teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,504 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Rohit Khurd (rohit.khurd@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 2.3
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
- from teradataml.analytics.mle.TF import TF
30
-
31
- class TFIDF:
32
-
33
- def __init__(self,
34
- object = None,
35
- doccount_data = None,
36
- docperterm_data = None,
37
- idf_data = None,
38
- object_partition_column = None,
39
- docperterm_data_partition_column = None,
40
- idf_data_partition_column = None,
41
- object_order_column = None,
42
- doccount_data_order_column = None,
43
- docperterm_data_order_column = None,
44
- idf_data_order_column = None):
45
- """
46
- DESCRIPTION:
47
- TF-IDF stands for "term frequency-inverse document frequency", a
48
- technique for evaluating the importance of a specific term in a
49
- specific document in a document set. Term frequency (tf) is the
50
- number of times that the term appears in the document and inverse
51
- document frequency (idf) is the number of times that the term appears
52
- in the document set. The TF-IDF score for a term is tf * idf. A term
53
- with a high TF-IDF score is especially relevant to the specific
54
- document.
55
-
56
- The TFIDF function can do either of the following:
57
- • Take any document set and output the inverse document frequency (IDF)
58
- and term frequency - inverse document frequency (TF-IDF) scores
59
- for each term.
60
- • Use the output of a previous run of the TFIDF function on a
61
- training document set to predict TF-IDF scores of an input (test)
62
- document set.
63
-
64
-
65
- PARAMETERS:
66
- object:
67
- Required Argument.
68
- Specifies the teradataml DataFrame that contains the tf values
69
- or instance of TF.
70
-
71
- object_partition_column:
72
- Required Argument.
73
- Specifies Partition By columns for object.
74
- Values to this argument can be provided as a list, if multiple
75
- columns are used for partition.
76
- Types: str OR list of Strings (str)
77
-
78
- object_order_column:
79
- Optional Argument.
80
- Specifies Order By columns for object.
81
- Values to this argument can be provided as a list, if multiple
82
- columns are used for ordering.
83
- Types: str OR list of Strings (str)
84
-
85
- doccount_data:
86
- Optional Argument.
87
- Required if running the function to output IDF and TF-IDF score
88
- for each term in the document set.
89
- Specifies the teradataml DataFrame that contains the total
90
- number of documents.
91
-
92
- doccount_data_order_column:
93
- Optional Argument.
94
- Specifies Order By columns for doccount_data.
95
- Values to this argument can be provided as a list, if multiple
96
- columns are used for ordering.
97
- Types: str OR list of Strings (str)
98
-
99
- docperterm_data:
100
- Optional if running the function to output IDF and TF-IDF values
101
- for each term in the document set.
102
- Specifies the teradataml DataFrame that contains the total
103
- number of documents that each term appears in.
104
- If you omit this input, the function creates it by processing the
105
- entire document set, which can require a large amount of memory.
106
- If there is not enough memory to process the entire document set,
107
- then the docperterm teradataml DataFrame is required.
108
-
109
- docperterm_data_partition_column:
110
- Optional Argument.
111
- Required when the docperterm_data teradataml DataFrame is used.
112
- Specifies Partition By columns for docperterm_data.
113
- Values to this argument can be provided as a list, if multiple
114
- columns are used for partition.
115
- Types: str OR list of Strings (str)
116
-
117
- docperterm_data_order_column:
118
- Optional Argument.
119
- Specifies Order By columns for docperterm_data.
120
- Values to this argument can be provided as a list, if multiple
121
- columns are used for ordering.
122
- Types: str OR list of Strings (str)
123
-
124
- idf_data:
125
- Optional Argument.
126
- Required if running the function to predict TF-IDF scores.
127
- Specifies the teradataml DataFrame that contains the idf values
128
- that the predict process outputs.
129
-
130
- idf_data_partition_column:
131
- Optional Argument.
132
- Required when the idf_data teradataml DataFrame is used.
