teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,1070 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 2.10
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class Attribution:
31
-
32
- def __init__(self,
33
- data = None,
34
- data_optional = None,
35
- conversion_events = None,
36
- excluding_data = None,
37
- optional_data = None,
38
- model1_type = None,
39
- model2_type = None,
40
- model1_name = None,
41
- model2_name = None,
42
- event_column = None,
43
- timestamp_column = None,
44
- window_size = None,
45
- conversion_data = None,
46
- optional_events = None,
47
- exclude_events = None,
48
- data_sequence_column = None,
49
- data_optional_sequence_column = None,
50
- conversion_data_sequence_column = None,
51
- excluding_data_sequence_column = None,
52
- optional_data_sequence_column = None,
53
- model1_type_sequence_column = None,
54
- model2_type_sequence_column = None,
55
- data_partition_column = None,
56
- data_optional_partition_column = None,
57
- data_order_column = None,
58
- data_optional_order_column = None,
59
- conversion_data_order_column = None,
60
- excluding_data_order_column = None,
61
- optional_data_order_column = None,
62
- model1_type_order_column = None,
63
- model2_type_order_column = None):
64
- """
65
- DESCRIPTION:
66
- The Attribution function is used in web page analysis, where it lets
67
- companies assign weights to pages before certain events, such as
68
- buying a product.
69
-
70
- The function calculates attributions with a choice of distribution
71
- models and has two versions:
72
- • Multiple-input: Accepts one or more input tables and gets many
73
- parameters from other dimension tables.
74
- • Single-input: Accepts only one input table and gets all parameters
75
- from argments.
76
-
77
- Note: This function is available only when teradataml is connected to
78
- Vantage 1.1 or later versions.
79
-
80
-
81
- PARAMETERS:
82
- data:
83
- Required Argument.
84
- Specifies the teradataml DataFrame that contains the click stream
85
- data, which the function uses to compute attributions.
86
-
87
- data_partition_column:
88
- Required Argument.
89
- Specifies Partition By columns for data.
90
- Values to this argument can be provided as a list, if multiple
91
- columns are used for partition.
92
- Types: str OR list of Strings (str)
93
-
94
- data_order_column:
95
- Required Argument.
96
- Specifies Order By columns for data.
97
- Values to this argument can be provided as a list, if multiple
98
- columns are used for ordering.
99
- Types: str OR list of Strings (str)
100
-
101
- data_optional:
102
- Optional Argument.
103
- Specifies the teradataml DataFrame that contains additional click
104
- stream data, which cogroup attributes from all specified teradataml
105
- DataFrame.
106
-
107
- data_optional_partition_column:
108
- Optional Argument. Required when 'data_optional' is used.
109
- Specifies Partition By columns for data_optional.
110
- Values to this argument can be provided as a list, if multiple
111
- columns are used for partition.
112
- Types: str OR list of Strings (str)
113
-
114
- data_optional_order_column:
115
- Optional Argument. Required when 'data_optional' is used.
116
- Specifies Order By columns for data_optional.
117
- Values to this argument can be provided as a list, if multiple
118
- columns are used for ordering.
119
- Types: str OR list of Strings (str)
120
-
121
- conversion_events:
122
- Optional Argument. "conversion_events" is a required argument if
123
- "conversion_data" is not provided.
124
- Specifies the conversion event value. Each conversion_event is
125
- a string or integer.
126
- Types: str OR list of Strings (str)
127
-
128
- excluding_data:
129
- Optional Argument.
130
- Specifies the teradataml DataFrame that contains one varchar
131
- column (excluding_events) containing excluding cause event values.
132
-
133
- excluding_data_order_column:
134
- Optional Argument.
135
- Specifies Order By columns for excluding_data.
136
- Values to this argument can be provided as a list, if multiple
137
- columns are used for ordering.
138
- Types: str OR list of Strings (str)
139
-
140
- optional_data:
141
- Optional Argument.
142
- Specifies the teradataml DataFrame that contains one varchar
143
- column (optional_events) containing optional cause event values.
144
-
145
- optional_data_order_column:
146
- Optional Argument.
147
- Specifies Order By columns for optional_data.
148
- Values to this argument can be provided as a list, if multiple
149
- columns are used for ordering.
150
- Types: str OR list of Strings (str)
151
-
152
- model1_type:
153
- Optional Argument. "model1_type" is a required argument if
154
- "model1_name" is not provided.
155
- Specifies the teradataml DataFrame that defines the type and
156
- specification of the first model.
157
- For example:
158
- model1 data ("EVENT_REGULAR", "email:0.19:LAST_CLICK:NA",
159
- "impression:0.81:WEIGHTED:0.4,0.3,0.2,0.1")
160
-
161
- model1_type_order_column:
162
- Optional Argument.
163
- Specifies Order By columns for model1_type.
164
- Values to this argument can be provided as a list, if multiple
165
- columns are used for ordering.
166
- Types: str OR list of Strings (str)
167
-
168
- model2_type:
169
- Optional Argument.
170
- Specifies the teradataml DataFrame that defines the type and
171
- distributions of the second model.
172
- For example:
173
- model2 data ("EVENT_OPTIONAL", "OrganicSearch:0.5:UNIFORM:NA",
174
- "Direct:0.3:UNIFORM:NA", "Referral:0.2:UNIFORM:NA")
175
-
176
- model2_type_order_column:
177
- Optional Argument.
178
- Specifies Order By columns for model2_type.
179
- Values to this argument can be provided as a list, if multiple
180
- columns are used for ordering.
181
- Types: str OR list of Strings (str)
182
-
183
- model1_name:
184
- Optional Argument. "model1_name" is a required argument if
185
- "model1_type" is not provided.
186
- Specifies the type and specifcation of the first model.
187
-
188
- For example:
189
- Model1 ('EVENT_REGULAR', 'email:0.19:LAST_CLICK:NA',
190
- 'impression:0.81:WEIGHTED:0.4,0.3,0.2,0.1')
191
- Types: str OR list of Strings (str)
192
-
193
- model2_name:
194
- Optional Argument.
