teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,504 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Rohit Khurd (rohit.khurd@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 2.3
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.analytics.mle.TF import TF
|
|
30
|
-
|
|
31
|
-
class TFIDF:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
object = None,
|
|
35
|
-
doccount_data = None,
|
|
36
|
-
docperterm_data = None,
|
|
37
|
-
idf_data = None,
|
|
38
|
-
object_partition_column = None,
|
|
39
|
-
docperterm_data_partition_column = None,
|
|
40
|
-
idf_data_partition_column = None,
|
|
41
|
-
object_order_column = None,
|
|
42
|
-
doccount_data_order_column = None,
|
|
43
|
-
docperterm_data_order_column = None,
|
|
44
|
-
idf_data_order_column = None):
|
|
45
|
-
"""
|
|
46
|
-
DESCRIPTION:
|
|
47
|
-
TF-IDF stands for "term frequency-inverse document frequency", a
|
|
48
|
-
technique for evaluating the importance of a specific term in a
|
|
49
|
-
specific document in a document set. Term frequency (tf) is the
|
|
50
|
-
number of times that the term appears in the document and inverse
|
|
51
|
-
document frequency (idf) is the number of times that the term appears
|
|
52
|
-
in the document set. The TF-IDF score for a term is tf * idf. A term
|
|
53
|
-
with a high TF-IDF score is especially relevant to the specific
|
|
54
|
-
document.
|
|
55
|
-
|
|
56
|
-
The TFIDF function can do either of the following:
|
|
57
|
-
• Take any document set and output the inverse document frequency (IDF)
|
|
58
|
-
and term frequency - inverse document frequency (TF-IDF) scores
|
|
59
|
-
for each term.
|
|
60
|
-
• Use the output of a previous run of the TFIDF function on a
|
|
61
|
-
training document set to predict TF-IDF scores of an input (test)
|
|
62
|
-
document set.
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
PARAMETERS:
|
|
66
|
-
object:
|
|
67
|
-
Required Argument.
|
|
68
|
-
Specifies the teradataml DataFrame that contains the tf values
|
|
69
|
-
or instance of TF.
|
|
70
|
-
|
|
71
|
-
object_partition_column:
|
|
72
|
-
Required Argument.
|
|
73
|
-
Specifies Partition By columns for object.
|
|
74
|
-
Values to this argument can be provided as a list, if multiple
|
|
75
|
-
columns are used for partition.
|
|
76
|
-
Types: str OR list of Strings (str)
|
|
77
|
-
|
|
78
|
-
object_order_column:
|
|
79
|
-
Optional Argument.
|
|
80
|
-
Specifies Order By columns for object.
|
|
81
|
-
Values to this argument can be provided as a list, if multiple
|
|
82
|
-
columns are used for ordering.
|
|
83
|
-
Types: str OR list of Strings (str)
|
|
84
|
-
|
|
85
|
-
doccount_data:
|
|
86
|
-
Optional Argument.
|
|
87
|
-
Required if running the function to output IDF and TF-IDF score
|
|
88
|
-
for each term in the document set.
|
|
89
|
-
Specifies the teradataml DataFrame that contains the total
|
|
90
|
-
number of documents.
|
|
91
|
-
|
|
92
|
-
doccount_data_order_column:
|
|
93
|
-
Optional Argument.
|
|
94
|
-
Specifies Order By columns for doccount_data.
|
|
95
|
-
Values to this argument can be provided as a list, if multiple
|
|
96
|
-
columns are used for ordering.
|
|
97
|
-
Types: str OR list of Strings (str)
|
|
98
|
-
|
|
99
|
-
docperterm_data:
|
|
100
|
-
Optional if running the function to output IDF and TF-IDF values
|
|
101
|
-
for each term in the document set.
|
|
102
|
-
Specifies the teradataml DataFrame that contains the total
|
|
103
|
-
number of documents that each term appears in.
|
|
104
|
-
If you omit this input, the function creates it by processing the
|
|
105
|
-
entire document set, which can require a large amount of memory.
|
|
106
|
-
If there is not enough memory to process the entire document set,
|
|
107
|
-
then the docperterm teradataml DataFrame is required.
|
|
108
|
-
|
|
109
|
-
docperterm_data_partition_column:
|
|
110
|
-
Optional Argument.