133
- Specifies Partition By columns for idf_data.
134
- Values to this argument can be provided as a list, if multiple
135
- columns are used for partition.
136
- Types: str OR list of Strings (str)
137
-
138
- idf_data_order_column:
139
- Optional Argument.
140
- Specifies Order By columns for idf_data.
141
- Values to this argument can be provided as a list, if multiple
142
- columns are used for ordering.
143
- Types: str OR list of Strings (str)
144
-
145
- RETURNS:
146
- Instance of TFIDF.
147
- Output teradataml DataFrames can be accessed using attribute
148
- references, such as TFIDFObj.<attribute_name>.
149
- Output teradataml DataFrame attribute name is:
150
- result
151
-
152
-
153
- RAISES:
154
- TeradataMlException
155
-
156
-
157
- EXAMPLES:
158
- # Load the data to run the example.
159
- load_example_data("TFIDF", ["tfidf_train", "idf_table", "docperterm_table"])
160
-
161
- # Create teradataml DataFrame.
162
- tfidf_train = DataFrame.from_table("tfidf_train")
163
- idf_tbl = DataFrame.from_table("idf_table")
164
- docperterm_table = DataFrame.from_table("docperterm_table")
165
-
166
- # Create Tokenized Training Document Set
167
- ngrams_out = NGrams(data=tfidf_train,
168
- text_column='content',
169
- delimiter = " ",
170
- grams = "1",
171
- overlapping = False,
172
- punctuation = "\\\\[.,?\\\\!\\\\]",
173
- reset = "\\\\[.,?\\\\!\\\\]",
174
- to_lower_case=True,
175
- total_gram_count=True,
176
- accumulate="docid")
177
-
178
- # store the output of td_ngrams functions into a table.
179
- tfidf_input_tbl = copy_to_sql(ngrams_out.result, table_name="tfidf_input_table")
180
-
181
- tfidf_input = DataFrame.from_query('select docid, ngram as term, frequency as "count" from tfidf_input_table')
182
-
183
- # create doccount table that contains the total number of documents
184
- doccount_tbl = DataFrame.from_query("select cast(count(distinct(docid)) as integer) as \"count\" from tfidf_input_table")
185
-
186
- # Run TF function to create Input for TFIDF Function
187
- tf_out = TF (data = tfidf_input,
188
- formula = "normal",
189
- data_partition_column = "docid")
190
-
191
- # Example 1 -
192
- tfidf_result1 = TFIDF(object = tf_out,
193
- doccount_data = doccount_tbl,
194
- object_partition_column = 'term')
195
-
196
- # Print the result DataFrame
197
- print(tfidf_result1.result)
198
-
199
- # Example 2 -
200
- tfidf_result2 = TFIDF(object = tf_out,
201
- docperterm_data = docperterm_table,
202
- idf_data = idf_tbl,
203
- object_partition_column = 'term',
204
- docperterm_data_partition_column = 'term',
205
- idf_data_partition_column = 'token')
206
-
207
- # Print the result DataFrame
208
- print(tfidf_result2.result)
209
-
210
- """
211
-
212
- # Start the timer to get the build time
213
- _start_time = time.time()
214
-
215
- self.object = object
216
- self.doccount_data = doccount_data
217
- self.docperterm_data = docperterm_data
218
- self.idf_data = idf_data
219
- self.object_partition_column = object_partition_column
220
- self.docperterm_data_partition_column = docperterm_data_partition_column
221
- self.idf_data_partition_column = idf_data_partition_column
222
- self.object_order_column = object_order_column
223
- self.doccount_data_order_column = doccount_data_order_column
224
- self.docperterm_data_order_column = docperterm_data_order_column
225
- self.idf_data_order_column = idf_data_order_column
226
-
227
- # Create TeradataPyWrapperUtils instance which contains validation functions.
