teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,711 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Mounika Kotha (mounika.kotha@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 2.5
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class Burst:
31
-
32
- def __init__(self,
33
- data = None,
34
- time_data = None,
35
- time_column = None,
36
- value_columns = None,
37
- time_interval = None,
38
- time_datatype = None,
39
- value_datatype = None,
40
- start_time = None,
41
- end_time = None,
42
- num_points = None,
43
- values_before_first = None,
44
- values_after_last = None,
45
- split_criteria = "nosplit",
46
- seed = None,
47
- accumulate = None,
48
- data_sequence_column = None,
49
- time_data_sequence_column = None,
50
- data_partition_column = None,
51
- time_data_partition_column = None,
52
- data_order_column = None,
53
- time_data_order_column = None):
54
- """
55
- DESCRIPTION:
56
- The Burst function bursts (splits) a time interval into a series of
57
- shorter "burst" intervals and allocates values from the time
58
- intervals into the new, shorter subintervals. The Burst function is
59
- useful for allocating values from overlapping time intervals into
60
- user-defined time intervals (for example, when a cable company has
61
- customer data from overlapping time intervals, which it wants to
62
- analyze by dividing into uniform time intervals). The Burst function
63
- supports several allocation methods.
64
-
65
-
66
- PARAMETERS:
67
- data:
68
- Required Argument.
69
- Specifies the teradataml DataFrame name which contains time
70
- series.
71
-
72
- data_partition_column:
73
- Required Argument.
74
- Specifies Partition By columns for data.
75
- Values to this argument can be provided as list, if multiple columns
76
- are used for partition.
77
- Types: str OR list of Strings (str)
78
-
79
- data_order_column:
80
- Optional Argument.
81
- Specifies Order By columns for data.
82
- Values to this argument can be provided as list, if multiple columns
83
- are used for ordering.
84
- Types: str OR list of Strings (str)
85
-
86
- time_data:
87
- Optional Argument.
88
- Specifies the teradataml DataFrame name which contains time.
89
-
90
- time_data_partition_column:
91
- Optional Argument. Required if time_data is specified.
92
- Specifies Partition By columns for time_data.
93
- Values to this argument can be provided as list, if multiple columns
94
- are used for partition.
95
- Types: str OR list of Strings (str)
96
-
97
- time_data_order_column:
98
- Optional Argument.
99
- Specifies Order By columns for time_data.
100
- Values to this argument can be provided as list, if multiple columns
101
- are used for ordering.
102
- Types: str OR list of Strings (str)
103
-
104
- time_column:
105
- Required Argument.
106
- Specifies the names of the data teradataml DataFrame columns
107
- that contain the start and end times of the time interval to be
108
- burst.
109
- Types: str OR list of Strings (str)
110
-
111
- value_columns:
112
- Required Argument.
113
- Specifies the names of data teradataml DataFrame columns to
114
- copy to the output teradataml DataFrame.
115
- Types: str OR list of Strings (str)
116
-
117
- time_interval:
118
- Optional Argument.
119
- Specifies the length of each burst time interval.
120
- Note: Specify exactly one of time_data, time_interval, or
121
- num_points.
122
- Types: float
123
-
124
- time_datatype:
125
- Optional Argument.
126
- Specifies the data type of the output columns that correspond to the
127
- input teradataml DataFrame columns that time_column specifies
128
- (start_time_column and end_time_column). If you omit this argument,
129
- then the function infers the data type of start_time_column and
130
- end_time_column from the input teradataml DataFrame and uses the
131
- inferred data type for the corresponding output teradataml DataFrame
132
- columns. If you specify this argument, then the function can
133
- transform the input data to the specified output data type only if
134
- both the input column data type and the specified output column data
135
- type are in this list: int, float.
136
- Types: str
137
-
138
- value_datatype:
139
- Optional Argument.
140
- Specifies the data types of the output columns that correspond
141
- to the input teradataml DataFrame columns that value_columns
142
- specifies. If you omit this argument, then the function infers
143
- the data type of each value_column from the input teradataml
144
- DataFrame and uses the inferred data type for the corresponding
145
- output teradataml DataFrame column. If you specify value_datatype,
146
- then it must be the same size as value_columns. That is, if
147
- value_columns specifies n columns, then value_datatype must
148
- specify n data types. For i in [1, n], value_column_i has
149
- value_type_i. However, value_type_i can be empty; for example:
150
- value_columns (c1, c2, c3), value_datatype (int, ,str).
