|
|
284
|
-
'output_response_probdist=True',
|
|
285
|
-
'output_responses'),
|
|
286
|
-
MessageCodes.DEPENDENT_ARG_MISSING)
|
|
287
|
-
|
|
288
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
289
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
290
|
-
|
|
291
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
292
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
293
|
-
|
|
294
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
295
|
-
self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
|
|
296
|
-
self.__awu._validate_input_table_datatype(self.object, "object", SVMSparse)
|
|
297
|
-
|
|
298
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
299
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
300
|
-
self.__awu._validate_input_columns_not_empty(self.attribute_column, "attribute_column")
|
|
301
|
-
self.__awu._validate_dataframe_has_argument_columns(self.attribute_column, "attribute_column", self.newdata, "newdata", False)
|
|
302
|
-
|
|
303
|
-
self.__awu._validate_input_columns_not_empty(self.sample_id_column, "sample_id_column")
|
|
304
|
-
self.__awu._validate_dataframe_has_argument_columns(self.sample_id_column, "sample_id_column", self.newdata, "newdata", False)
|
|
305
|
-
|
|
306
|
-
self.__awu._validate_input_columns_not_empty(self.value_column, "value_column")
|
|
307
|
-
self.__awu._validate_dataframe_has_argument_columns(self.value_column, "value_column", self.newdata, "newdata", False)
|
|
308
|
-
|
|
309
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate_label, "accumulate_label")
|
|
310
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate_label, "accumulate_label", self.newdata, "newdata", False)
|
|
311
|
-
|
|
312
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_sequence_column, "newdata_sequence_column")
|
|
313
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_sequence_column, "newdata_sequence_column", self.newdata, "newdata", False)
|
|
314
|
-
|
|
315
|
-
self.__awu._validate_input_columns_not_empty(self.object_sequence_column, "object_sequence_column")
|
|
316
|
-
self.__awu._validate_dataframe_has_argument_columns(self.object_sequence_column, "object_sequence_column", self.object, "object", False)
|
|
317
|
-
|
|
318
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_partition_column, "newdata_partition_column")
|
|
319
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_partition_column, "newdata_partition_column", self.newdata, "newdata", True)
|
|
320
|
-
|
|
321
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_order_column, "newdata_order_column")
|
|
322
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_order_column, "newdata_order_column", self.newdata, "newdata", False)
|
|
323
|
-
|
|
324
|
-
self.__awu._validate_input_columns_not_empty(self.object_order_column, "object_order_column")
|
|
325
|
-
self.__awu._validate_dataframe_has_argument_columns(self.object_order_column, "object_order_column", self.object, "object", False)
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
def __form_tdml_query(self):
|
|
329
|
-
"""
|
|
330
|
-
Function to generate the analytical function queries. The function defines
|
|
331
|
-
variables and list of arguments required to form the query.
|
|
332
|
-
"""
|
|
333
|
-
|
|
334
|
-
# Output table arguments list
|
|
335
|
-
self.__func_output_args_sql_names = []
|
|
336
|
-
self.__func_output_args = []