195
- Specifies the type and distributions of the second model.
196
- For example:
197
- Model2 ('EVENT_OPTIONAL', 'OrganicSearch:0.5:UNIFORM:NA',
198
- 'Direct:0.3:UNIFORM:NA', 'Referral:0.2:UNIFORM:NA')
199
- Types: str OR list of Strings (str)
200
-
201
- event_column:
202
- Required Argument.
203
- Specifies the name of an input teradataml DataFrame column that
204
- contains the clickstream events.
205
- Types: str
206
-
207
- timestamp_column:
208
- Required Argument.
209
- Specifies the name of an input teradataml DataFrame column that
210
- contains the timestamps of the clickstream events.
211
- Types: str
212
-
213
- window_size:
214
- Required Argument.
215
- Specifies how to determine the maximum window size for the
216
- attribution calculation:
217
- • rows:K: Consider the maximum number of events to be attributed,
218
- excluding events of types specified in excluding_event_table,
219
- which means assigning attributions to atmost K effective
220
- events before the current impact event.
221
- • seconds:K: Consider the maximum time difference between the
222
- current impact event and the earliest effective event to
223
- be attributed.
224
- • rows:K&seconds:K2: Consider both constraints and comply with
225
- the stricter one.
226
- Types: str
227
-
228
- conversion_data:
229
- Optional Argument. "conversion_data" is a required argument if
230
- "conversion_events" is not provided.
231
- Specifies the teradataml DataFrame that contains one varchar
232
- column (conversion_events) containing conversion event values.
233
-
234
-
235
- conversion_data_order_column:
236
- Optional Argument.
237
- Specifies Order By columns for conversion_data.
238
- Values to this argument can be provided as a list, if multiple
239
- columns are used for ordering.
240
- Types: str OR list of Strings (str)
241
-
242
- optional_events:
243
- Optional Argument.
244
- Specifies the optional events. Each optional_event is a string or
245
- integer. An optional_event cannot be a conversion_event or
246
- exclude_event. The function attributes a conversion event to an
247
- optional event only if it cannot attribute it to a regular event.
248
- Types: str OR list of Strings (str)
249
-
250
- exclude_events:
251
- Optional Argument.
252
- Specifies the events to exclude from the attribution calculation.
253
- Each exclude_event is a string or integer. An exclude_event
254
- cannot be a conversion_event.
255
- Types: str OR list of Strings (str)
256
-
257
- data_sequence_column:
258
- Optional Argument.
259
- Specifies the list of column(s) that uniquely identifies each row of
260
- the input argument "data". The argument is used to ensure
261
- deterministic results for functions which produce results that vary
262
- from run to run.
263
- Types: str OR list of Strings (str)
264
-
265
- data_optional_sequence_column:
266
- Optional Argument.
267
- Specifies the list of column(s) that uniquely identifies each row of
268
- the input argument "data_optional". The argument is used to ensure
269
- deterministic results for functions which produce results that vary
270
- from run to run.
271
- Types: str OR list of Strings (str)
272
-
273
- conversion_data_sequence_column:
274
- Optional Argument.
275
- Specifies the list of column(s) that uniquely identifies each row of
276
- the input argument "conversion_data". The argument is used to ensure
277
- deterministic results for functions which produce results that vary
278
- from run to run.
279
- Types: str OR list of Strings (str)
280
-
281
- excluding_data_sequence_column:
282
- Optional Argument.
283
- Specifies the list of column(s) that uniquely identifies each row of
284
- the input argument "excluding_data". The argument is used to ensure
285
- deterministic results for functions which produce results that vary
286
- from run to run.
287
- Types: str OR list of Strings (str)
288
-
289
- optional_data_sequence_column:
290
- Optional Argument.
291
- Specifies the list of column(s) that uniquely identifies each row of
292
- the input argument "optional_data". The argument is used to ensure
293
- deterministic results for functions which produce results that vary
294
- from run to run.
295
- Types: str OR list of Strings (str)
296
-
297
- model1_type_sequence_column:
298
- Optional Argument.
299
- Specifies the list of column(s) that uniquely identifies each row of
300
- the input argument "model1_type". The argument is used to ensure
301
- deterministic results for functions which produce results that vary
302
- from run to run.
303
- Types: str OR list of Strings (str)
304
-
305
- model2_type_sequence_column:
306
- Optional Argument.
307
- Specifies the list of column(s) that uniquely identifies each row of
308
- the input argument "model2_type". The argument is used to ensure
309
- deterministic results for functions which produce results that vary
310
- from run to run.
311
- Types: str OR list of Strings (str)
312
-
313
- Note:
314
- • The Multiple-input Attribution takes data from multiple teradataml
315
- DataFrames ("data_optional", "conversion_data", "excluding_data",
316
- "optional_data", "model1_type" and "model2_type").
317
- For Multiple-input Attribution, inputs "data", "conversion_data" and
318
- "model1_type" are required, where as other inputs are optional.
319
- The arguments "data_optional", "conversion_data", "excluding_data",
320
- "optional_data", "model1_type" and "model2_type" should be mentioned
321
- together and should not be used with arguments "conversion_events",
322
- "model1_name", "optional_events", "exclude_events" and "model2_name".
323
- For example,
324
- attribution = Attribution(data=< table | view | (query) >,
325
- data_partition_column='partition_column',
326
- data_order_column='order_column',
327
- data_optional=< table | view | (query) >,
328
- conversion_data=< table | view | (query) >,
329
- excluding_data=< table | view | (query) >,
330
- optional_data=< table | view | (query) >,
331
- model1_type=< table | view | (query) >,
332
- model2_type=< table | view | (query) >,
333
- event_column='event_column',
334
- timestamp_column='timestamp_column',
335
- window_size='rows:K | seconds:K | rows:K&seconds:K'
336
- )
337
-
338
- • The Single-input Attribution takes data from single teradataml
339
- DataFrame ("data") and parameters come from arguments ("conversion_events",
340
- "model1_name", "optional_events", "exclude_events" and "model2_name"),
341
- not input teradataml DataFrames.