151
- If you specify this argument, then the function can transform
152
- the input data to the specified output data type only if both
153
- the input column data type and the specified output column data
154
- type are in this list: int, float.
155
- Types: str
156
-
157
- start_time:
158
- Optional Argument.
159
- Specifies the start time for the time interval to be burst. The
160
- default is the value in start_time_column.
161
- Types: str
162
-
163
- end_time:
164
- Optional Argument.
165
- Specifies the end time for the time interval to be burst. The default
166
- is the value in end_time_column.
167
- Types: str
168
-
169
- num_points:
170
- Optional Argument.
171
- Specifies the number of data points in each burst time interval.
172
- Note: Specify exactly one of time_data, time_interval, or num_points.
173
- Types: int
174
-
175
- values_before_first:
176
- Optional Argument.
177
- Specifies the values to use if start_time is before start_time_column.
178
- Each of these values must have the same data type as its corresponding
179
- value_column. Values of data type str are case-insensitive.
180
- If you specify values_before_first, then it must be the same size as
181
- value_columns. That is, if value_columns specifies n columns,
182
- then values_before_first must specify n values. For i in [1,
183
- n], value_column_i has the value before_first_value_i. However,
184
- before_first_value_i can be empty; for example: value_columns (c1,
185
- c2, c3), values_before_first (1, ,"abc"). If before_first_value_i
186
- is empty, then value_column_i has the value NULL. If you do not
187
- specify values_before_first, then value_column_i has the value
188
- NULL for i in [1, n].
189
- Types: str
190
-
191
- values_after_last:
192
- Optional Argument.
193
- Specifies the values to use if end_time is after end_time_column.
194
- Each of these values must have the same data type as its
195
- corresponding value_column. Values of data type str are
196
- case-insensitive. If you specify values_after_last, then it
197
- must be the same size as value_columns. That is, if value_columns
198
- specifies n columns, then ValuesAfterLast must specify n values.
199
- For i in [1, n], value_column_i has the value after_last_value_i.
200
- However, after_last_value_i can be empty; for example:
201
- value.columns (c1, c2, c3), values_after_last (1, ,"abc").
202
- If after_last_value_i is empty, then value_column_i has the
203
- value NULL. If you do not specify values_after_last, then
204
- value_column_i has the value NULL for i in [1, n].
205
- Types: str
206
-
207
- split_criteria:
208
- Optional Argument.
209
- Specifies the split criteria of the value_columns.
210
- Default Value: "nosplit"
211
- Permitted Values: nosplit, proportional, random, gaussian, poisson
212
- Types: str
213
-
214
- seed:
215
- Optional Argument.
216
- Specifies the seed for the random number generator.
217
- Types: int
218
-
219
- accumulate:
220
- Optional Argument.
221
- Specifies the names of input_table columns (other than those
222
- specified by time_column and value_columns) to copy to the output
223
- teradataml DataFrame. By default, the function copies to the
224
- output teradataml DataFrame only the columns specified by
225
- time_column and value_columns.
226
- Types: str OR list of Strings (str)
227
-
228
- data_sequence_column:
229
- Optional Argument.
230
- Specifies the list of column(s) that uniquely identifies each row of
231
- the input argument "data". The argument is used to ensure
232
- deterministic results for functions which produce results that
233
- vary from run to run.
234
- Types: str OR list of Strings (str)
235
-
236
- time_data_sequence_column:
237
- Optional Argument.
238
- Specifies the list of column(s) that uniquely identifies each row of
239
- the input argument "time_data". The argument is used to ensure
240
- deterministic results for functions which produce results that
241
- vary from run to run.
242
- Types: str OR list of Strings (str)
243
-
244
- RETURNS:
245
- Instance of Burst.
246
- Output teradataml DataFrames can be accessed using attribute
247
- references, such as BurstObj.<attribute_name>.
248
- Output teradataml DataFrame attribute name is:
249
- result
250
-
251
-
252
- RAISES:
253
- TeradataMlException
254
-
255
-
256
- EXAMPLES:
257
- # Load example data.
258
- load_example_data("burst", ["burst_data", "finance_data", "time_table2"])
259
-
260
- # Create teradataml DataFrame objects.
261
- burst_data = DataFrame.from_table("burst_data")
262
- finance_data = DataFrame.from_table("finance_data")
263
- time_table2 = DataFrame.from_table("time_table2")
264
-
265
- # Example 1 - Use "time_interval" argument to burst the data for
266
- # a duration of 1 day (86400 seconds).