|
|
337
|
-
|
|
338
|
-
# Model Cataloging related attributes.
|
|
339
|
-
self._sql_specific_attributes = {}
|
|
340
|
-
self._sql_formula_attribute_mapper = {}
|
|
341
|
-
self._target_column = None
|
|
342
|
-
self._algorithm_name = None
|
|
343
|
-
|
|
344
|
-
# Generate lists for rest of the function arguments
|
|
345
|
-
self.__func_other_arg_sql_names = []
|
|
346
|
-
self.__func_other_args = []
|
|
347
|
-
self.__func_other_arg_json_datatypes = []
|
|
348
|
-
|
|
349
|
-
self.__func_other_arg_sql_names.append("AttributeColumn")
|
|
350
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attribute_column, "\""), "'"))
|
|
351
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
352
|
-
|
|
353
|
-
self.__func_other_arg_sql_names.append("SampleIdColumn")
|
|
354
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.sample_id_column, "\""), "'"))
|
|
355
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
356
|
-
|
|
357
|
-
if self.value_column is not None:
|
|
358
|
-
self.__func_other_arg_sql_names.append("ValueColumn")
|
|
359
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.value_column, "\""), "'"))
|
|
360
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
361
|
-
|
|
362
|
-
if self.accumulate_label is not None:
|
|
363
|
-
self.__func_other_arg_sql_names.append("AccumulateLabel")
|
|
364
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate_label, "\""), "'"))
|
|
365
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
366
|
-
|
|
367
|
-
if self.output_class_num is not None:
|
|
368
|
-
self.__func_other_arg_sql_names.append("OutputClassNum")
|
|
369
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_class_num, "'"))
|
|
370
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
371
|
-
|
|
372
|
-
if self.output_response_probdist is not None and self.output_response_probdist != True:
|
|
373
|
-
self.__func_other_arg_sql_names.append("OutputProb")
|
|
374
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_response_probdist, "'"))
|
|
375
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
376
|
-
|
|
377
|
-
if self.output_responses is not None:
|
|
378
|
-
self.__func_other_arg_sql_names.append("Responses")
|
|
379
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_responses, "'"))
|
|
380
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
381
|
-
|
|
382
|
-
# Generate lists for rest of the function arguments
|
|
383
|
-
sequence_input_by_list = []
|
|
384
|
-
if self.newdata_sequence_column is not None:
|
|
385
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.newdata_sequence_column, ""))
|
|
386
|
-
|
|
387
|
-
if self.object_sequence_column is not None:
|
|
388
|
-
sequence_input_by_list.append("model:" + UtilFuncs._teradata_collapse_arglist(self.object_sequence_column, ""))
|
|
389
|
-
|
|
390
|
-
if len(sequence_input_by_list) > 0:
|
|
391
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
392
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
393
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
394
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
395
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
396
|
-
|
|
397
|
-
|
|
398
|
-
# Declare empty lists to hold input table information.
|
|
399
|
-
self.__func_input_arg_sql_names = []
|
|
400
|
-
self.__func_input_table_view_query = []
|
|
401
|
-
self.__func_input_dataframe_type = []
|
|
402
|
-
self.__func_input_distribution = []
|
|
403
|
-
self.__func_input_partition_by_cols = []
|
|
404
|
-
self.__func_input_order_by_cols = []
|
|
405
|
-
|
|
406
|
-
# Process newdata
|
|
407
|
-
self.newdata_partition_column = UtilFuncs._teradata_collapse_arglist(self.newdata_partition_column, "\"")
|
|
408
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.newdata, False)
|
|
409
|
-
self.__func_input_distribution.append("FACT")
|
|
410
|
-
self.__func_input_arg_sql_names.append("input")
|
|
411
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
412
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
413
|
-
self.__func_input_partition_by_cols.append(self.newdata_partition_column)
|
|
414
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.newdata_order_column, "\""))
|
|
415
|
-
|
|
416
|
-
# Process object
|
|
417
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.object, False)
|
|
418
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
419
|
-
self.__func_input_arg_sql_names.append("model")
|
|
420
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
421
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
422
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
423
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.object_order_column, "\""))
|
|
424
|
-
|
|
425
|
-
function_name = "SVMSparsePredict"
|
|
426
|
-
# Create instance to generate SQLMR.
|
|
427
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
428
|
-
self.__func_input_arg_sql_names,
|
|
429
|
-
self.__func_input_table_view_query,
|
|
430
|
-
self.__func_input_dataframe_type,
|
|
431
|
-
self.__func_input_distribution,
|
|
432
|
-
self.__func_input_partition_by_cols,
|
|
433
|
-
self.__func_input_order_by_cols,
|
|
434
|
-
self.__func_other_arg_sql_names,
|
|
435
|
-
self.__func_other_args,
|
|
436
|
-
self.__func_other_arg_json_datatypes,
|
|
437
|
-
self.__func_output_args_sql_names,
|
|
438
|
-
self.__func_output_args,
|
|
439
|
-
engine="ENGINE_ML")
|
|
440
|
-
# Invoke call to SQL-MR generation.
|
|
441
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
442
|
-
|
|
443
|
-
# Print SQL-MR query if requested to do so.
|
|
444
|
-
if display.print_sqlmr_query:
|
|
445
|
-
print(self.sqlmr_query)
|
|
446
|
-
|
|
447
|
-
# Set the algorithm name for Model Cataloging.
|
|
448
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
449
|
-
|
|
450
|
-
def __execute(self):
|
|
451
|
-
"""
|
|
452
|
-
Function to execute SQL-MR queries.