342
- For Single-input Attribution arguments "conversion_events" and "model1_name"
343
- are required, where as other single input syntax arguments are optional.
344
- The arguments "conversion_events", "model1_name", "optional_events",
345
- "exclude_events" and "model2_name" should be used together and
346
- should not be used with arguments "data_optional", "conversion_data",
347
- "excluding_data", "optional_data", "model1_type" and "model2_type".
348
- For example,
349
- attribution = Attribution(data=< table | view | (query) >,
350
- conversion_events = ['conversion_event', ...],
351
- timestamp_column=''timestamp_column'',
352
- model1_name = ['type', 'K' | 'EVENT:WEIGHT:MODEL:PARAMETERS', ...],
353
- model2_name = ['type', 'K' | 'EVENT:WEIGHT:MODEL:PARAMETERS', ...],
354
- event_column = "event_column"
355
- window_size = 'rows:K | seconds:K | rows:K&seconds:K',
356
- optional_events = ["organicsearch", "direct", "referral"],
357
- data_order_column='order_by_column'
358
- )
359
-
360
-
361
- RETURNS:
362
- Instance of Attribution.
363
- Output teradataml DataFrames can be accessed using attribute
364
- references, such as AttributionObj.<attribute_name>.
365
- Output teradataml DataFrame attribute name is:
366
- result
367
-
368
-
369
- RAISES:
370
- TeradataMlException
371
-
372
-
373
- EXAMPLES:
374
- # Load example data.
375
- load_example_data("attribution", ["attribution_sample_table",
376
- "attribution_sample_table1", "attribution_sample_table2" ,
377
- "conversion_event_table", "optional_event_table", "excluding_event_table",
378
- "model1_table", "model2_table"])
379
-
380
- # Create TeradataML DataFrame objects.
381
- attribution_sample_table = DataFrame.from_table("attribution_sample_table")
382
- attribution_sample_table1 = DataFrame.from_table("attribution_sample_table1")
383
- attribution_sample_table2 = DataFrame.from_table("attribution_sample_table2")
384
- conversion_event_table = DataFrame.from_table("conversion_event_table")
385
- optional_event_table = DataFrame.from_table("optional_event_table")
386
- model1_table = DataFrame.from_table("model1_table")
387
- model2_table = DataFrame.from_table("model2_table")
388
- excluding_event_table = DataFrame("excluding_event_table")
389
-
390
- # Example 1 - One Regular Model, Multiple Optional Models.
391
- # This example specifes one distribution model for regular events
392
- # and one distribution model for each type of optional event.
393
- attribution_out1 = Attribution(data=attribution_sample_table,
394
- data_partition_column='user_id',
395
- conversion_events = ["socialnetwork", "paidsearch"],
396
- timestamp_column='time_stamp',
397
- model1_name = ["EVENT_REGULAR",
398
- "email:0.19:LAST_CLICK:NA","impression:0.81:UNIFORM:NA"],
399
- model2_name = ["EVENT_OPTIONAL",
400
- "organicsearch:0.5:UNIFORM:NA","direct:0.3:UNIFORM:NA",
401
- "referral:0.2:UNIFORM:NA"],
402
- event_column = "event",
403
- window_size = "rows:10&seconds:20",
404
- optional_events = ["organicsearch", "direct", "referral"],
405
- data_order_column='time_stamp'
406
- )
407
-
408
- # Print the result
409
- print(attribution_out1.result)
410
-
411
- # Example 2 - Multiple Regular Models, One Optional Model.
412
- # This example specifes one distribution model for each type of regular
413
- # event and one distribution model for optional events.
414
- attribution_out2 = Attribution(data=attribution_sample_table,
415
- data_partition_column='user_id',
416
- conversion_events = ["socialnetwork", "paidsearch"],
417
- timestamp_column='time_stamp',
418
- model1_name = ["EVENT_REGULAR",
419
- "email:0.19:LAST_CLICK:NA","impression:0.81:UNIFORM:NA"],
420
- model2_name = ["EVENT_OPTIONAL", "ALL:1:EXPONENTIAL:0.5,ROW"],
421
- event_column = "event",
422
- window_size = "rows:10&seconds:20",
423
- optional_events = ["organicsearch", "direct", "referral"],
424
- data_order_column='time_stamp'
425
- )
426
- # Print the result
427
- print(attribution_out2)
428
-
429
- # Example 3 - # This example uses Dynamic Weighted Distribution
430
- # Models Input.
431
- attribution_out3 = Attribution(data=attribution_sample_table,
432
- data_partition_column='user_id',
433
- conversion_events = ["socialnetwork", "paidsearch"],
434
- timestamp_column='time_stamp',
435
- model1_name = ["EVENT_REGULAR",
436
- "email:0.19:LAST_CLICK:NA","impression:0.81:WEIGHTED:0.4,0.3,0.2,0.1"],
437
- model2_name = ["EVENT_OPTIONAL", "ALL:1:WEIGHTED:0.4,0.3,0.2,0.1"],
438
- event_column = "event",
439
- window_size = "rows:10&seconds:20",
440
- optional_events = ["organicsearch", "direct", "referral"],
441
- data_order_column='time_stamp'
442
- )
443
-
444
- # Print the result
445
- print(attribution_out3.result)
446
-
447
- # Example 4 - This example uses Window Models.
448
- attribution_out4 = Attribution(data=attribution_sample_table,
449
- data_partition_column='user_id',
450
- conversion_events = ["socialnetwork", "paidsearch"],
451
- timestamp_column='time_stamp',
452
- model1_name = ["SEGMENT_ROWS",
453
- "3:0.5:EXPONENTIAL:0.5,ROW","4:0.3:WEIGHTED:0.4,0.3,0.2,0.1",
454
- "3:0.2:FIRST_CLICK:NA"],
455
- model2_name = ["SEGMENT_SECONDS", "6:0.5:UNIFORM:NA",
456
- "8:0.3:LAST_CLICK:NA","6:0.2:FIRST_CLICK:NA"],
457
- event_column = "event",
458
- window_size = "rows:10&seconds:20",
459
- optional_events = ["organicsearch", "direct", "referral"],
460
- exclude_events = ["email"],
461
- data_order_column='time_stamp'
462
- )
463
-
464
- # Print the result
465
- print(attribution_out4.result)
466
-
467
- # Example 5 - This example uses Single-Window Model.