|
|
111
|
-
Required when the docperterm_data teradataml DataFrame is used.
|
|
112
|
-
Specifies Partition By columns for docperterm_data.
|
|
113
|
-
Values to this argument can be provided as a list, if multiple
|
|
114
|
-
columns are used for partition.
|
|
115
|
-
Types: str OR list of Strings (str)
|
|
116
|
-
|
|
117
|
-
docperterm_data_order_column:
|
|
118
|
-
Optional Argument.
|
|
119
|
-
Specifies Order By columns for docperterm_data.
|
|
120
|
-
Values to this argument can be provided as a list, if multiple
|
|
121
|
-
columns are used for ordering.
|
|
122
|
-
Types: str OR list of Strings (str)
|
|
123
|
-
|
|
124
|
-
idf_data:
|
|
125
|
-
Optional Argument.
|
|
126
|
-
Required if running the function to predict TF-IDF scores.
|
|
127
|
-
Specifies the teradataml DataFrame that contains the idf values
|
|
128
|
-
that the predict process outputs.
|
|
129
|
-
|
|
130
|
-
idf_data_partition_column:
|
|
131
|
-
Optional Argument.
|
|
132
|
-
Required when the idf_data teradataml DataFrame is used.
|
|
133
|
-
Specifies Partition By columns for idf_data.
|
|
134
|
-
Values to this argument can be provided as a list, if multiple
|
|
135
|
-
columns are used for partition.
|
|
136
|
-
Types: str OR list of Strings (str)
|
|
137
|
-
|
|
138
|
-
idf_data_order_column:
|
|
139
|
-
Optional Argument.
|
|
140
|
-
Specifies Order By columns for idf_data.
|
|
141
|
-
Values to this argument can be provided as a list, if multiple
|
|
142
|
-
columns are used for ordering.
|
|
143
|
-
Types: str OR list of Strings (str)
|
|
144
|
-
|
|
145
|
-
RETURNS:
|
|
146
|
-
Instance of TFIDF.
|
|
147
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
148
|
-
references, such as TFIDFObj.<attribute_name>.
|
|
149
|
-
Output teradataml DataFrame attribute name is:
|
|
150
|
-
result
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
RAISES:
|
|
154
|
-
TeradataMlException
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
EXAMPLES:
|
|
158
|
-
# Load the data to run the example.
|
|
159
|
-
load_example_data("TFIDF", ["tfidf_train", "idf_table", "docperterm_table"])
|
|
160
|
-
|
|
161
|
-
# Create teradataml DataFrame.
|
|
162
|
-
tfidf_train = DataFrame.from_table("tfidf_train")
|
|
163
|
-
idf_tbl = DataFrame.from_table("idf_table")
|
|
164
|
-
docperterm_table = DataFrame.from_table("docperterm_table")
|
|
165
|
-
|
|
166
|
-
# Create Tokenized Training Document Set
|
|
167
|
-
ngrams_out = NGrams(data=tfidf_train,
|
|
168
|
-
text_column='content',
|
|
169
|
-
delimiter = " ",
|
|
170
|
-
grams = "1",
|
|
171
|
-
overlapping = False,
|
|
172
|
-
punctuation = "\\\\[.,?\\\\!\\\\]",
|
|
173
|
-
reset = "\\\\[.,?\\\\!\\\\]",
|
|
174
|
-
to_lower_case=True,
|
|
175
|
-
total_gram_count=True,
|
|
176
|
-
accumulate="docid")
