teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,531 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2020 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Rohit Agrawal (rohit.agrawal@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.2
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class NaiveBayesTextClassifier2:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
stopwords = None,
|
|
35
|
-
doc_category_column = None,
|
|
36
|
-
text_column = None,
|
|
37
|
-
model_type = "MULTINOMIAL",
|
|
38
|
-
doc_id_column = None,
|
|
39
|
-
is_tokenized = True,
|
|
40
|
-
convert_to_lower_case = False,
|
|
41
|
-
stem_tokens = True,
|
|
42
|
-
handle_nulls = False,
|
|
43
|
-
data_sequence_column = None,
|
|
44
|
-
stopwords_sequence_column = None):
|
|
45
|
-
"""
|
|
46
|
-
DESCRIPTION:
|
|
47
|
-
The NaiveBayesTextClassifier2 function takes training data as
|
|
48
|
-
input and outputs a model teradataml DataFrame. Training data can be
|
|
49
|
-
in the form of either documents or tokens.
|
|
50
|
-
Note:
|
|
51
|
-
1. This function is supported on Vantage 1.3 or later.
|
|
52
|
-
2. Teradata recommends to use NaiveBayesTextClassifier2 instead
|
|
53
|
-
of NaiveBayesTextClassifier on Vantage 1.3 or later.
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
PARAMETERS:
|
|
57
|
-
data:
|
|
58
|
-
Required Argument.
|
|
59
|
-
Specifies the teradataml DataFrame defining the training texts or tokens.
|
|
60
|
-
|
|
61
|
-
stopwords:
|
|
62
|
-
Optional Argument when "is_tokenized" is 'False', disallowed otherwise.
|
|
63
|
-
Specifies the teradataml DataFrame defining the stop words.
|
|
64
|
-
|
|
65
|
-
doc_category_column:
|
|
66
|
-
Required Argument.
|
|
67
|
-
Specifies the name of the column in "data" teradataml DataFrame that
|
|
68
|
-
contains the document category.
|
|
69
|
-
Types: str
|
|
70
|
-
|
|
71
|
-
text_column:
|
|
72
|
-
Required Argument.
|
|
73
|
-
Specifies the name of the column in "data" teradataml DataFrame that
|
|
74
|
-
contains the texts or tokens to classify.
|
|
75
|
-
Types: str
|
|
76
|
-
|
|
77
|
-
model_type:
|
|
78
|
-
Optional Argument.
|
|
79
|
-
Specifies the model type of the text classifier.
|
|
80
|
-
Default Value: "MULTINOMIAL"
|
|
81
|
-
Permitted Values: MULTINOMIAL, BERNOULLI
|
|
82
|
-
Types: str
|
|
83
|
-
|
|
84
|
-
doc_id_column:
|
|
85
|
-
Optional Argument. Required if "model_type" is 'BERNOULLI'.
|
|
86
|
-
Specifies the name of the column in "data" teradataml DataFrame that
|
|
87
|
-
contain the document identifier.
|
|
88
|
-
Types: str
|
|
89
|
-
|
|
90
|
-
is_tokenized:
|
|
91
|
-
Optional Argument.
|
|
92
|
-
Specifies whether the input data is tokenized or not.
|
|
93
|
-
When it is set to 'True', input data is tokenized, otherwise input data
|
|
94
|
-
is not tokenized and will be tokenized internally.
|
|
95
|
-
Note:
|
|
96
|
-
Specifying "is_tokenized" to 'True' with untokenized input data
|
|
97
|
-
may result in an ambiguous or meaningless model.
|
|
98
|
-
Default Value: True
|
|
99
|
-
Types: bool
|
|
100
|
-
|
|
101
|
-
convert_to_lower_case:
|
|
102
|
-
Optional Argument when "is_tokenized" is 'False', disallowed otherwise.
|
|
103
|
-
Specifies whether to convert all letters in the input text to lowercase.
|
|
104
|
-
Default Value: False
|
|
105
|
-
Types: bool
|
|
106
|
-
|
|
107
|
-
stem_tokens:
|
|
108
|
-
Optional Argument when "is_tokenized" is 'False', disallowed otherwise.
|
|
109
|
-
Specifies whether to stem the tokens as part of text tokenization.