468
- attribution_out5 = Attribution(data=attribution_sample_table,
469
- data_partition_column='user_id',
470
- conversion_events = ["socialnetwork", "paidsearch"],
471
- timestamp_column='time_stamp',
472
- model1_name = ["SIMPLE", "UNIFORM:NA"],
473
- event_column = "event",
474
- window_size = "rows:10&seconds:20",
475
- exclude_events = ["email"],
476
- data_order_column='time_stamp'
477
- )
478
-
479
- # Print the result
480
- print(attribution_out5.result)
481
-
482
-
483
- # Example 6 - This example uses Unused Segment Windows.
484
- attribution_out6 = Attribution(data=attribution_sample_table,
485
- data_partition_column='user_id',
486
- conversion_events = ["socialnetwork", "paidsearch"],
487
- timestamp_column='time_stamp',
488
- model1_name = ["SEGMENT_ROWS",
489
- "3:0.5:EXPONENTIAL:0.5,ROW","4:0.3:WEIGHTED:0.4,0.3,0.2,0.1",
490
- "3:0.2:FIRST_CLICK:NA"],
491
- model2_name = ["SEGMENT_SECONDS",
492
- "6:0.5:UNIFORM:NA","8:0.3:LAST_CLICK:NA", "6:0.2:FIRST_CLICK:NA"],
493
- event_column = "event",
494
- window_size = "rows:10&seconds:20",
495
- data_order_column='time_stamp'
496
- )
497
-
498
- # Print the result
499
- print(attribution_out6.result)
500
-
501
- # Example 7 - This example uses Multiple Inputs which takes data
502
- # and parameters from multiple tables and outputs attributions.
503
- attribution_out7 = Attribution(data=attribution_sample_table1,
504
- data_partition_column='user_id',
505
- data_order_column='time_stamp',
506
- data_optional=attribution_sample_table2,
507
- data_optional_partition_column='user_id',
508
- data_optional_order_column='time_stamp',
509
- conversion_data=conversion_event_table,
510
- excluding_data=excluding_event_table,
511
- optional_data=optional_event_table,
512
- model1_type=model1_table,
513
- model2_type=model2_table,
514
- event_column='event',
515
- timestamp_column='time_stamp',
516
- window_size='rows:10&seconds:20'
517
- )
518
- # Print the result
519
- print(attribution_out7.result)
520
-
521
- """
522
-
523
- # Start the timer to get the build time
524
- _start_time = time.time()
525
-
526
- self.data = data
527
- self.data_optional = data_optional
528
- self.conversion_events = conversion_events
529
- self.excluding_data = excluding_data
530
- self.optional_data = optional_data
531
- self.model1_type = model1_type
532
- self.model2_type = model2_type
533
- self.model1_name = model1_name
534
- self.model2_name = model2_name
535
- self.event_column = event_column
536
- self.timestamp_column = timestamp_column
537
- self.window_size = window_size
538
- self.conversion_data = conversion_data
539
- self.optional_events = optional_events
540
- self.exclude_events = exclude_events
541
- self.data_sequence_column = data_sequence_column
542
- self.data_optional_sequence_column = data_optional_sequence_column
543
- self.conversion_data_sequence_column = conversion_data_sequence_column
544
- self.excluding_data_sequence_column = excluding_data_sequence_column
545
- self.optional_data_sequence_column = optional_data_sequence_column
546
- self.model1_type_sequence_column = model1_type_sequence_column
547
- self.model2_type_sequence_column = model2_type_sequence_column
548
- self.data_partition_column = data_partition_column
549
- self.data_optional_partition_column = data_optional_partition_column
550
- self.data_order_column = data_order_column
551
- self.data_optional_order_column = data_optional_order_column
552
- self.conversion_data_order_column = conversion_data_order_column
553
- self.excluding_data_order_column = excluding_data_order_column
554
- self.optional_data_order_column = optional_data_order_column
555
- self.model1_type_order_column = model1_type_order_column
556
- self.model2_type_order_column = model2_type_order_column
557
-
558
- # Create TeradataPyWrapperUtils instance which contains validation functions.