267
- Burst_out1 = Burst(data = burst_data,
268
- data_partition_column = ["id"],
269
- time_column = ["start_time_column", "end_time_column"],
270
- value_columns = ["num_custs"],
271
- time_interval = 86400.0,
272
- start_time = "08/01/2010",
273
- end_time = "08/10/2010",
274
- split_criteria = "nosplit",
275
- accumulate = ["id"]
276
- )
277
-
278
- # Print the result DataFrame
279
- print(Burst_out1)
280
-
281
- # Example 2 - The "split_criteria" for the "value_column" used in
282
- # this example is proportional.
283
- Burst_out2 = Burst(data = burst_data,
284
- data_partition_column = ["id"],
285
- time_column = ["start_time_column", "end_time_column"],
286
- value_columns = ["num_custs"],
287
- time_interval = 86400.0,
288
- start_time = "08/01/2010",
289
- end_time = "08/10/2010",
290
- split_criteria = "proportional",
291
- accumulate = ["id"]
292
- )
293
-
294
- # Print the result DataFrame
295
- print(Burst_out2.result)
296
-
297
- # Example 3 - The "split_criteria" for the "value_column" used in
298
- # this example is gaussian.
299
- Burst_out3 = Burst(data = burst_data,
300
- data_partition_column = ["id"],
301
- time_column = ["start_time_column", "end_time_column"],
302
- value_columns = ["num_custs"],
303
- time_interval = 86400.0,
304
- start_time = "08/01/2010",
305
- end_time = "08/10/2010",
306
- split_criteria = "gaussian",
307
- accumulate = ["id"]
308
- )
309
-
310
- # Print the result DataFrame
311
- print(Burst_out3)
312
-
313
- # Example 4 - Uses a "time_data" argument, "values_before_first"
314
- # and "values"after_last". The "time_data" option allows the use of
315
- # different time intervals and partitions the data accordingly.
316
- Burst_out4 = Burst(data = finance_data,
317
- data_partition_column = ["id"],
318
- time_data = time_table2,
319
- time_data_partition_column = ["id"],
320
- time_column = ["start_time_column", "end_time_column"],
321
- value_columns = ["expenditure", "income", "investment"],
322
- start_time = "06/30/1967",
323
- end_time = "07/10/1967",
324
- values_before_first = ["NULL","NULL","NULL"],
325
- values_after_last = ["NULL","NULL","NULL"],
326
- accumulate = ["id"]
327
- )
328
-
329
- # Print the result DataFrame
330
- print(Burst_out4)
331
-
332
- """
333
-
334
- # Start the timer to get the build time
335
- _start_time = time.time()
336
-
337
- self.data = data
338
- self.time_data = time_data
339
- self.time_column = time_column
340
- self.value_columns = value_columns
341
- self.time_interval = time_interval
342
- self.time_datatype = time_datatype
343
- self.value_datatype = value_datatype
344
- self.start_time = start_time
345
- self.end_time = end_time
346
- self.num_points = num_points
347
- self.values_before_first = values_before_first
348
- self.values_after_last = values_after_last
349
- self.split_criteria = split_criteria
350
- self.seed = seed
351
- self.accumulate = accumulate
352
- self.data_sequence_column = data_sequence_column
353
- self.time_data_sequence_column = time_data_sequence_column
354
- self.data_partition_column = data_partition_column
355
- self.time_data_partition_column = time_data_partition_column
356
- self.data_order_column = data_order_column
357
- self.time_data_order_column = time_data_order_column
358
-
359
- # Create TeradataPyWrapperUtils instance which contains validation functions.