|
|
110
|
-
Default Value: True
|
|
111
|
-
Types: bool
|
|
112
|
-
|
|
113
|
-
handle_nulls:
|
|
114
|
-
Optional Argument.
|
|
115
|
-
Specifies whether to remove null values from input data before processing.
|
|
116
|
-
If the input data contains no null values, setting "handle_nulls" to 'False'
|
|
117
|
-
improves performance.
|
|
118
|
-
Default Value: False
|
|
119
|
-
Types: bool
|
|
120
|
-
|
|
121
|
-
data_sequence_column:
|
|
122
|
-
Optional Argument.
|
|
123
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
124
|
-
the input argument "data". The argument is used to ensure
|
|
125
|
-
deterministic results for functions which produce results that vary
|
|
126
|
-
from run to run.
|
|
127
|
-
Types: str OR list of Strings (str)
|
|
128
|
-
|
|
129
|
-
stopwords_sequence_column:
|
|
130
|
-
Optional Argument.
|
|
131
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
132
|
-
the input argument "stopwords". The argument is used to ensure
|
|
133
|
-
deterministic results for functions which produce results that vary
|
|
134
|
-
from run to run.
|
|
135
|
-
Types: str OR list of Strings (str)
|
|
136
|
-
|
|
137
|
-
RETURNS:
|
|
138
|
-
Instance of NaiveBayesTextClassifier2.
|
|
139
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
140
|
-
references, such as
|
|
141
|
-
NaiveBayesTextClassifier2Obj.<attribute_name>.
|
|
142
|
-
Output teradataml DataFrame attribute names are:
|
|
143
|
-
1. model_data
|
|
144
|
-
2. output
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
RAISES:
|
|
148
|
-
TeradataMlException, TypeError, ValueError
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
EXAMPLES:
|
|
152
|
-
# Load the data to run the example.
|
|
153
|
-
load_example_data("NaiveBayesTextClassifier2","complaints")
|
|
154
|
-
|
|
155
|
-
# Create teradataml DataFrame.
|
|
156
|
-
complaints = DataFrame.from_table("complaints")
|
|
157
|
-
|
|
158
|
-
# Example 1 - "is_tokenized" set to 'False'
|
|
159
|
-
# This function uses the untokenized input 'complaints' to create the
|
|
160
|
-
# Bernoulli model and the data is internally tokenized.
|
|
161
|
-
nbt2_result1 = NaiveBayesTextClassifier2(data=complaints,
|
|
162
|
-
doc_category_column='category',
|
|
163
|
-
text_column='text_data',
|
|
164
|
-
doc_id_column='doc_id',
|
|
165
|
-
model_type='BERNOULLI',
|
|
166
|
-
is_tokenized=False
|
|
167
|
-
)
|
|
168
|
-
|
|
169
|
-
# Print the model_data DataFrame.
|
|
170
|
-
print(nbt2_result1.model_data)
|
|
171
|
-
|
|
172
|
-
# Print the output DataFrame.
|
|
173
|
-
print(nbt2_result1.output)
|
|
174
|
-
|
|
175
|
-
# Example 2 - "is_tokenized" set to 'True'
|
|
176
|
-
# The input teradataml DataFrame 'complaints' is tokenized using
|
|
177
|
-
# TextTokenizer function.
|
|
178
|
-
complaints_tokenized = TextTokenizer(data=complaints,
|
|
179
|
-
text_column='text_data',
|
|
180
|
-
language='en',
|
|
181
|
-
output_delimiter=' ',
|
|
182
|
-
output_byword =True,
|
|
183
|
-
accumulate=['doc_id', 'category'])
|
|
184
|
-
|
|
185
|
-
# This function uses the tokenized input 'complaints_tokenized' to
|
|
186
|
-
# create the Bernoulli model.
|
|
187
|
-
nbt2_result2 = NaiveBayesTextClassifier2(data=complaints_tokenized.result,
|
|
188
|
-
doc_category_column='category',
|
|
189
|
-
text_column='token',
|
|
190
|
-
doc_id_column='doc_id',
|
|
191
|
-
model_type='BERNOULLI',
|
|
192
|
-
is_tokenized=True
|
|
193
|
-
)