559
- self.__awu = AnalyticsWrapperUtils()
560
- self.__aed_utils = AedUtils()
561
-
562
- # Create argument information matrix to do parameter checking
563
- self.__arg_info_matrix = []
564
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
565
- self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, False, (str,list)])
566
- self.__arg_info_matrix.append(["data_order_column", self.data_order_column, False, (str,list)])
567
- self.__arg_info_matrix.append(["data_optional", self.data_optional, True, (DataFrame)])
568
- self.__arg_info_matrix.append(["data_optional_partition_column", self.data_optional_partition_column, self.data_optional is None, (str,list)])
569
- self.__arg_info_matrix.append(["data_optional_order_column", self.data_optional_order_column, self.data_optional is None, (str,list)])
570
- self.__arg_info_matrix.append(["conversion_events", self.conversion_events, True, (str,list)])
571
- self.__arg_info_matrix.append(["excluding_data", self.excluding_data, True, (DataFrame)])
572
- self.__arg_info_matrix.append(["excluding_data_order_column", self.excluding_data_order_column, True, (str,list)])
573
- self.__arg_info_matrix.append(["optional_data", self.optional_data, True, (DataFrame)])
574
- self.__arg_info_matrix.append(["optional_data_order_column", self.optional_data_order_column, True, (str,list)])
575
- self.__arg_info_matrix.append(["model1_type", self.model1_type, True, (DataFrame)])
576
- self.__arg_info_matrix.append(["model1_type_order_column", self.model1_type_order_column, True, (str,list)])
577
- self.__arg_info_matrix.append(["model2_type", self.model2_type, True, (DataFrame)])
578
- self.__arg_info_matrix.append(["model2_type_order_column", self.model2_type_order_column, True, (str,list)])
579
- self.__arg_info_matrix.append(["model1_name", self.model1_name, True, (str,list)])
580
- self.__arg_info_matrix.append(["model2_name", self.model2_name, True, (str,list)])
581
- self.__arg_info_matrix.append(["event_column", self.event_column, False, (str)])
582
- self.__arg_info_matrix.append(["timestamp_column", self.timestamp_column, False, (str)])
583
- self.__arg_info_matrix.append(["window_size", self.window_size, False, (str)])
584
- self.__arg_info_matrix.append(["conversion_data", self.conversion_data, True, (DataFrame)])
585
- self.__arg_info_matrix.append(["conversion_data_order_column", self.conversion_data_order_column, True, (str,list)])
586
- self.__arg_info_matrix.append(["optional_events", self.optional_events, True, (str,list)])
587
- self.__arg_info_matrix.append(["exclude_events", self.exclude_events, True, (str,list)])
588
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
589
- self.__arg_info_matrix.append(["data_optional_sequence_column", self.data_optional_sequence_column, True, (str,list)])
590
- self.__arg_info_matrix.append(["conversion_data_sequence_column", self.conversion_data_sequence_column, True, (str,list)])
591
- self.__arg_info_matrix.append(["excluding_data_sequence_column", self.excluding_data_sequence_column, True, (str,list)])
592
- self.__arg_info_matrix.append(["optional_data_sequence_column", self.optional_data_sequence_column, True, (str,list)])
593
- self.__arg_info_matrix.append(["model1_type_sequence_column", self.model1_type_sequence_column, True, (str,list)])
594
- self.__arg_info_matrix.append(["model2_type_sequence_column", self.model2_type_sequence_column, True, (str,list)])
595
-
596
- if inspect.stack()[1][3] != '_from_model_catalog':
597
- # Perform the function validations
598
- self.__validate()
599
- # Generate the ML query
600
- self.__form_tdml_query()
601
- # Process output table schema
602
- self.__process_output_column_info()
603
- # Execute ML query
604
- self.__execute()
605
- # Get the prediction type
606
- self._prediction_type = self.__awu._get_function_prediction_type(self)
607
-
608
- # End the timer to get the build time
609
- _end_time = time.time()
610
-
611
- # Calculate the build time
612
- self._build_time = (int)(_end_time - _start_time)
613
-
614
- def __validate(self):
615
- """
616
- Function to validate sqlmr function arguments, which verifies missing
617
- arguments, input argument and table types. Also processes the
618
- argument values.
619
- """
620
-
621
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
622
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
623
-
624
- # Make sure that a non-NULL value has been supplied correct type of argument
625
- self.__awu._validate_argument_types(self.__arg_info_matrix)
626
-
627
- # Check to make sure input table types are strings or data frame objects or of valid type.
628
- self.__awu._validate_input_table_datatype(self.data, "data", None)
629
- self.__awu._validate_input_table_datatype(self.data_optional, "data_optional", None)
630
- self.__awu._validate_input_table_datatype(self.conversion_data, "conversion_data", None)
631
- self.__awu._validate_input_table_datatype(self.excluding_data, "excluding_data", None)
632
- self.__awu._validate_input_table_datatype(self.optional_data, "optional_data", None)
633
- self.__awu._validate_input_table_datatype(self.model1_type, "model1_type", None)
634
- self.__awu._validate_input_table_datatype(self.model2_type, "model2_type", None)
635
-
636
- # Make sure either multi-input arguments (data_optional, conversion_data,
637
- # excluding_data, optional_data, model1_type and model2_type ) or single-input
638
- # arguments (conversion_events, model1_name, optional_events, exclude_events
639
- # model2_name) syntax is being used.
640
- # To do so, let's define some flags and let's based on those.
641
- # List of Multi-syntax arguments
642
- multi_input_syntax_args=[self.data_optional, self.conversion_data, self.model1_type, self.model2_type, self.optional_data, self.excluding_data]
643
- # Flag to see if all Multi-input required arguments are not None
644
- all_multiple_input_reqd_syntax_args_not_none = all([self.conversion_data, self.model1_type])
645
- # Flag to see if any Multi-input arguments is not None
646
- any_multiple_input_syntax_args_not_none = any(multi_input_syntax_args)
647
- # List of Multi-syntax arguments
648
- single_input_syntax_args=[self.conversion_events, self.model1_name, self.model2_name, self.optional_events, self.exclude_events]
649
- # Flag to see if all Single-input required arguments are not None
650
- all_single_input_reqd_syntax_args_not_none = all([self.conversion_events, self.model1_name])
651
- # Flag to see if any Single-input arguments is not None
652
- any_single_input_syntax_args_not_none = any(single_input_syntax_args)
653
-
654
- # We shall raise error for all of the following cases:
655
- # 1. Case when none of the syntax arguments are provided.
656
- # Condition:
657
- # not (any_multiple_input_syntax_args_not_none or any_single_input_syntax_args_not_none)
658
- # 2. Case when mix of multiple syntax and single syntax arguments are provided.
659
- # Condition:
660
- # (any_multiple_input_syntax_args_not_none and any_single_input_syntax_args_not_none)
661
- # 3. Case when any of multiple syntax args is provided but one of required multiple
662
- # syntax argument is missing.
663
- # Condition:
664
- # not (any_multiple_input_syntax_args_not_none and all_multiple_input_reqd_syntax_args_not_none)
665
- # 4. Case when any of multiple syntax args is provided but one of required multiple
666
- # syntax argument is missing.
667
- # Condition:
668
- # not (any_single_input_syntax_args_not_none and all_single_input_reqd_syntax_args_not_none)
669
- if (any_multiple_input_syntax_args_not_none and any_single_input_syntax_args_not_none) \
670
- or (not (any_multiple_input_syntax_args_not_none or any_single_input_syntax_args_not_none)) \
671
- or (any_multiple_input_syntax_args_not_none and not all_multiple_input_reqd_syntax_args_not_none) \
672
- or (any_single_input_syntax_args_not_none and not all_single_input_reqd_syntax_args_not_none):
673
- raise TeradataMlException(Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT,
674
- "Multi-input syntax (data_optional, conversion_data (Required), excluding_data, optional_data, model1_type (Required) and model2_type)",
675
- "Single-input syntax (conversion_events (Required), model1_name (Required), optional_events, exclude_events and model2_name)"),
676
- MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
677
-
678
- # Check whether the input columns passed to the argument are not empty.