228
- self.__awu = AnalyticsWrapperUtils()
229
- self.__aed_utils = AedUtils()
230
-
231
- # Create argument information matrix to do parameter checking
232
- self.__arg_info_matrix = []
233
- self.__arg_info_matrix.append(["object", self.object, False, (DataFrame)])
234
- self.__arg_info_matrix.append(["object_partition_column", self.object_partition_column, False, (str,list)])
235
- self.__arg_info_matrix.append(["object_order_column", self.object_order_column, True, (str,list)])
236
- self.__arg_info_matrix.append(["doccount_data", self.doccount_data, True, (DataFrame)])
237
- self.__arg_info_matrix.append(["doccount_data_order_column", self.doccount_data_order_column, True, (str,list)])
238
- self.__arg_info_matrix.append(["docperterm_data", self.docperterm_data, True, (DataFrame)])
239
- self.__arg_info_matrix.append(["docperterm_data_partition_column", self.docperterm_data_partition_column, self.docperterm_data is None, (str,list)])
240
- self.__arg_info_matrix.append(["docperterm_data_order_column", self.docperterm_data_order_column, True, (str,list)])
241
- self.__arg_info_matrix.append(["idf_data", self.idf_data, True, (DataFrame)])
242
- self.__arg_info_matrix.append(["idf_data_partition_column", self.idf_data_partition_column, self.idf_data is None, (str,list)])
243
- self.__arg_info_matrix.append(["idf_data_order_column", self.idf_data_order_column, True, (str,list)])
244
-
245
- if inspect.stack()[1][3] != '_from_model_catalog':
246
- # Perform the function validations
247
- self.__validate()
248
- # Generate the ML query
249
- self.__form_tdml_query()
250
- # Execute ML query
251
- self.__execute()
252
- # Get the prediction type
253
- self._prediction_type = self.__awu._get_function_prediction_type(self)
254
-
255
- # End the timer to get the build time
256
- _end_time = time.time()
257
-
258
- # Calculate the build time
259
- self._build_time = (int)(_end_time - _start_time)
260
-
261
- def __validate(self):
262
- """
263
- Function to validate sqlmr function arguments, which verifies missing
264
- arguments, input argument and table types. Also processes the
265
- argument values.
266
- """
267
- if isinstance(self.object, TF):
268
- self.object = self.object._mlresults[0]
269
-
270
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
271
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
272
-
273
- # Make sure that a non-NULL value has been supplied correct type of argument
274
- self.__awu._validate_argument_types(self.__arg_info_matrix)
275
-
276
- # Check to make sure input table types are strings or data frame objects or of valid type.
277
- self.__awu._validate_input_table_datatype(self.object, "object", TF)
278
- self.__awu._validate_input_table_datatype(self.doccount_data, "doccount_data", None)
279
- self.__awu._validate_input_table_datatype(self.docperterm_data, "docperterm_data", None)
280
- self.__awu._validate_input_table_datatype(self.idf_data, "idf_data", None)
281
-
282
- self.__awu._validate_input_columns_not_empty(self.object_partition_column, "object_partition_column")
283
- self.__awu._validate_dataframe_has_argument_columns(self.object_partition_column, "object_partition_column", self.object, "object", True)
284
-
285
- self.__awu._validate_input_columns_not_empty(self.docperterm_data_partition_column, "docperterm_data_partition_column")
286
- self.__awu._validate_dataframe_has_argument_columns(self.docperterm_data_partition_column, "docperterm_data_partition_column", self.docperterm_data, "docperterm_data", True)
287
-
288
- self.__awu._validate_input_columns_not_empty(self.idf_data_partition_column, "idf_data_partition_column")
289
- self.__awu._validate_dataframe_has_argument_columns(self.idf_data_partition_column, "idf_data_partition_column", self.idf_data, "idf_data", True)
290
-
291
- self.__awu._validate_input_columns_not_empty(self.object_order_column, "object_order_column")
292
- self.__awu._validate_dataframe_has_argument_columns(self.object_order_column, "object_order_column", self.object, "object", False)
293
-
294
- self.__awu._validate_input_columns_not_empty(self.doccount_data_order_column, "doccount_data_order_column")
295
- self.__awu._validate_dataframe_has_argument_columns(self.doccount_data_order_column, "doccount_data_order_column", self.doccount_data, "doccount_data", False)
296
-
297
- self.__awu._validate_input_columns_not_empty(self.docperterm_data_order_column, "docperterm_data_order_column")
298
- self.__awu._validate_dataframe_has_argument_columns(self.docperterm_data_order_column, "docperterm_data_order_column", self.docperterm_data, "docperterm_data", False)
299
-
300
- self.__awu._validate_input_columns_not_empty(self.idf_data_order_column, "idf_data_order_column")
301
- self.__awu._validate_dataframe_has_argument_columns(self.idf_data_order_column, "idf_data_order_column", self.idf_data, "idf_data", False)
302
-
303
-
304
- def __form_tdml_query(self):
305
- """
306
- Function to generate the analytical function queries. The function defines
307
- variables and list of arguments required to form the query.