|
|
194
|
-
|
|
195
|
-
# Print the model_data DataFrame.
|
|
196
|
-
print(nbt2_result2.model_data)
|
|
197
|
-
|
|
198
|
-
# Print the output DataFrame.
|
|
199
|
-
print(nbt2_result2.output)
|
|
200
|
-
|
|
201
|
-
"""
|
|
202
|
-
|
|
203
|
-
# Start the timer to get the build time
|
|
204
|
-
_start_time = time.time()
|
|
205
|
-
|
|
206
|
-
self.data = data
|
|
207
|
-
self.stopwords = stopwords
|
|
208
|
-
self.doc_category_column = doc_category_column
|
|
209
|
-
self.text_column = text_column
|
|
210
|
-
self.model_type = model_type
|
|
211
|
-
self.doc_id_column = doc_id_column
|
|
212
|
-
self.is_tokenized = is_tokenized
|
|
213
|
-
self.convert_to_lower_case = convert_to_lower_case
|
|
214
|
-
self.stem_tokens = stem_tokens
|
|
215
|
-
self.handle_nulls = handle_nulls
|
|
216
|
-
self.data_sequence_column = data_sequence_column
|
|
217
|
-
self.stopwords_sequence_column = stopwords_sequence_column
|
|
218
|
-
|
|
219
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
220
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
221
|
-
self.__aed_utils = AedUtils()
|
|
222
|
-
|
|
223
|
-
# Create argument information matrix to do parameter checking
|
|
224
|
-
self.__arg_info_matrix = []
|
|
225
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
226
|
-
self.__arg_info_matrix.append(["stopwords", self.stopwords, True, (DataFrame)])
|
|
227
|
-
self.__arg_info_matrix.append(["doc_category_column", self.doc_category_column, False, (str)])
|
|
228
|
-
self.__arg_info_matrix.append(["text_column", self.text_column, False, (str)])
|
|
229
|
-
self.__arg_info_matrix.append(["model_type", self.model_type, True, (str)])
|
|
230
|
-
self.__arg_info_matrix.append(["doc_id_column", self.doc_id_column, True, (str)])
|
|
231
|
-
self.__arg_info_matrix.append(["is_tokenized", self.is_tokenized, True, (bool)])
|
|
232
|
-
self.__arg_info_matrix.append(["convert_to_lower_case", self.convert_to_lower_case, True, (bool)])
|
|
233
|
-
self.__arg_info_matrix.append(["stem_tokens", self.stem_tokens, True, (bool)])
|
|
234
|
-
self.__arg_info_matrix.append(["handle_nulls", self.handle_nulls, True, (bool)])
|
|
235
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
236
|
-
self.__arg_info_matrix.append(["stopwords_sequence_column", self.stopwords_sequence_column, True, (str,list)])
|
|
237
|
-
|
|
238
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
239
|
-
# Perform the function validations
|
|
240
|
-
self.__validate()
|
|
241
|
-
# Generate the ML query
|
|
242
|
-
self.__form_tdml_query()
|
|
243
|
-
# Execute ML query
|
|
244
|
-
self.__execute()
|
|
245
|
-
# Get the prediction type
|
|
246
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
247
|
-
|
|
248
|
-
# End the timer to get the build time
|
|
249
|
-
_end_time = time.time()
|
|
250
|
-
|
|
251
|
-
# Calculate the build time
|
|
252
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
253
|
-
|
|
254
|
-
def __validate(self):
|
|
255
|
-
"""
|
|
256
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
257
|
-
arguments, input argument and table types. Also processes the
|
|
258
|
-
argument values.
