teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,564 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Rohit Khurd (rohit.khurd@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 2.12
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.analytics.mle.AdaBoost import AdaBoost
|
|
30
|
-
|
|
31
|
-
class AdaBoostPredict:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
object = None,
|
|
35
|
-
newdata = None,
|
|
36
|
-
attr_groupby_columns = None,
|
|
37
|
-
attr_pid_columns = None,
|
|
38
|
-
attr_val_column = None,
|
|
39
|
-
output_response_probdist = False,
|
|
40
|
-
accumulate = None,
|
|
41
|
-
output_responses = None,
|
|
42
|
-
newdata_sequence_column = None,
|
|
43
|
-
object_sequence_column = None,
|
|
44
|
-
newdata_partition_column = None,
|
|
45
|
-
newdata_order_column = None):
|
|
46
|
-
"""
|
|
47
|
-
DESCRIPTION:
|
|
48
|
-
The AdaBoostPredict function applies the model output by the
|
|
49
|
-
AdaBoost function to a new data set, outputting predicted labels for each data point.
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
PARAMETERS:
|
|
53
|
-
object:
|
|
54
|
-
Required Argument.
|
|
55
|
-
Specifies the name of the teradataml DataFrame containing the output
|
|
56
|
-
model from AdaBoost or instance of AdaBoost.
|
|
57
|
-
|
|
58
|
-
newdata:
|
|
59
|
-
Required Argument.
|
|
60
|
-
Specifies the name of the teradataml DataFrame containing the
|
|
61
|
-
attribute names and the values of test data.
|
|
62
|
-
|
|
63
|
-
newdata_partition_column:
|
|
64
|
-
Required Argument.
|
|
65
|
-
Specifies Partition By columns for newdata.
|
|
66
|
-
Values to this argument can be provided as list, if multiple columns
|
|
67
|
-
are used for partition.
|
|
68
|
-
Required when there are more than one data point identifiers in newdata.
|
|
69
|
-
Types: str OR list of Strings (str)
|
|
70
|
-
|
|
71
|
-
newdata_order_column:
|
|
72
|
-
Optional Argument.
|
|
73
|
-
Specifies Order By columns for newdata.
|
|
74
|
-
Values to this argument can be provided as list, if multiple columns
|
|
75
|
-
are used for ordering.
|
|
76
|
-
Types: str OR list of Strings (str)
|
|
77
|
-
|
|
78
|
-
attr_groupby_columns:
|
|
79
|
-
Required Argument.
|
|
80
|
-
Specifies the names of the columns on which the attribute teradataml
|
|
81
|
-
DataFrame is partitioned.
|
|
82
|
-
Types: str
|
|
83
|
-
|
|
84
|
-
attr_pid_columns:
|
|
85
|
-
Required Argument.
|
|
86
|
-
Specifies the names of the attribute teradataml DataFrame columns
|
|
87
|
-
that contain the data point identifiers.
|
|
88
|
-
Types: str OR list of Strings (str)
|
|
89
|
-
|
|
90
|
-
attr_val_column:
|
|
91
|
-
Required Argument.
|
|
92
|
-
Specifies the name of the attribute teradataml DataFrame column that
|
|
93
|
-
contains the data point values.
|
|
94
|
-
Types: str
|
|
95
|
-
|
|
96
|
-
output_response_probdist:
|
|
97
|
-
Optional Argument.
|
|
98
|
-
Specifies whether to output probabilities.
|
|
99
|
-
It can be set to True only when the Adaboost function call used
|
|
100
|
-
to generate the model had output_response_probdist = True.
|
|
101
|
-
Note: With Vantage version prior to 1.1.1, when this argument is
|
|
102
|
-
set to True, need to specify output_responses also.
|
|
103
|
-
Default Value: False
|
|
104
|
-
Types: bool
|
|
105
|
-
|
|
106
|
-
accumulate:
|
|
107
|
-
Optional Argument.
|
|
108
|
-
Specifies the names of newdata columns to copy to the output
|
|
109
|
-
teradataml DataFrame.
|
|
110
|
-
Types: str OR list of Strings (str)
|
|
111
|
-
|
|
112
|
-
output_responses:
|
|
113
|
-
Optional Argument.
|
|
114
|
-
Specifies all responses in input teradataml DataFrame.
|
|
115
|
-
This can be used only when both the AdaBoostPredict function,
|
|
116
|
-
and the Adaboost function call used to generate the model, use(d)
|
|
117
|
-
output_response_probdist = True.
|
|
118
|
-
This argument requires the output_response_probdist argument to be
|
|
119
|
-
set to True.