|
|
177
|
-
|
|
178
|
-
# store the output of td_ngrams functions into a table.
|
|
179
|
-
tfidf_input_tbl = copy_to_sql(ngrams_out.result, table_name="tfidf_input_table")
|
|
180
|
-
|
|
181
|
-
tfidf_input = DataFrame.from_query('select docid, ngram as term, frequency as "count" from tfidf_input_table')
|
|
182
|
-
|
|
183
|
-
# create doccount table that contains the total number of documents
|
|
184
|
-
doccount_tbl = DataFrame.from_query("select cast(count(distinct(docid)) as integer) as \"count\" from tfidf_input_table")
|
|
185
|
-
|
|
186
|
-
# Run TF function to create Input for TFIDF Function
|
|
187
|
-
tf_out = TF (data = tfidf_input,
|
|
188
|
-
formula = "normal",
|
|
189
|
-
data_partition_column = "docid")
|
|
190
|
-
|
|
191
|
-
# Example 1 -
|
|
192
|
-
tfidf_result1 = TFIDF(object = tf_out,
|
|
193
|
-
doccount_data = doccount_tbl,
|
|
194
|
-
object_partition_column = 'term')
|
|
195
|
-
|
|
196
|
-
# Print the result DataFrame
|
|
197
|
-
print(tfidf_result1.result)
|
|
198
|
-
|
|
199
|
-
# Example 2 -
|
|
200
|
-
tfidf_result2 = TFIDF(object = tf_out,
|
|
201
|
-
docperterm_data = docperterm_table,
|
|
202
|
-
idf_data = idf_tbl,
|
|
203
|
-
object_partition_column = 'term',
|
|
204
|
-
docperterm_data_partition_column = 'term',
|
|
205
|
-
idf_data_partition_column = 'token')
|
|
206
|
-
|
|
207
|
-
# Print the result DataFrame
|
|
208
|
-
print(tfidf_result2.result)
|
|
209
|
-
|
|
210
|
-
"""
|
|
211
|
-
|
|
212
|
-
# Start the timer to get the build time
|
|
213
|
-
_start_time = time.time()
|
|
214
|
-
|
|
215
|
-
self.object = object
|
|
216
|
-
self.doccount_data = doccount_data
|
|
217
|
-
self.docperterm_data = docperterm_data
|
|
218
|
-
self.idf_data = idf_data
|
|
219
|
-
self.object_partition_column = object_partition_column
|
|
220
|
-
self.docperterm_data_partition_column = docperterm_data_partition_column
|
|
221
|
-
self.idf_data_partition_column = idf_data_partition_column
|
|
222
|
-
self.object_order_column = object_order_column
|
|
223
|
-
self.doccount_data_order_column = doccount_data_order_column
|
|
224
|
-
self.docperterm_data_order_column = docperterm_data_order_column
|
|
225
|
-
self.idf_data_order_column = idf_data_order_column
|
|
226
|
-
|
|
227
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
228
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
229
|
-
self.__aed_utils = AedUtils()
|
|
230
|
-
|
|
231
|
-
# Create argument information matrix to do parameter checking
|
|
232
|
-
self.__arg_info_matrix = []
|
|
233
|
-
self.__arg_info_matrix.append(["object", self.object, False, (DataFrame)])
|
|
234
|
-
self.__arg_info_matrix.append(["object_partition_column", self.object_partition_column, False, (str,list)])
|
|
235
|
-
self.__arg_info_matrix.append(["object_order_column", self.object_order_column, True, (str,list)])
|
|
236
|
-
self.__arg_info_matrix.append(["doccount_data", self.doccount_data, True, (DataFrame)])
|
|
237
|
-
self.__arg_info_matrix.append(["doccount_data_order_column", self.doccount_data_order_column, True, (str,list)])
|
|
238
|
-
self.__arg_info_matrix.append(["docperterm_data", self.docperterm_data, True, (DataFrame)])
|
|
239
|
-
self.__arg_info_matrix.append(["docperterm_data_partition_column", self.docperterm_data_partition_column, self.docperterm_data is None, (str,list)])
|
|
240
|
-
self.__arg_info_matrix.append(["docperterm_data_order_column", self.docperterm_data_order_column, True, (str,list)])
|
|
241
|
-
self.__arg_info_matrix.append(["idf_data", self.idf_data, True, (DataFrame)])
|
|
242
|
-
self.__arg_info_matrix.append(["idf_data_partition_column", self.idf_data_partition_column, self.idf_data is None, (str,list)])
|
|
243
|
-
self.__arg_info_matrix.append(["idf_data_order_column", self.idf_data_order_column, True, (str,list)])
|
|
244
|
-
|
|
245
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
246
|
-
# Perform the function validations
|
|
247
|
-
self.__validate()
|
|
248
|
-
# Generate the ML query
|
|
249
|
-
self.__form_tdml_query()
|
|
250
|
-
# Execute ML query
|
|
251
|
-
self.__execute()
|
|
252
|
-
# Get the prediction type
|
|
253
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
254
|
-
|
|
255
|
-
# End the timer to get the build time
|
|
256
|
-
_end_time = time.time()
|
|
257
|
-
|
|
258
|
-
# Calculate the build time
|
|
259
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
260
|
-
|
|
261
|
-
def __validate(self):
|
|
262
|
-
"""
|
|
263
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
264
|
-
arguments, input argument and table types. Also processes the
|
|
265
|
-
argument values.