|
|
259
|
-
"""
|
|
260
|
-
|
|
261
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
262
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
263
|
-
|
|
264
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
265
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
266
|
-
|
|
267
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
268
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
269
|
-
self.__awu._validate_input_table_datatype(self.stopwords, "stopwords", None)
|
|
270
|
-
|
|
271
|
-
# Check for permitted values
|
|
272
|
-
model_type_permitted_values = ["MULTINOMIAL", "BERNOULLI"]
|
|
273
|
-
self.__awu._validate_permitted_values(self.model_type, model_type_permitted_values, "model_type")
|
|
274
|
-
|
|
275
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
276
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
277
|
-
self.__awu._validate_input_columns_not_empty(self.doc_category_column, "doc_category_column")
|
|
278
|
-
self.__awu._validate_dataframe_has_argument_columns(self.doc_category_column, "doc_category_column", self.data, "data", False)
|
|
279
|
-
|
|
280
|
-
self.__awu._validate_input_columns_not_empty(self.text_column, "text_column")
|
|
281
|
-
self.__awu._validate_dataframe_has_argument_columns(self.text_column, "text_column", self.data, "data", False)
|
|
282
|
-
|
|
283
|
-
self.__awu._validate_input_columns_not_empty(self.doc_id_column, "doc_id_column")
|
|
284
|
-
self.__awu._validate_dataframe_has_argument_columns(self.doc_id_column, "doc_id_column", self.data, "data", False)
|
|
285
|
-
|
|
286
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
287
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
288
|
-
|
|
289
|
-
self.__awu._validate_input_columns_not_empty(self.stopwords_sequence_column, "stopwords_sequence_column")
|
|
290
|
-
self.__awu._validate_dataframe_has_argument_columns(self.stopwords_sequence_column, "stopwords_sequence_column", self.stopwords, "stopwords", False)
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
def __form_tdml_query(self):
|
|
294
|
-
"""
|
|
295
|
-
Function to generate the analytical function queries. The function defines
|
|
296
|
-
variables and list of arguments required to form the query.
|
|
297
|
-
"""
|
|
298
|
-
# Generate temp table names for output table parameters if any.
|
|
299
|
-
self.__model_data_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_naivebayestextclassifiertrainer20", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
300
|
-
|
|
301
|
-
# Output table arguments list
|
|
302
|
-
self.__func_output_args_sql_names = ["ModelTable"]
|
|
303
|
-
self.__func_output_args = [self.__model_data_temp_tablename]
|
|
304
|
-
|
|
305
|
-
# Model Cataloging related attributes.
|
|
306
|
-
self._sql_specific_attributes = {}
|
|
307
|
-
self._sql_formula_attribute_mapper = {}
|
|
308
|
-
self._target_column = None
|
|
309
|
-
self._algorithm_name = None
|
|
310
|
-
|
|
311
|
-
# Generate lists for rest of the function arguments
|
|
312
|
-
self.__func_other_arg_sql_names = []
|
|
313
|
-
self.__func_other_args = []
|
|
314
|
-
self.__func_other_arg_json_datatypes = []
|
|
315
|
-
|
|
316
|
-
self.__func_other_arg_sql_names.append("DocCategoryColumn")
|
|
317
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.doc_category_column, "\""), "'"))
|
|
318
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
319
|
-
|
|
320
|
-
self.__func_other_arg_sql_names.append("TextColumn")
|
|
321
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.text_column, "\""), "'"))
|
|
322
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
323
|
-
|
|
324
|
-
if self.doc_id_column is not None:
|
|
325
|
-
self.__func_other_arg_sql_names.append("DocIdColumn")
|
|
326
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.doc_id_column, "\""), "'"))
|
|
327
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
328
|
-
|
|
329
|
-
if self.model_type is not None and self.model_type != "MULTINOMIAL":
|
|
330
|
-
self.__func_other_arg_sql_names.append("ModelType")
|
|
331
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.model_type, "'"))
|
|
332
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
333
|
-
|
|
334
|
-
if self.is_tokenized is not None and self.is_tokenized != True:
|
|
335
|
-
self.__func_other_arg_sql_names.append("IsTokenized")
|
|
336
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.is_tokenized, "'"))
|
|
337
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
338
|
-
|
|
339
|
-
if self.convert_to_lower_case is not None and self.convert_to_lower_case != False:
|
|
340
|
-
self.__func_other_arg_sql_names.append("ConvertToLowerCase")
|
|
341
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.convert_to_lower_case, "'"))
|
|
342
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
343
|
-
|
|
344
|
-
if self.stem_tokens is not None and self.stem_tokens != True:
|
|
345
|
-
self.__func_other_arg_sql_names.append("StemTokens")
|
|
346
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.stem_tokens, "'"))
|
|
347
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
348
|
-
|
|
349
|
-
if self.handle_nulls is not None and self.handle_nulls != False:
|
|
350
|
-
self.__func_other_arg_sql_names.append("NullHandling")
|
|
351
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.handle_nulls, "'"))
|
|
352
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
353
|
-
|
|
354
|
-
# Generate lists for rest of the function arguments
|
|
355
|
-
sequence_input_by_list = []
|
|
356
|
-
if self.data_sequence_column is not None:
|
|
357
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
358
|
-
|
|
359
|
-
if self.stopwords_sequence_column is not None:
|
|
360
|
-
sequence_input_by_list.append("StopwordsTable:" + UtilFuncs._teradata_collapse_arglist(self.stopwords_sequence_column, ""))
|
|
361
|
-
|
|
362
|
-
if len(sequence_input_by_list) > 0:
|
|
363
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
364
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
365
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
366
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
367
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
368
|
-
|
|
369
|
-
|
|
370
|
-
# Declare empty lists to hold input table information.
|
|
371
|
-
self.__func_input_arg_sql_names = []
|
|
372
|
-
self.__func_input_table_view_query = []
|
|
373
|
-
self.__func_input_dataframe_type = []
|
|
374
|
-
self.__func_input_distribution = []
|
|
375
|
-
self.__func_input_partition_by_cols = []
|
|
376
|
-
self.__func_input_order_by_cols = []
|
|
377
|
-
|
|
378
|
-
# Process data
|
|
379
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
380
|
-
self.__func_input_distribution.append("NONE")
|
|
381
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
382
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
383
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
384
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
385
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
386
|
-
|
|
387
|
-
# Process stopwords
|
|
388
|
-
if self.stopwords is not None:
|
|
389
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.stopwords, False)
|
|
390
|
-
self.__func_input_distribution.append("NONE")
|
|
391
|
-
self.__func_input_arg_sql_names.append("StopwordsTable")
|
|
392
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
393
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
394
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
395
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
396
|
-
|
|
397
|
-
function_name = "NaiveBayesTextClassifierTrainer2"
|
|
398
|
-
# Create instance to generate SQLMR.
|
|
399
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
400
|
-
self.__func_input_arg_sql_names,
|
|
401
|
-
self.__func_input_table_view_query,
|
|
402
|
-
self.__func_input_dataframe_type,
|
|
403
|
-
self.__func_input_distribution,
|
|
404
|
-
self.__func_input_partition_by_cols,
|
|
405
|
-
self.__func_input_order_by_cols,
|
|
406
|
-
self.__func_other_arg_sql_names,
|
|
407
|
-
self.__func_other_args,
|
|
408
|
-
self.__func_other_arg_json_datatypes,
|
|
409
|
-
self.__func_output_args_sql_names,
|
|
410
|
-
self.__func_output_args,
|
|
411
|
-
engine="ENGINE_ML")
|
|
412
|
-
# Invoke call to SQL-MR generation.
|
|
413
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
414
|
-
|
|
415
|
-
# Print SQL-MR query if requested to do so.
|
|
416
|
-
if display.print_sqlmr_query:
|
|
417
|
-
print(self.sqlmr_query)
|
|
418
|
-
|
|
419
|
-
# Set the algorithm name for Model Cataloging.
|
|
420
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
421
|
-
|
|
422
|
-
def __execute(self):
|
|
423
|
-
"""
|
|
424
|
-
Function to execute SQL-MR queries.
|
|
425
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
426
|
-
"""
|
|
427
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
428
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
429
|
-
try:
|
|
430
|
-
# Generate the output.
|
|
431
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
432
|
-
except Exception as emsg:
|
|
433
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
434
|
-
|
|
435
|
-
# Update output table data frames.
|
|
436
|
-
self._mlresults = []
|
|
437
|
-
self.model_data = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__model_data_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__model_data_temp_tablename))
|
|
438
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
439
|
-
self._mlresults.append(self.model_data)
|
|
440
|
-
self._mlresults.append(self.output)
|
|
441
|
-
|
|
442
|
-
def show_query(self):
|
|
443
|
-
"""
|
|
444
|
-
Function to return the underlying SQL query.
|
|
445
|
-
When model object is created using retrieve_model(), the value returned will be None.