360
- self.__awu = AnalyticsWrapperUtils()
361
- self.__aed_utils = AedUtils()
362
-
363
- # Create argument information matrix to do parameter checking
364
- self.__arg_info_matrix = []
365
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
366
- self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, False, (str,list)])
367
- self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
368
- self.__arg_info_matrix.append(["time_data", self.time_data, True, (DataFrame)])
369
- self.__arg_info_matrix.append(["time_data_partition_column", self.time_data_partition_column, self.time_data is None, (str,list)])
370
- self.__arg_info_matrix.append(["time_data_order_column", self.time_data_order_column, True, (str,list)])
371
- self.__arg_info_matrix.append(["time_column", self.time_column, False, (str,list)])
372
- self.__arg_info_matrix.append(["value_columns", self.value_columns, False, (str,list)])
373
- self.__arg_info_matrix.append(["time_interval", self.time_interval, True, (float)])
374
- self.__arg_info_matrix.append(["time_datatype", self.time_datatype, True, (str)])
375
- self.__arg_info_matrix.append(["value_datatype", self.value_datatype, True, (str,list)])
376
- self.__arg_info_matrix.append(["start_time", self.start_time, True, (str)])
377
- self.__arg_info_matrix.append(["end_time", self.end_time, True, (str)])
378
- self.__arg_info_matrix.append(["num_points", self.num_points, True, (int)])
379
- self.__arg_info_matrix.append(["values_before_first", self.values_before_first, True, (str,list)])
380
- self.__arg_info_matrix.append(["values_after_last", self.values_after_last, True, (str,list)])
381
- self.__arg_info_matrix.append(["split_criteria", self.split_criteria, True, (str)])
382
- self.__arg_info_matrix.append(["seed", self.seed, True, (int)])
383
- self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
384
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
385
- self.__arg_info_matrix.append(["time_data_sequence_column", self.time_data_sequence_column, True, (str,list)])
386
-
387
- if inspect.stack()[1][3] != '_from_model_catalog':
388
- # Perform the function validations
389
- self.__validate()
390
- # Generate the ML query
391
- self.__form_tdml_query()
392
- # Execute ML query
393
- self.__execute()
394
- # Get the prediction type
395
- self._prediction_type = self.__awu._get_function_prediction_type(self)
396
-
397
- # End the timer to get the build time
398
- _end_time = time.time()
399
-
400
- # Calculate the build time
401
- self._build_time = (int)(_end_time - _start_time)
402
-
403
- def __validate(self):
404
- """
405
- Function to validate sqlmr function arguments, which verifies missing
406
- arguments, input argument and table types. Also processes the
407
- argument values.
408
- """
409
-
410
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
411
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
412
-
413
- # Make sure that a non-NULL value has been supplied correct type of argument
414
- self.__awu._validate_argument_types(self.__arg_info_matrix)
415
-
416
- # Check to make sure input table types are strings or data frame objects or of valid type.
417
- self.__awu._validate_input_table_datatype(self.data, "data", None)
418
- self.__awu._validate_input_table_datatype(self.time_data, "time_data", None)
419
-
420
- # Check for permitted values
421
- split_criteria_permitted_values = ["NOSPLIT", "PROPORTIONAL", "RANDOM", "GAUSSIAN", "POISSON"]
422
- self.__awu._validate_permitted_values(self.split_criteria, split_criteria_permitted_values, "split_criteria")
423
-
424
- # Check whether the input columns passed to the argument are not empty.
425
- # Also check whether the input columns passed to the argument valid or not.
426
- self.__awu._validate_input_columns_not_empty(self.time_column, "time_column")
427
- self.__awu._validate_dataframe_has_argument_columns(self.time_column, "time_column", self.data, "data", False)
428
-
429
- self.__awu._validate_input_columns_not_empty(self.value_columns, "value_columns")
430
- self.__awu._validate_dataframe_has_argument_columns(self.value_columns, "value_columns", self.data, "data", False)
431
-
432
- self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
433
- self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.data, "data", False)
434
-
435
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
436
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
437
-
438
- self.__awu._validate_input_columns_not_empty(self.time_data_sequence_column, "time_data_sequence_column")
439
- self.__awu._validate_dataframe_has_argument_columns(self.time_data_sequence_column, "time_data_sequence_column", self.time_data, "time_data", False)
440
-
441
- self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
442
- self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
443
-
444
- self.__awu._validate_input_columns_not_empty(self.time_data_partition_column, "time_data_partition_column")
445
- self.__awu._validate_dataframe_has_argument_columns(self.time_data_partition_column, "time_data_partition_column", self.time_data, "time_data", True)
446
-
447
- self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
448
- self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
449
-
450
- self.__awu._validate_input_columns_not_empty(self.time_data_order_column, "time_data_order_column")
451
- self.__awu._validate_dataframe_has_argument_columns(self.time_data_order_column, "time_data_order_column", self.time_data, "time_data", False)
452
-
453
-
454
- def __form_tdml_query(self):
455
- """
456
- Function to generate the analytical function queries. The function defines
457
- variables and list of arguments required to form the query.
458
- """
459
-
460
- # Output table arguments list
461
- self.__func_output_args_sql_names = []
462
- self.__func_output_args = []
463
-
464
- # Model Cataloging related attributes.