|
|
266
|
-
"""
|
|
267
|
-
if isinstance(self.object, TF):
|
|
268
|
-
self.object = self.object._mlresults[0]
|
|
269
|
-
|
|
270
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
271
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
272
|
-
|
|
273
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
274
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
275
|
-
|
|
276
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
277
|
-
self.__awu._validate_input_table_datatype(self.object, "object", TF)
|
|
278
|
-
self.__awu._validate_input_table_datatype(self.doccount_data, "doccount_data", None)
|
|
279
|
-
self.__awu._validate_input_table_datatype(self.docperterm_data, "docperterm_data", None)
|
|
280
|
-
self.__awu._validate_input_table_datatype(self.idf_data, "idf_data", None)
|
|
281
|
-
|
|
282
|
-
self.__awu._validate_input_columns_not_empty(self.object_partition_column, "object_partition_column")
|
|
283
|
-
self.__awu._validate_dataframe_has_argument_columns(self.object_partition_column, "object_partition_column", self.object, "object", True)
|
|
284
|
-
|
|
285
|
-
self.__awu._validate_input_columns_not_empty(self.docperterm_data_partition_column, "docperterm_data_partition_column")
|
|
286
|
-
self.__awu._validate_dataframe_has_argument_columns(self.docperterm_data_partition_column, "docperterm_data_partition_column", self.docperterm_data, "docperterm_data", True)
|
|
287
|
-
|
|
288
|
-
self.__awu._validate_input_columns_not_empty(self.idf_data_partition_column, "idf_data_partition_column")
|
|
289
|
-
self.__awu._validate_dataframe_has_argument_columns(self.idf_data_partition_column, "idf_data_partition_column", self.idf_data, "idf_data", True)
|
|
290
|
-
|
|
291
|
-
self.__awu._validate_input_columns_not_empty(self.object_order_column, "object_order_column")
|
|
292
|
-
self.__awu._validate_dataframe_has_argument_columns(self.object_order_column, "object_order_column", self.object, "object", False)
|
|
293
|
-
|
|
294
|
-
self.__awu._validate_input_columns_not_empty(self.doccount_data_order_column, "doccount_data_order_column")
|
|
295
|
-
self.__awu._validate_dataframe_has_argument_columns(self.doccount_data_order_column, "doccount_data_order_column", self.doccount_data, "doccount_data", False)
|
|
296
|
-
|
|
297
|
-
self.__awu._validate_input_columns_not_empty(self.docperterm_data_order_column, "docperterm_data_order_column")
|
|
298
|
-
self.__awu._validate_dataframe_has_argument_columns(self.docperterm_data_order_column, "docperterm_data_order_column", self.docperterm_data, "docperterm_data", False)
|
|
299
|
-
|
|
300
|
-
self.__awu._validate_input_columns_not_empty(self.idf_data_order_column, "idf_data_order_column")
|
|
301
|
-
self.__awu._validate_dataframe_has_argument_columns(self.idf_data_order_column, "idf_data_order_column", self.idf_data, "idf_data", False)
|
|
302
|
-
|
|
303
|
-
|
|
304
|
-
def __form_tdml_query(self):
|
|
305
|
-
"""
|
|
306
|
-
Function to generate the analytical function queries. The function defines
|
|
307
|
-
variables and list of arguments required to form the query.