679
- # Also check whether the input columns passed to the argument valid or not.
680
- self.__awu._validate_input_columns_not_empty(self.event_column, "event_column")
681
- self.__awu._validate_dataframe_has_argument_columns(self.event_column, "event_column", self.data, "data", False)
682
-
683
- self.__awu._validate_input_columns_not_empty(self.timestamp_column, "timestamp_column")
684
- self.__awu._validate_dataframe_has_argument_columns(self.timestamp_column, "timestamp_column", self.data, "data", False)
685
-
686
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
687
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
688
-
689
- self.__awu._validate_input_columns_not_empty(self.data_optional_sequence_column, "data_optional_sequence_column")
690
- self.__awu._validate_dataframe_has_argument_columns(self.data_optional_sequence_column, "data_optional_sequence_column", self.data_optional, "data_optional", False)
691
-
692
- self.__awu._validate_input_columns_not_empty(self.conversion_data_sequence_column, "conversion_data_sequence_column")
693
- self.__awu._validate_dataframe_has_argument_columns(self.conversion_data_sequence_column, "conversion_data_sequence_column", self.conversion_data, "conversion_data", False)
694
-
695
- self.__awu._validate_input_columns_not_empty(self.excluding_data_sequence_column, "excluding_data_sequence_column")
696
- self.__awu._validate_dataframe_has_argument_columns(self.excluding_data_sequence_column, "excluding_data_sequence_column", self.excluding_data, "excluding_data", False)
697
-
698
- self.__awu._validate_input_columns_not_empty(self.optional_data_sequence_column, "optional_data_sequence_column")
699
- self.__awu._validate_dataframe_has_argument_columns(self.optional_data_sequence_column, "optional_data_sequence_column", self.optional_data, "optional_data", False)
700
-
701
- self.__awu._validate_input_columns_not_empty(self.model1_type_sequence_column, "model1_type_sequence_column")
702
- self.__awu._validate_dataframe_has_argument_columns(self.model1_type_sequence_column, "model1_type_sequence_column", self.model1_type, "model1_type", False)
703
-
704
- self.__awu._validate_input_columns_not_empty(self.model2_type_sequence_column, "model2_type_sequence_column")
705
- self.__awu._validate_dataframe_has_argument_columns(self.model2_type_sequence_column, "model2_type_sequence_column", self.model2_type, "model2_type", False)
706
-
707
- self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
708
- self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
709
-
710
- self.__awu._validate_input_columns_not_empty(self.data_optional_partition_column, "data_optional_partition_column")
711
- self.__awu._validate_dataframe_has_argument_columns(self.data_optional_partition_column, "data_optional_partition_column", self.data_optional, "data_optional", True)
712
-
713
- self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
714
- self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
715
-
716
- self.__awu._validate_input_columns_not_empty(self.data_optional_order_column, "data_optional_order_column")
717
- self.__awu._validate_dataframe_has_argument_columns(self.data_optional_order_column, "data_optional_order_column", self.data_optional, "data_optional", False)
718
-
719
- self.__awu._validate_input_columns_not_empty(self.conversion_data_order_column, "conversion_data_order_column")
720
- self.__awu._validate_dataframe_has_argument_columns(self.conversion_data_order_column, "conversion_data_order_column", self.conversion_data, "conversion_data", False)
721
-
722
- self.__awu._validate_input_columns_not_empty(self.excluding_data_order_column, "excluding_data_order_column")
723
- self.__awu._validate_dataframe_has_argument_columns(self.excluding_data_order_column, "excluding_data_order_column", self.excluding_data, "excluding_data", False)
724
-
725
- self.__awu._validate_input_columns_not_empty(self.optional_data_order_column, "optional_data_order_column")
726
- self.__awu._validate_dataframe_has_argument_columns(self.optional_data_order_column, "optional_data_order_column", self.optional_data, "optional_data", False)
727
-
728
- self.__awu._validate_input_columns_not_empty(self.model1_type_order_column, "model1_type_order_column")
729
- self.__awu._validate_dataframe_has_argument_columns(self.model1_type_order_column, "model1_type_order_column", self.model1_type, "model1_type", False)
730
-
731
- self.__awu._validate_input_columns_not_empty(self.model2_type_order_column, "model2_type_order_column")
732
- self.__awu._validate_dataframe_has_argument_columns(self.model2_type_order_column, "model2_type_order_column", self.model2_type, "model2_type", False)
733
-
734
-
735
- def __form_tdml_query(self):
736
- """
737
- Function to generate the analytical function queries. The function defines
738
- variables and list of arguments required to form the query.
739
- """
740
-
741
- # Output table arguments list
742
- self.__func_output_args_sql_names = []
743
- self.__func_output_args = []
744
-
745
- # Model Cataloging related attributes.