465
- self._sql_specific_attributes = {}
466
- self._sql_formula_attribute_mapper = {}
467
- self._target_column = None
468
- self._algorithm_name = None
469
-
470
- # Generate lists for rest of the function arguments
471
- self.__func_other_arg_sql_names = []
472
- self.__func_other_args = []
473
- self.__func_other_arg_json_datatypes = []
474
-
475
- self.__func_other_arg_sql_names.append("TimeColumn")
476
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.time_column, "\""), "'"))
477
- self.__func_other_arg_json_datatypes.append("COLUMNS")
478
-
479
- self.__func_other_arg_sql_names.append("TargetColumns")
480
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.value_columns, "\""), "'"))
481
- self.__func_other_arg_json_datatypes.append("COLUMNS")
482
-
483
- if self.accumulate is not None:
484
- self.__func_other_arg_sql_names.append("Accumulate")
485
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
486
- self.__func_other_arg_json_datatypes.append("COLUMNS")
487
-
488
- if self.time_interval is not None:
489
- self.__func_other_arg_sql_names.append("TimeInterval")
490
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.time_interval, "'"))
491
- self.__func_other_arg_json_datatypes.append("DOUBLE")
492
-
493
- if self.time_datatype is not None:
494
- self.__func_other_arg_sql_names.append("TimeDataType")
495
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.time_datatype, "'"))
496
- self.__func_other_arg_json_datatypes.append("STRING")
497
-
498
- if self.value_datatype is not None:
499
- self.__func_other_arg_sql_names.append("ValueDataType")
500
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.value_datatype, "'"))
501
- self.__func_other_arg_json_datatypes.append("STRING")
502
-
503
- if self.start_time is not None:
504
- self.__func_other_arg_sql_names.append("StartTime")
505
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.start_time, "'"))
506
- self.__func_other_arg_json_datatypes.append("STRING")
507
-
508
- if self.end_time is not None:
509
- self.__func_other_arg_sql_names.append("EndTime")
510
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.end_time, "'"))
511
- self.__func_other_arg_json_datatypes.append("STRING")
512
-
513
- if self.split_criteria is not None and self.split_criteria != "nosplit":
514
- self.__func_other_arg_sql_names.append("SplitCriteria")
515
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.split_criteria, "'"))
516
- self.__func_other_arg_json_datatypes.append("STRING")
517
-
518
- if self.num_points is not None:
519
- self.__func_other_arg_sql_names.append("NumPoints")
520
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.num_points, "'"))
521
- self.__func_other_arg_json_datatypes.append("INTEGER")
522
-
523
- if self.seed is not None:
524
- self.__func_other_arg_sql_names.append("Seed")
525
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seed, "'"))
526
- self.__func_other_arg_json_datatypes.append("INTEGER")
527
-
528
- if self.values_before_first is not None:
529
- self.__func_other_arg_sql_names.append("ValuesBeforeFirst")
530
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.values_before_first, "'"))
531
- self.__func_other_arg_json_datatypes.append("STRING")
532
-
533
- if self.values_after_last is not None:
534
- self.__func_other_arg_sql_names.append("ValuesAfterLast")
535
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.values_after_last, "'"))
536
- self.__func_other_arg_json_datatypes.append("STRING")
537
-
538
- # Generate lists for rest of the function arguments
539
- sequence_input_by_list = []
540
- if self.data_sequence_column is not None:
541
- sequence_input_by_list.append("input_table:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
542
-
543
- if self.time_data_sequence_column is not None:
544
- sequence_input_by_list.append("time_table:" + UtilFuncs._teradata_collapse_arglist(self.time_data_sequence_column, ""))
545
-
546
- if len(sequence_input_by_list) > 0:
547
- self.__func_other_arg_sql_names.append("SequenceInputBy")
548
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
549
- self.__func_other_args.append(sequence_input_by_arg_value)
550
- self.__func_other_arg_json_datatypes.append("STRING")
551
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
552
-
553
-
554
- # Declare empty lists to hold input table information.
555
- self.__func_input_arg_sql_names = []
556
- self.__func_input_table_view_query = []
557
- self.__func_input_dataframe_type = []
558
- self.__func_input_distribution = []
559
- self.__func_input_partition_by_cols = []
560
- self.__func_input_order_by_cols = []
561
-
562
- # Process data
563
- self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
564
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
565
- self.__func_input_distribution.append("FACT")
566
- self.__func_input_arg_sql_names.append("input_table")
567
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
568
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
569
- self.__func_input_partition_by_cols.append(self.data_partition_column)
570
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
571
-
572
- # Process time_data
573
- if self.time_data is not None:
574
- self.time_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.time_data_partition_column, "\"")
575
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.time_data, False)
576
- self.__func_input_distribution.append("FACT")
577
- self.__func_input_arg_sql_names.append("time_table")
578
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
579
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
580
- self.__func_input_partition_by_cols.append(self.time_data_partition_column)
581
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.time_data_order_column, "\""))
582
-
583
- function_name = "Burst"
584
- # Create instance to generate SQLMR.