308
- """
309
-
310
- # Output table arguments list
311
- self.__func_output_args_sql_names = []
312
- self.__func_output_args = []
313
-
314
- # Model Cataloging related attributes.
315
- self._sql_specific_attributes = {}
316
- self._sql_formula_attribute_mapper = {}
317
- self._target_column = None
318
- self._algorithm_name = None
319
-
320
- # Generate lists for rest of the function arguments
321
- self.__func_other_arg_sql_names = []
322
- self.__func_other_args = []
323
- self.__func_other_arg_json_datatypes = []
324
-
325
-
326
- # Declare empty lists to hold input table information.
327
- self.__func_input_arg_sql_names = []
328
- self.__func_input_table_view_query = []
329
- self.__func_input_dataframe_type = []
330
- self.__func_input_distribution = []
331
- self.__func_input_partition_by_cols = []
332
- self.__func_input_order_by_cols = []
333
-
334
- # Process object
335
- self.object_partition_column = UtilFuncs._teradata_collapse_arglist(self.object_partition_column, "\"")
336
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.object, False)
337
- self.__func_input_distribution.append("FACT")
338
- self.__func_input_arg_sql_names.append("tf")
339
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
340
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
341
- self.__func_input_partition_by_cols.append(self.object_partition_column)
342
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.object_order_column, "\""))
343
-
344
- # Process doccount_data
345
- if self.doccount_data is not None:
346
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.doccount_data, False)
347
- self.__func_input_distribution.append("DIMENSION")
348
- self.__func_input_arg_sql_names.append("doccount")
349
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
350
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
351
- self.__func_input_partition_by_cols.append("NA_character_")
352
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.doccount_data_order_column, "\""))
353
-
354
- # Process docperterm_data
355
- if self.docperterm_data is not None:
356
- self.docperterm_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.docperterm_data_partition_column, "\"")
357
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.docperterm_data, False)
358
- self.__func_input_distribution.append("FACT")
359
- self.__func_input_arg_sql_names.append("docperterm")
360
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
361
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
362
- self.__func_input_partition_by_cols.append(self.docperterm_data_partition_column)
363
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.docperterm_data_order_column, "\""))
364
-
365
- # Process idf_data
366
- if self.idf_data is not None:
367
- self.idf_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.idf_data_partition_column, "\"")
368
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.idf_data, False)
369
- self.__func_input_distribution.append("FACT")
370
- self.__func_input_arg_sql_names.append("idf")
371
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
372
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
373
- self.__func_input_partition_by_cols.append(self.idf_data_partition_column)
374
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.idf_data_order_column, "\""))
375
-
376
- function_name = "TFIDF"
377
- # Create instance to generate SQLMR.