746
- self._sql_specific_attributes = {}
747
- self._sql_formula_attribute_mapper = {}
748
- self._target_column = None
749
- self._algorithm_name = None
750
-
751
- # Generate lists for rest of the function arguments
752
- self.__func_other_arg_sql_names = []
753
- self.__func_other_args = []
754
- self.__func_other_arg_json_datatypes = []
755
-
756
- self.__func_other_arg_sql_names.append("EventColumn")
757
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.event_column, "\""), "'"))
758
- self.__func_other_arg_json_datatypes.append("COLUMNS")
759
-
760
- self.__func_other_arg_sql_names.append("TimestampColumn")
761
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.timestamp_column, "\""), "'"))
762
- self.__func_other_arg_json_datatypes.append("COLUMNS")
763
-
764
- self.__func_other_arg_sql_names.append("WindowSize")
765
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.window_size, "'"))
766
- self.__func_other_arg_json_datatypes.append("STRING")
767
-
768
- if self.conversion_events is not None:
769
- self.__func_other_arg_sql_names.append("ConversionEvents")
770
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.conversion_events, "'"))
771
- self.__func_other_arg_json_datatypes.append("STRING")
772
-
773
- if self.exclude_events is not None:
774
- self.__func_other_arg_sql_names.append("ExcludeEvents")
775
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.exclude_events, "'"))
776
- self.__func_other_arg_json_datatypes.append("STRING")
777
-
778
- if self.optional_events is not None:
779
- self.__func_other_arg_sql_names.append("OptionalEvents")
780
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.optional_events, "'"))
781
- self.__func_other_arg_json_datatypes.append("STRING")
782
-
783
- if self.model1_name is not None:
784
- self.__func_other_arg_sql_names.append("FirstModel")
785
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.model1_name, "'"))
786
- self.__func_other_arg_json_datatypes.append("STRING")
787
-
788
- if self.model2_name is not None:
789
- self.__func_other_arg_sql_names.append("SecondModel")
790
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.model2_name, "'"))
791
- self.__func_other_arg_json_datatypes.append("STRING")
792
-
793
- # Generate lists for rest of the function arguments
794
- sequence_input_by_list = []
795
- if self.data_sequence_column is not None:
796
- sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
797
-
798
- if self.data_optional_sequence_column is not None:
799
- sequence_input_by_list.append("input2:" + UtilFuncs._teradata_collapse_arglist(self.data_optional_sequence_column, ""))
800
-
801
- if self.conversion_data_sequence_column is not None:
802
- sequence_input_by_list.append("conversion:" + UtilFuncs._teradata_collapse_arglist(self.conversion_data_sequence_column, ""))
803
-
804
- if self.excluding_data_sequence_column is not None:
805
- sequence_input_by_list.append("excluding:" + UtilFuncs._teradata_collapse_arglist(self.excluding_data_sequence_column, ""))
806
-
807
- if self.optional_data_sequence_column is not None:
808
- sequence_input_by_list.append("optional:" + UtilFuncs._teradata_collapse_arglist(self.optional_data_sequence_column, ""))
809
-
810
- if self.model1_type_sequence_column is not None:
811
- sequence_input_by_list.append("model1:" + UtilFuncs._teradata_collapse_arglist(self.model1_type_sequence_column, ""))
812
-
813
- if self.model2_type_sequence_column is not None:
814
- sequence_input_by_list.append("model2:" + UtilFuncs._teradata_collapse_arglist(self.model2_type_sequence_column, ""))
815
-
816
- if len(sequence_input_by_list) > 0:
817
- self.__func_other_arg_sql_names.append("SequenceInputBy")
818
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
819
- self.__func_other_args.append(sequence_input_by_arg_value)
820
- self.__func_other_arg_json_datatypes.append("STRING")
821
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
822
-
823
-
824
- # Declare empty lists to hold input table information.
825
- self.__func_input_arg_sql_names = []
826
- self.__func_input_table_view_query = []
827
- self.__func_input_dataframe_type = []
828
- self.__func_input_distribution = []
829
- self.__func_input_partition_by_cols = []
830
- self.__func_input_order_by_cols = []
831
-
832
- # Process data
833
- self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
834
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data)
835
- self.__func_input_distribution.append("FACT")
836
- self.__func_input_arg_sql_names.append("input")
837
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
838
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
839
- self.__func_input_partition_by_cols.append(self.data_partition_column)
840
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
841
-
842
- # Process data_optional
843
- if self.data_optional is not None:
844
- self.data_optional_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_optional_partition_column, "\"")
845
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data_optional)
846
- self.__func_input_distribution.append("FACT")
847
- self.__func_input_arg_sql_names.append("input2")
848
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
849
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
850
- self.__func_input_partition_by_cols.append(self.data_optional_partition_column)
851
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_optional_order_column, "\""))
852
-
853
- # Process conversion_data
854
- if self.conversion_data is not None:
855
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.conversion_data)
856
- self.__func_input_distribution.append("DIMENSION")
857
- self.__func_input_arg_sql_names.append("conversion")
858
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
859
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
860
- self.__func_input_partition_by_cols.append("NA_character_")
861
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.conversion_data_order_column, "\""))
862
-
863
- # Process excluding_data
864
- if self.excluding_data is not None:
865
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.excluding_data)
866
- self.__func_input_distribution.append("DIMENSION")
867
- self.__func_input_arg_sql_names.append("excluding")
868
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
869
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
870
- self.__func_input_partition_by_cols.append("NA_character_")
871
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.excluding_data_order_column, "\""))
872
-
873
- # Process optional_data
874
- if self.optional_data is not None:
875
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.optional_data)
876
- self.__func_input_distribution.append("DIMENSION")
877
- self.__func_input_arg_sql_names.append("optional")
878
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
879
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
880
- self.__func_input_partition_by_cols.append("NA_character_")
881
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.optional_data_order_column, "\""))
882
-
883
- # Process model1_type
884
- if self.model1_type is not None:
885
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.model1_type)
886
- self.__func_input_distribution.append("DIMENSION")
887
- self.__func_input_arg_sql_names.append("model1")
888
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
889
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
890
- self.__func_input_partition_by_cols.append("NA_character_")
891
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.model1_type_order_column, "\""))
892
-
893
- # Process model2_type
894
- if self.model2_type is not None:
895
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.model2_type)
896
- self.__func_input_distribution.append("DIMENSION")
897
- self.__func_input_arg_sql_names.append("model2")
898
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
899
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
900
- self.__func_input_partition_by_cols.append("NA_character_")
901
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.model2_type_order_column, "\""))
902
-
903
- function_name = "Attribution"
904
- # Create instance to generate SQLMR.
905
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
906
- self.__func_input_arg_sql_names,
907
- self.__func_input_table_view_query,
908
- self.__func_input_dataframe_type,
909
- self.__func_input_distribution,
910
- self.__func_input_partition_by_cols,
911
- self.__func_input_order_by_cols,
912
- self.__func_other_arg_sql_names,
913
- self.__func_other_args,
914
- self.__func_other_arg_json_datatypes,
915
- self.__func_output_args_sql_names,
916
- self.__func_output_args,
917
- engine="ENGINE_ML")
918
- # Invoke call to SQL-MR generation.