585
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
586
- self.__func_input_arg_sql_names,
587
- self.__func_input_table_view_query,
588
- self.__func_input_dataframe_type,
589
- self.__func_input_distribution,
590
- self.__func_input_partition_by_cols,
591
- self.__func_input_order_by_cols,
592
- self.__func_other_arg_sql_names,
593
- self.__func_other_args,
594
- self.__func_other_arg_json_datatypes,
595
- self.__func_output_args_sql_names,
596
- self.__func_output_args,
597
- engine="ENGINE_ML")
598
- # Invoke call to SQL-MR generation.
599
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
600
-
601
- # Print SQL-MR query if requested to do so.
602
- if display.print_sqlmr_query:
603
- print(self.sqlmr_query)
604
-
605
- # Set the algorithm name for Model Cataloging.
606
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
607
-
608
- def __execute(self):
609
- """
610
- Function to execute SQL-MR queries.
611
- Create DataFrames for the required SQL-MR outputs.
612
- """
613
- # Generate STDOUT table name and add it to the output table list.
614
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
615
- try:
616
- # Generate the output.
617
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
618
- except Exception as emsg:
619
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
620
-
621
- # Update output table data frames.
622
- self._mlresults = []
623
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
624
- self._mlresults.append(self.result)
625
-
626
- def show_query(self):
627
- """
628
- Function to return the underlying SQL query.
629
- When model object is created using retrieve_model(), then None is returned.
630
- """
631
- return self.sqlmr_query
632
-
633
- def get_prediction_type(self):
634
- """
635
- Function to return the Prediction type of the algorithm.
636
- When model object is created using retrieve_model(), then the value returned is
637
- as saved in the Model Catalog.
638
- """
639
- return self._prediction_type
640
-
641
- def get_target_column(self):
642
- """
643
- Function to return the Target Column of the algorithm.
644
- When model object is created using retrieve_model(), then the value returned is
645
- as saved in the Model Catalog.
646
- """
647
- return self._target_column
648
-
649
- def get_build_time(self):
650
- """
651
- Function to return the build time of the algorithm in seconds.
652
- When model object is created using retrieve_model(), then the value returned is
653
- as saved in the Model Catalog.
654
- """
655
- return self._build_time
656
-
657
- def _get_algorithm_name(self):
658
- """
659
- Function to return the name of the algorithm.
660
- """
661
- return self._algorithm_name
662
-
663
- def _get_sql_specific_attributes(self):
664
- """
665
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
666
- """
667
- return self._sql_specific_attributes
668
-
669
- @classmethod
670
- def _from_model_catalog(cls,
671
- result = None,
672
- **kwargs):
673
- """
674
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
675
- """
676
- kwargs.pop("result", None)
677
-
678
- # Model Cataloging related attributes.
679
- target_column = kwargs.pop("__target_column", None)
680
- prediction_type = kwargs.pop("__prediction_type", None)
681
- algorithm_name = kwargs.pop("__algorithm_name", None)
682
- build_time = kwargs.pop("__build_time", None)
683
-
684
- # Let's create an object of this class.
685
- obj = cls(**kwargs)
686
- obj.result = result
687
-
688
- # Initialize the sqlmr_query class attribute.
689
- obj.sqlmr_query = None
690
-
691
- # Initialize the SQL specific Model Cataloging attributes.
692
- obj._sql_specific_attributes = None
693
- obj._target_column = target_column
694
- obj._prediction_type = prediction_type
695
- obj._algorithm_name = algorithm_name
696
- obj._build_time = build_time
697
-
698
- # Update output table data frames.
699
- obj._mlresults = []
700
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
701
- obj._mlresults.append(obj.result)
702
- return obj
703
-
704
- def __repr__(self):
705
- """
706
- Returns the string representation for a Burst class instance.
707
- """
708
- repr_string="############ STDOUT Output ############"
709
- repr_string = "{}\n\n{}".format(repr_string,self.result)
710
- return repr_string
711
-