|
|
446
|
-
"""
|
|
447
|
-
return self.sqlmr_query
|
|
448
|
-
|
|
449
|
-
def get_prediction_type(self):
|
|
450
|
-
"""
|
|
451
|
-
Function to return the Prediction type of the algorithm.
|
|
452
|
-
When model object is created using retrieve_model(), the value returned may be None.
|
|
453
|
-
"""
|
|
454
|
-
return self._prediction_type
|
|
455
|
-
|
|
456
|
-
def get_target_column(self):
|
|
457
|
-
"""
|
|
458
|
-
Function to return the Target Column of the algorithm.
|
|
459
|
-
When model object is created using retrieve_model(), the value returned may be None.
|
|
460
|
-
"""
|
|
461
|
-
return self._target_column
|
|
462
|
-
|
|
463
|
-
def get_build_time(self):
|
|
464
|
-
"""
|
|
465
|
-
Function to return the build time of the algorithm in seconds.
|
|
466
|
-
When model object is created using retrieve_model(), the value returned may be None.
|
|
467
|
-
"""
|
|
468
|
-
return self._build_time
|
|
469
|
-
|
|
470
|
-
def _get_algorithm_name(self):
|
|
471
|
-
"""
|
|
472
|
-
Function to return the name of the algorithm.
|
|
473
|
-
"""
|
|
474
|
-
return self._algorithm_name
|
|
475
|
-
|
|
476
|
-
def _get_sql_specific_attributes(self):
|
|
477
|
-
"""
|
|
478
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
479
|
-
"""
|
|
480
|
-
return self._sql_specific_attributes
|
|
481
|
-
|
|
482
|
-
@classmethod
|
|
483
|
-
def _from_model_catalog(cls,
|
|
484
|
-
model_data = None,
|
|
485
|
-
output = None,
|
|
486
|
-
**kwargs):
|
|
487
|
-
"""
|
|
488
|
-
Classmethod which will be used by Model Cataloging, to instantiate this wrapper class.
|
|
489
|
-
"""
|
|
490
|
-
kwargs.pop("model_data", None)
|
|
491
|
-
kwargs.pop("output", None)
|
|
492
|
-
|
|
493
|
-
# Model Cataloging related attributes.
|
|
494
|
-
target_column = kwargs.pop("__target_column", None)
|
|
495
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
496
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
497
|
-
build_time = kwargs.pop("__build_time", None)
|
|
498
|
-
|
|
499
|
-
# Let's create an object of this class.
|
|
500
|
-
obj = cls(**kwargs)
|
|
501
|
-
obj.model_data = model_data
|
|
502
|
-
obj.output = output
|
|
503
|
-
|
|
504
|
-
# Initialize the sqlmr_query class attribute.
|
|
505
|
-
obj.sqlmr_query = None
|
|
506
|
-
|
|
507
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
508
|
-
obj._sql_specific_attributes = None
|
|
509
|
-
obj._target_column = target_column
|
|
510
|
-
obj._prediction_type = prediction_type
|
|
511
|
-
obj._algorithm_name = algorithm_name
|
|
512
|
-
obj._build_time = build_time
|
|
513
|
-
|
|
514
|
-
# Update output table data frames.
|
|
515
|
-
obj._mlresults = []
|
|
516
|
-
obj.model_data = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.model_data), source_type="table", database_name=UtilFuncs._extract_db_name(obj.model_data))
|
|
517
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
518
|
-
obj._mlresults.append(obj.model_data)
|
|
519
|
-
obj._mlresults.append(obj.output)
|
|
520
|
-
return obj
|
|
521
|
-
|
|
522
|
-
def __repr__(self):
|
|
523
|
-
"""
|
|
524
|
-
Returns the string representation for a NaiveBayesTextClassifier2 class instance.
|
|
525
|
-
"""
|
|
526
|
-
repr_string="############ STDOUT Output ############"
|
|
527
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
528
|
-
repr_string="{}\n\n\n############ model_data Output ############".format(repr_string)
|
|
529
|
-
repr_string = "{}\n\n{}".format(repr_string,self.model_data)
|
|
530
|
-
return repr_string
|
|
531
|
-
|