|
|
120
|
-
Types: str OR list of Strings (str)
|
|
121
|
-
|
|
122
|
-
newdata_sequence_column:
|
|
123
|
-
Optional Argument.
|
|
124
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
125
|
-
the input argument "newdata". The argument is used to ensure
|
|
126
|
-
deterministic results for functions which produce results that vary
|
|
127
|
-
from run to run.
|
|
128
|
-
Types: str OR list of Strings (str)
|
|
129
|
-
|
|
130
|
-
object_sequence_column:
|
|
131
|
-
Optional Argument.
|
|
132
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
133
|
-
the input argument "object". The argument is used to ensure
|
|
134
|
-
deterministic results for functions which produce results that vary
|
|
135
|
-
from run to run.
|
|
136
|
-
Types: str OR list of Strings (str)
|
|
137
|
-
|
|
138
|
-
RETURNS:
|
|
139
|
-
Instance of AdaBoostPredict.
|
|
140
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
141
|
-
references, such as AdaBoostPredictObj.<attribute_name>.
|
|
142
|
-
Output teradataml DataFrame attribute name is:
|
|
143
|
-
result
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
RAISES:
|
|
147
|
-
TeradataMlException
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
EXAMPLES:
|
|
151
|
-
# Load example data.
|
|
152
|
-
load_example_data("adaboost", ["housing_train", "housing_cat", "housing_train_response", "iris_attribute_train", "iris_response_train"])
|
|
153
|
-
load_example_data("adaboostpredict", ["housing_test", "iris_attribute_test"])
|
|
154
|
-
|
|
155
|
-
# Create teradataml DataFrame objects.
|
|
156
|
-
housing_train = DataFrame.from_table("housing_train")
|
|
157
|
-
housing_cat = DataFrame.from_table("housing_cat")
|
|
158
|
-
housing_train_response = DataFrame.from_table("housing_train_response")
|
|
159
|
-
iris_attribute_train = DataFrame.from_table("iris_attribute_train")
|
|
160
|
-
iris_response_train = DataFrame.from_table("iris_response_train")
|
|
161
|
-
|
|
162
|
-
housing_test = DataFrame.from_table("housing_test")
|
|
163
|
-
iris_attribute_test = DataFrame.from_table("iris_attribute_test")
|
|
164
|
-
|
|
165
|
-
# Example 1 -
|
|
166
|
-
# Here, we will try to predict the 'homestyle' for the data points in the test data (housing_test)
|
|
167
|
-
# based on the model generated using AdaBoost functions Example #1.
|
|
168
|
-
#
|
|
169
|
-
# First, we will have to run AdaBoost on the input in sparse format.
|
|
170
|
-
# We run Unpivot to be create the input in Sparse format.
|
|
171
|
-
unpivot_out_1 = Unpivot(data=housing_train,
|
|
172
|
-
unpivot = ["price", "lotsize", "bedrooms", "bathrms", "stories","driveway", "recroom", "fullbase", "gashw", "airco", "garagepl", "prefarea"],
|
|
173
|
-
accumulate = ["sn"])
|
|
174
|
-
|
|
175
|
-
AdaBoost_out_1 = AdaBoost(attribute_data = unpivot_out_1.result,
|
|
176
|
-
attribute_name_columns = ["attribute"],
|
|
177
|
-
attribute_value_column = "value_col",
|
|
178
|
-
categorical_attribute_data = housing_cat,
|
|
179
|
-
response_data = housing_train_response,
|
|
180
|
-
id_columns = ["sn"],
|
|
181
|
-
response_column = "response",
|
|
182
|
-
iter_num = 2,
|
|
183
|
-
num_splits = 10,
|
|
184
|
-
max_depth = 3,
|
|
185
|
-
min_node_size = 100
|
|
186
|
-
)
|
|
187
|
-
|
|
188
|
-
# Use the generated model to predict the house style, on the test data.
|
|
189
|
-
# But we need to transform that too into sparse format
|
|
190
|
-
unpivot_out_2 = Unpivot(data=housing_test,
|
|
191
|
-
unpivot = ["price", "lotsize", "bedrooms", "bathrms", "stories","driveway", "recroom", "fullbase", "gashw", "airco", "garagepl", "prefarea"],
|
|
192
|
-
accumulate = ["sn"])
|
|
193
|
-
|
|
194
|
-
AdaBoostPredict_out_1 = AdaBoostPredict(object = AdaBoost_out_1.model_table,
|
|
195
|
-
newdata = unpivot_out_2.result,
|
|
196
|
-
newdata_partition_column = ["sn"],
|
|
197
|
-
attr_groupby_columns = "attribute",
|
|
198
|
-
attr_pid_columns = ["sn"],
|
|
199
|
-
attr_val_column = "value_col"
|
|
200
|
-
)
|
|
201
|
-
|
|
202
|
-
# Print the results
|
|
203
|
-
print(AdaBoostPredict_out_1)
|
|
204
|
-
|
|
205
|
-
# Example 2 -
|
|
206
|
-
# In this example, we will try to predict the 'species' for the flowers represented by the data points in the test data (iris_attribute_test)