378
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
379
- self.__func_input_arg_sql_names,
380
- self.__func_input_table_view_query,
381
- self.__func_input_dataframe_type,
382
- self.__func_input_distribution,
383
- self.__func_input_partition_by_cols,
384
- self.__func_input_order_by_cols,
385
- self.__func_other_arg_sql_names,
386
- self.__func_other_args,
387
- self.__func_other_arg_json_datatypes,
388
- self.__func_output_args_sql_names,
389
- self.__func_output_args,
390
- engine="ENGINE_ML")
391
- # Invoke call to SQL-MR generation.
392
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
393
-
394
- # Print SQL-MR query if requested to do so.
395
- if display.print_sqlmr_query:
396
- print(self.sqlmr_query)
397
-
398
- # Set the algorithm name for Model Cataloging.
399
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
400
-
401
- def __execute(self):
402
- """
403
- Function to execute SQL-MR queries.
404
- Create DataFrames for the required SQL-MR outputs.
405
- """
406
- # Generate STDOUT table name and add it to the output table list.
407
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
408
- try:
409
- # Generate the output.
410
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
411
- except Exception as emsg:
412
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
413
-
414
- # Update output table data frames.
415
- self._mlresults = []
416
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
417
- self._mlresults.append(self.result)
418
-
419
- def show_query(self):
420
- """
421
- Function to return the underlying SQL query.
422
- When model object is created using retrieve_model(), then None is returned.
423
- """
424
- return self.sqlmr_query
425
-
426
- def get_prediction_type(self):
427
- """
428
- Function to return the Prediction type of the algorithm.
429
- When model object is created using retrieve_model(), then the value returned is
430
- as saved in the Model Catalog.
431
- """
432
- return self._prediction_type
433
-
434
- def get_target_column(self):
435
- """
436
- Function to return the Target Column of the algorithm.
437
- When model object is created using retrieve_model(), then the value returned is
438
- as saved in the Model Catalog.
439
- """
440
- return self._target_column
441
-
442
- def get_build_time(self):
443
- """
444
- Function to return the build time of the algorithm in seconds.
445
- When model object is created using retrieve_model(), then the value returned is
446
- as saved in the Model Catalog.
447
- """
448
- return self._build_time
449
-
450
- def _get_algorithm_name(self):
451
- """
452
- Function to return the name of the algorithm.
453
- """
454
- return self._algorithm_name
455
-
456
- def _get_sql_specific_attributes(self):
457
- """
458
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
459
- """
460
- return self._sql_specific_attributes
461
-
462
- @classmethod
463
- def _from_model_catalog(cls,
464
- result = None,
465
- **kwargs):
466
- """
467
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
468
- """
469
- kwargs.pop("result", None)
470
-
471
- # Model Cataloging related attributes.
472
- target_column = kwargs.pop("__target_column", None)
473
- prediction_type = kwargs.pop("__prediction_type", None)
474
- algorithm_name = kwargs.pop("__algorithm_name", None)
475
- build_time = kwargs.pop("__build_time", None)
476
-
477
- # Let's create an object of this class.
478
- obj = cls(**kwargs)
479
- obj.result = result
480
-
481
- # Initialize the sqlmr_query class attribute.
482
- obj.sqlmr_query = None
483
-
484
- # Initialize the SQL specific Model Cataloging attributes.
485
- obj._sql_specific_attributes = None
486
- obj._target_column = target_column
487
- obj._prediction_type = prediction_type
488
- obj._algorithm_name = algorithm_name
489
- obj._build_time = build_time
490
-
491
- # Update output table data frames.
492
- obj._mlresults = []
493
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
494
- obj._mlresults.append(obj.result)
495
- return obj
496
-
497
- def __repr__(self):
498
- """
499
- Returns the string representation for a TFIDF class instance.
500
- """
501
- repr_string="############ STDOUT Output ############"
502
- repr_string = "{}\n\n{}".format(repr_string,self.result)
503
- return repr_string
504
-