|
|
308
|
-
"""
|
|
309
|
-
|
|
310
|
-
# Output table arguments list
|
|
311
|
-
self.__func_output_args_sql_names = []
|
|
312
|
-
self.__func_output_args = []
|
|
313
|
-
|
|
314
|
-
# Model Cataloging related attributes.
|
|
315
|
-
self._sql_specific_attributes = {}
|
|
316
|
-
self._sql_formula_attribute_mapper = {}
|
|
317
|
-
self._target_column = None
|
|
318
|
-
self._algorithm_name = None
|
|
319
|
-
|
|
320
|
-
# Generate lists for rest of the function arguments
|
|
321
|
-
self.__func_other_arg_sql_names = []
|
|
322
|
-
self.__func_other_args = []
|
|
323
|
-
self.__func_other_arg_json_datatypes = []
|
|
324
|
-
|
|
325
|
-
|
|
326
|
-
# Declare empty lists to hold input table information.
|
|
327
|
-
self.__func_input_arg_sql_names = []
|
|
328
|
-
self.__func_input_table_view_query = []
|
|
329
|
-
self.__func_input_dataframe_type = []
|
|
330
|
-
self.__func_input_distribution = []
|
|
331
|
-
self.__func_input_partition_by_cols = []
|
|
332
|
-
self.__func_input_order_by_cols = []
|
|
333
|
-
|
|
334
|
-
# Process object
|
|
335
|
-
self.object_partition_column = UtilFuncs._teradata_collapse_arglist(self.object_partition_column, "\"")
|
|
336
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.object, False)
|
|
337
|
-
self.__func_input_distribution.append("FACT")
|
|
338
|
-
self.__func_input_arg_sql_names.append("tf")
|
|
339
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
340
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
341
|
-
self.__func_input_partition_by_cols.append(self.object_partition_column)
|
|
342
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.object_order_column, "\""))
|
|
343
|
-
|
|
344
|
-
# Process doccount_data
|
|
345
|
-
if self.doccount_data is not None:
|
|
346
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.doccount_data, False)
|
|
347
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
348
|
-
self.__func_input_arg_sql_names.append("doccount")
|
|
349
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
350
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
351
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
352
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.doccount_data_order_column, "\""))
|
|
353
|
-
|
|
354
|
-
# Process docperterm_data
|
|
355
|
-
if self.docperterm_data is not None:
|
|
356
|
-
self.docperterm_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.docperterm_data_partition_column, "\"")
|
|
357
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.docperterm_data, False)
|
|
358
|
-
self.__func_input_distribution.append("FACT")
|
|
359
|
-
self.__func_input_arg_sql_names.append("docperterm")
|
|
360
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
361
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
362
|
-
self.__func_input_partition_by_cols.append(self.docperterm_data_partition_column)
|
|
363
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.docperterm_data_order_column, "\""))
|
|
364
|
-
|
|
365
|
-
# Process idf_data
|
|
366
|
-
if self.idf_data is not None:
|
|
367
|
-
self.idf_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.idf_data_partition_column, "\"")
|
|
368
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.idf_data, False)
|
|
369
|
-
self.__func_input_distribution.append("FACT")
|
|
370
|
-
self.__func_input_arg_sql_names.append("idf")
|
|
371
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
372
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
373
|
-
self.__func_input_partition_by_cols.append(self.idf_data_partition_column)
|
|
374
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.idf_data_order_column, "\""))
|
|
375
|
-
|
|
376
|
-
function_name = "TFIDF"
|
|
377
|
-
# Create instance to generate SQLMR.
|
|
378
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
379
|
-
self.__func_input_arg_sql_names,
|
|
380
|
-
self.__func_input_table_view_query,
|
|
381
|
-
self.__func_input_dataframe_type,
|
|
382
|
-
self.__func_input_distribution,
|
|
383
|
-
self.__func_input_partition_by_cols,
|
|
384
|
-
self.__func_input_order_by_cols,
|
|
385
|
-
self.__func_other_arg_sql_names,
|
|
386
|
-
self.__func_other_args,
|
|
387
|
-
self.__func_other_arg_json_datatypes,
|
|
388
|
-
self.__func_output_args_sql_names,
|
|
389
|
-
self.__func_output_args,
|
|
390
|
-
engine="ENGINE_ML")
|
|
391
|
-
# Invoke call to SQL-MR generation.
|
|
392
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
393
|
-
|
|
394
|
-
# Print SQL-MR query if requested to do so.
|
|
395
|
-
if display.print_sqlmr_query:
|
|
396
|
-
print(self.sqlmr_query)
|
|
397
|
-
|
|
398
|
-
# Set the algorithm name for Model Cataloging.
|
|
399
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
400
|
-
|
|
401
|
-
def __execute(self):
|
|
402
|
-
"""
|
|
403
|
-
Function to execute SQL-MR queries.