|
|
207
|
-
# based on the model generated using AdaBoost functions Example #2.
|
|
208
|
-
#
|
|
209
|
-
# First, we will have to run AdaBoost on the input (which is already in sparse format).
|
|
210
|
-
AdaBoost_out_2 = AdaBoost(attribute_data = iris_attribute_train,
|
|
211
|
-
attribute_name_columns = ["attribute"],
|
|
212
|
-
attribute_value_column = "attrvalue",
|
|
213
|
-
response_data = iris_response_train,
|
|
214
|
-
id_columns = ["pid"],
|
|
215
|
-
response_column = "response",
|
|
216
|
-
iter_num = 3,
|
|
217
|
-
num_splits = 10,
|
|
218
|
-
approx_splits = False,
|
|
219
|
-
max_depth = 3,
|
|
220
|
-
min_node_size = 5,
|
|
221
|
-
output_response_probdist = True
|
|
222
|
-
)
|
|
223
|
-
|
|
224
|
-
# Use the generated model to predict the species, on the test data which is already in the sparse format.
|
|
225
|
-
AdaBoostPredict_out_2 = AdaBoostPredict(object = AdaBoost_out_2.model_table,
|
|
226
|
-
newdata = iris_attribute_test,
|
|
227
|
-
newdata_partition_column = ["pid"],
|
|
228
|
-
attr_groupby_columns = "attribute",
|
|
229
|
-
attr_pid_columns = ["pid"],
|
|
230
|
-
attr_val_column = "attrvalue",
|
|
231
|
-
output_response_probdist = True,
|
|
232
|
-
output_responses = [' 1',' 2',' 3']
|
|
233
|
-
)
|
|
234
|
-
|
|
235
|
-
# Print the results
|
|
236
|
-
print(AdaBoostPredict_out_2)
|
|
237
|
-
|
|
238
|
-
"""
|
|
239
|
-
|
|
240
|
-
# Start the timer to get the build time
|
|
241
|
-
_start_time = time.time()
|
|
242
|
-
|
|
243
|
-
self.object = object
|
|
244
|
-
self.newdata = newdata
|
|
245
|
-
self.attr_groupby_columns = attr_groupby_columns
|
|
246
|
-
self.attr_pid_columns = attr_pid_columns
|
|
247
|
-
self.attr_val_column = attr_val_column
|
|
248
|
-
self.output_response_probdist = output_response_probdist
|
|
249
|
-
self.accumulate = accumulate
|
|
250
|
-
self.output_responses = output_responses
|
|
251
|
-
self.newdata_sequence_column = newdata_sequence_column
|
|
252
|
-
self.object_sequence_column = object_sequence_column
|
|
253
|
-
self.newdata_partition_column = newdata_partition_column
|
|
254
|
-
self.newdata_order_column = newdata_order_column
|
|
255
|
-
|
|
256
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
257
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
258
|
-
self.__aed_utils = AedUtils()
|
|
259
|
-
|
|
260
|
-
# Create argument information matrix to do parameter checking
|
|
261
|
-
self.__arg_info_matrix = []
|
|
262
|
-
self.__arg_info_matrix.append(["object", self.object, False, (DataFrame)])
|
|
263
|
-
self.__arg_info_matrix.append(["newdata", self.newdata, False, (DataFrame)])
|
|
264
|
-
self.__arg_info_matrix.append(["newdata_partition_column", self.newdata_partition_column, False, (str,list)])
|
|
265
|
-
self.__arg_info_matrix.append(["newdata_order_column", self.newdata_order_column, True, (str,list)])
|
|
266
|
-
self.__arg_info_matrix.append(["attr_groupby_columns", self.attr_groupby_columns, False, (str)])
|
|
267
|
-
self.__arg_info_matrix.append(["attr_pid_columns", self.attr_pid_columns, False, (str,list)])
|
|
268
|
-
self.__arg_info_matrix.append(["attr_val_column", self.attr_val_column, False, (str)])
|
|
269
|
-
self.__arg_info_matrix.append(["output_response_probdist", self.output_response_probdist, True, (bool)])
|
|
270
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
|
|
271
|
-
self.__arg_info_matrix.append(["output_responses", self.output_responses, True, (str,list)])
|
|
272
|
-
self.__arg_info_matrix.append(["newdata_sequence_column", self.newdata_sequence_column, True, (str,list)])
|
|
273
|
-
self.__arg_info_matrix.append(["object_sequence_column", self.object_sequence_column, True, (str,list)])
|
|
274
|
-
|
|
275
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
276
|
-
# Perform the function validations
|
|
277
|
-
self.__validate()
|
|
278
|
-
# Generate the ML query
|
|
279
|
-
self.__form_tdml_query()
|
|
280
|
-
# Execute ML query
|
|
281
|
-
self.__execute()
|
|
282
|
-
# Get the prediction type
|
|
283
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
284
|
-
|
|
285
|
-
# End the timer to get the build time
|
|
286
|
-
_end_time = time.time()
|
|
287
|
-
|
|
288
|
-
# Calculate the build time
|
|
289
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
290
|
-
|
|
291
|
-
def __validate(self):
|
|
292
|
-
"""
|
|
293
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
294
|
-
arguments, input argument and table types. Also processes the
|
|
295
|
-
argument values.