|
|
453
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
454
|
-
"""
|
|
455
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
456
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
457
|
-
try:
|
|
458
|
-
# Generate the output.
|
|
459
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
460
|
-
except Exception as emsg:
|
|
461
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
462
|
-
|
|
463
|
-
# Update output table data frames.
|
|
464
|
-
self._mlresults = []
|
|
465
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
466
|
-
self._mlresults.append(self.result)
|
|
467
|
-
|
|
468
|
-
def show_query(self):
|
|
469
|
-
"""
|
|
470
|
-
Function to return the underlying SQL query.
|
|
471
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
472
|
-
"""
|
|
473
|
-
return self.sqlmr_query
|
|
474
|
-
|
|
475
|
-
def get_prediction_type(self):
|
|
476
|
-
"""
|
|
477
|
-
Function to return the Prediction type of the algorithm.
|
|
478
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
479
|
-
as saved in the Model Catalog.
|
|
480
|
-
"""
|
|
481
|
-
return self._prediction_type
|
|
482
|
-
|
|
483
|
-
def get_target_column(self):
|
|
484
|
-
"""
|
|
485
|
-
Function to return the Target Column of the algorithm.
|
|
486
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
487
|
-
as saved in the Model Catalog.
|
|
488
|
-
"""
|
|
489
|
-
return self._target_column
|
|
490
|
-
|
|
491
|
-
def get_build_time(self):
|
|
492
|
-
"""
|
|
493
|
-
Function to return the build time of the algorithm in seconds.
|
|
494
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
495
|
-
as saved in the Model Catalog.
|
|
496
|
-
"""
|
|
497
|
-
return self._build_time
|
|
498
|
-
|
|
499
|
-
def _get_algorithm_name(self):
|
|
500
|
-
"""
|
|
501
|
-
Function to return the name of the algorithm.
|
|
502
|
-
"""
|
|
503
|
-
return self._algorithm_name
|
|
504
|
-
|
|
505
|
-
def _get_sql_specific_attributes(self):
|
|
506
|
-
"""
|
|
507
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
508
|
-
"""
|
|
509
|
-
return self._sql_specific_attributes
|
|
510
|
-
|
|
511
|
-
@classmethod
|
|
512
|
-
def _from_model_catalog(cls,
|
|
513
|
-
result = None,
|
|
514
|
-
**kwargs):
|
|
515
|
-
"""
|
|
516
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
517
|
-
"""
|
|
518
|
-
kwargs.pop("result", None)
|
|
519
|
-
|
|
520
|
-
# Model Cataloging related attributes.
|
|
521
|
-
target_column = kwargs.pop("__target_column", None)
|
|
522
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
523
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
524
|
-
build_time = kwargs.pop("__build_time", None)
|
|
525
|
-
|
|
526
|
-
# Let's create an object of this class.
|
|
527
|
-
obj = cls(**kwargs)
|
|
528
|
-
obj.result = result
|
|
529
|
-
|
|
530
|
-
# Initialize the sqlmr_query class attribute.
|
|
531
|
-
obj.sqlmr_query = None
|
|
532
|
-
|
|
533
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
534
|
-
obj._sql_specific_attributes = None
|
|
535
|
-
obj._target_column = target_column
|
|
536
|
-
obj._prediction_type = prediction_type
|
|
537
|
-
obj._algorithm_name = algorithm_name
|
|
538
|
-
obj._build_time = build_time
|
|
539
|
-
|
|
540
|
-
# Update output table data frames.
|
|
541
|
-
obj._mlresults = []
|
|
542
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
543
|
-
obj._mlresults.append(obj.result)
|
|
544
|
-
return obj
|
|
545
|
-
|
|
546
|
-
def __repr__(self):
|
|
547
|
-
"""
|
|
548
|
-
Returns the string representation for a SVMSparsePredict class instance.
|
|
549
|
-
"""
|
|
550
|
-
repr_string="############ STDOUT Output ############"
|
|
551
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
552
|
-
return repr_string
|
|
553
|
-
|