|
|
404
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
405
|
-
"""
|
|
406
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
407
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
408
|
-
try:
|
|
409
|
-
# Generate the output.
|
|
410
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
411
|
-
except Exception as emsg:
|
|
412
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
413
|
-
|
|
414
|
-
# Update output table data frames.
|
|
415
|
-
self._mlresults = []
|
|
416
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
417
|
-
self._mlresults.append(self.result)
|
|
418
|
-
|
|
419
|
-
def show_query(self):
|
|
420
|
-
"""
|
|
421
|
-
Function to return the underlying SQL query.
|
|
422
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
423
|
-
"""
|
|
424
|
-
return self.sqlmr_query
|
|
425
|
-
|
|
426
|
-
def get_prediction_type(self):
|
|
427
|
-
"""
|
|
428
|
-
Function to return the Prediction type of the algorithm.
|
|
429
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
430
|
-
as saved in the Model Catalog.
|
|
431
|
-
"""
|
|
432
|
-
return self._prediction_type
|
|
433
|
-
|
|
434
|
-
def get_target_column(self):
|
|
435
|
-
"""
|
|
436
|
-
Function to return the Target Column of the algorithm.
|
|
437
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
438
|
-
as saved in the Model Catalog.
|
|
439
|
-
"""
|
|
440
|
-
return self._target_column
|
|
441
|
-
|
|
442
|
-
def get_build_time(self):
|
|
443
|
-
"""
|
|
444
|
-
Function to return the build time of the algorithm in seconds.
|
|
445
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
446
|
-
as saved in the Model Catalog.
|
|
447
|
-
"""
|
|
448
|
-
return self._build_time
|
|
449
|
-
|
|
450
|
-
def _get_algorithm_name(self):
|
|
451
|
-
"""
|
|
452
|
-
Function to return the name of the algorithm.
|
|
453
|
-
"""
|
|
454
|
-
return self._algorithm_name
|
|
455
|
-
|
|
456
|
-
def _get_sql_specific_attributes(self):
|
|
457
|
-
"""
|
|
458
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
459
|
-
"""
|
|
460
|
-
return self._sql_specific_attributes
|
|
461
|
-
|
|
462
|
-
@classmethod
|
|
463
|
-
def _from_model_catalog(cls,
|
|
464
|
-
result = None,
|
|
465
|
-
**kwargs):
|
|
466
|
-
"""
|
|
467
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
468
|
-
"""
|
|
469
|
-
kwargs.pop("result", None)
|
|
470
|
-
|
|
471
|
-
# Model Cataloging related attributes.
|
|
472
|
-
target_column = kwargs.pop("__target_column", None)
|
|
473
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
474
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
475
|
-
build_time = kwargs.pop("__build_time", None)
|
|
476
|
-
|
|
477
|
-
# Let's create an object of this class.
|
|
478
|
-
obj = cls(**kwargs)
|
|
479
|
-
obj.result = result
|
|
480
|
-
|
|
481
|
-
# Initialize the sqlmr_query class attribute.
|
|
482
|
-
obj.sqlmr_query = None
|
|
483
|
-
|
|
484
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
485
|
-
obj._sql_specific_attributes = None
|
|
486
|
-
obj._target_column = target_column
|
|
487
|
-
obj._prediction_type = prediction_type
|
|
488
|
-
obj._algorithm_name = algorithm_name
|
|
489
|
-
obj._build_time = build_time
|
|
490
|
-
|
|
491
|
-
# Update output table data frames.
|
|
492
|
-
obj._mlresults = []
|
|
493
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
494
|
-
obj._mlresults.append(obj.result)
|
|
495
|
-
return obj
|
|
496
|
-
|
|
497
|
-
def __repr__(self):
|
|
498
|
-
"""
|
|
499
|
-
Returns the string representation for a TFIDF class instance.
|
|
500
|
-
"""
|
|
501
|
-
repr_string="############ STDOUT Output ############"
|
|
502
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
503
|
-
return repr_string
|
|
504
|
-
|