919
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
920
-
921
- # Print SQL-MR query if requested to do so.
922
- if display.print_sqlmr_query:
923
- print(self.sqlmr_query)
924
-
925
- # Set the algorithm name for Model Cataloging.
926
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
927
-
928
- def __execute(self):
929
- """
930
- Function to generate AED nodes for output tables.
931
- This makes a call aed_ml_query() and then output table dataframes are created.
932
- """
933
- # Create a list of input node ids contributing to a query.
934
- self.__input_nodeids = []
935
- self.__input_nodeids.append(self.data._nodeid)
936
- if self.data_optional is not None:
937
- self.__input_nodeids.append(self.data_optional._nodeid)
938
- if self.conversion_data is not None:
939
- self.__input_nodeids.append(self.conversion_data._nodeid)
940
- if self.excluding_data is not None:
941
- self.__input_nodeids.append(self.excluding_data._nodeid)
942
- if self.optional_data is not None:
943
- self.__input_nodeids.append(self.optional_data._nodeid)
944
- if self.model1_type is not None:
945
- self.__input_nodeids.append(self.model1_type._nodeid)
946
- if self.model2_type is not None:
947
- self.__input_nodeids.append(self.model2_type._nodeid)
948
-
949
- # Generate STDOUT table name and add it to the output table list.
950
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
951
- self.__func_output_args.insert(0, sqlmr_stdout_temp_tablename)
952
- try:
953
- # Call aed_ml_query and generate AED nodes.
954
- node_id_list = self.__aed_utils._aed_ml_query(self.__input_nodeids, self.sqlmr_query, self.__func_output_args, "Attribution", self.__aqg_obj._multi_query_input_nodes)
955
- except Exception as emsg:
956
- raise TeradataMlException(Messages.get_message(MessageCodes.AED_EXEC_FAILED, str(emsg)), MessageCodes.AED_EXEC_FAILED)
957
-
958
-
959
- # Update output table data frames.
960
- self._mlresults = []
961
- self.result = self.__awu._create_data_set_object(df_input=node_id_list[0], metaexpr=UtilFuncs._get_metaexpr_using_columns(node_id_list[0], self.__stdout_column_info))
962
- self._mlresults.append(self.result)
963
-
964
- def __process_output_column_info(self):
965
- """
966
- Function to process the output schema for all the ouptut tables.
967
- This function generates list of column names and column types
968
- for each generated output tables, which can be used to create metaexpr.
969
- """
970
- # Collecting STDOUT output column information.
971
- stdout_column_info_name = []
972
- stdout_column_info_type = []
973
- for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=None, columns=None):
974
- stdout_column_info_name.append(column_name)
975
- stdout_column_info_type.append(column_type)
976
-
977
- stdout_column_info_name.append("attribution")
978
- stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
979
-
980
- stdout_column_info_name.append("time_to_conversion")
981
- stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("float"))
982
-
983
- self.__stdout_column_info = zip(stdout_column_info_name, stdout_column_info_type)
984
-
985
- def show_query(self):
986
- """
987
- Function to return the underlying SQL query.
988
- When model object is created using retrieve_model(), then None is returned.
989
- """
990
- return self.sqlmr_query
991
-
992
- def get_prediction_type(self):
993
- """
994
- Function to return the Prediction type of the algorithm.
995
- When model object is created using retrieve_model(), then the value returned is
996
- as saved in the Model Catalog.
997
- """
998
- return self._prediction_type
999
-
1000
- def get_target_column(self):
1001
- """
1002
- Function to return the Target Column of the algorithm.
1003
- When model object is created using retrieve_model(), then the value returned is
1004
- as saved in the Model Catalog.
1005
- """
1006
- return self._target_column
1007
-
1008
- def get_build_time(self):
1009
- """
1010
- Function to return the build time of the algorithm in seconds.
1011
- When model object is created using retrieve_model(), then the value returned is
1012
- as saved in the Model Catalog.
1013
- """
1014
- return self._build_time
1015
-
1016
- def _get_algorithm_name(self):
1017
- """
1018
- Function to return the name of the algorithm.
1019
- """
1020
- return self._algorithm_name
1021
-
1022
- def _get_sql_specific_attributes(self):
1023
- """
1024
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
1025
- """
1026
- return self._sql_specific_attributes
1027
-
1028
- @classmethod
1029
- def _from_model_catalog(cls,
1030
- result = None,
1031
- **kwargs):
1032
- """
1033
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
1034
- """
1035
- kwargs.pop("result", None)
1036
-
1037
- # Model Cataloging related attributes.
1038
- target_column = kwargs.pop("__target_column", None)
1039
- prediction_type = kwargs.pop("__prediction_type", None)
1040
- algorithm_name = kwargs.pop("__algorithm_name", None)
1041
- build_time = kwargs.pop("__build_time", None)
1042
-
1043
- # Let's create an object of this class.
1044
- obj = cls(**kwargs)
1045
- obj.result = result
1046
-
1047
- # Initialize the sqlmr_query class attribute.
1048
- obj.sqlmr_query = None
1049
-
1050
- # Initialize the SQL specific Model Cataloging attributes.
1051
- obj._sql_specific_attributes = None
1052
- obj._target_column = target_column
1053
- obj._prediction_type = prediction_type
1054
- obj._algorithm_name = algorithm_name
1055
- obj._build_time = build_time
1056
-
1057
- # Update output table data frames.
1058
- obj._mlresults = []
1059
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
1060
- obj._mlresults.append(obj.result)
1061
- return obj
1062
-
1063
- def __repr__(self):
1064
- """
1065
- Returns the string representation for a Attribution class instance.
1066
- """
1067
- repr_string="############ STDOUT Output ############"
1068
- repr_string = "{}\n\n{}".format(repr_string,self.result)
1069
- return repr_string
1070
-