|
|
296
|
-
"""
|
|
297
|
-
if isinstance(self.object, AdaBoost):
|
|
298
|
-
self.object = self.object._mlresults[0]
|
|
299
|
-
|
|
300
|
-
# To use output_responses, output_response_probdist must be set to True
|
|
301
|
-
if self.output_response_probdist is False and self.output_responses is not None:
|
|
302
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
|
|
303
|
-
'output_response_probdist=True',
|
|
304
|
-
'output_responses'),
|
|
305
|
-
MessageCodes.DEPENDENT_ARG_MISSING)
|
|
306
|
-
|
|
307
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
308
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
309
|
-
|
|
310
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
311
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
312
|
-
|
|
313
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
314
|
-
self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
|
|
315
|
-
self.__awu._validate_input_table_datatype(self.object, "object", AdaBoost)
|
|
316
|
-
|
|
317
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
318
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
319
|
-
self.__awu._validate_input_columns_not_empty(self.attr_groupby_columns, "attr_groupby_columns")
|
|
320
|
-
self.__awu._validate_dataframe_has_argument_columns(self.attr_groupby_columns, "attr_groupby_columns", self.newdata, "newdata", False)
|
|
321
|
-
|
|
322
|
-
self.__awu._validate_input_columns_not_empty(self.attr_pid_columns, "attr_pid_columns")
|
|
323
|
-
self.__awu._validate_dataframe_has_argument_columns(self.attr_pid_columns, "attr_pid_columns", self.newdata, "newdata", False)
|
|
324
|
-
|
|
325
|
-
self.__awu._validate_input_columns_not_empty(self.attr_val_column, "attr_val_column")
|
|
326
|
-
self.__awu._validate_dataframe_has_argument_columns(self.attr_val_column, "attr_val_column", self.newdata, "newdata", False)
|
|
327
|
-
|
|
328
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
329
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.newdata, "newdata", False)
|
|
330
|
-
|
|
331
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_sequence_column, "newdata_sequence_column")
|
|
332
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_sequence_column, "newdata_sequence_column", self.newdata, "newdata", False)
|
|
333
|
-
|
|
334
|
-
self.__awu._validate_input_columns_not_empty(self.object_sequence_column, "object_sequence_column")
|
|
335
|
-
self.__awu._validate_dataframe_has_argument_columns(self.object_sequence_column, "object_sequence_column", self.object, "object", False)
|
|
336
|
-
|
|
337
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_partition_column, "newdata_partition_column")
|
|
338
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_partition_column, "newdata_partition_column", self.newdata, "newdata", True)
|
|
339
|
-
|
|
340
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_order_column, "newdata_order_column")
|
|
341
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_order_column, "newdata_order_column", self.newdata, "newdata", False)
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
def __form_tdml_query(self):
|
|
345
|
-
"""
|
|
346
|
-
Function to generate the analytical function queries. The function defines
|
|
347
|
-
variables and list of arguments required to form the query.
|
|
348
|
-
"""
|
|
349
|
-
|
|
350
|
-
# Output table arguments list
|
|
351
|
-
self.__func_output_args_sql_names = []
|
|
352
|
-
self.__func_output_args = []
|
|
353
|
-
|
|
354
|
-
# Model Cataloging related attributes.
|
|
355
|
-
self._sql_specific_attributes = {}
|
|
356
|
-
self._sql_formula_attribute_mapper = {}
|
|
357
|
-
self._target_column = None
|
|
358
|
-
self._algorithm_name = None
|
|
359
|
-
|
|
360
|
-
# Generate lists for rest of the function arguments
|
|
361
|
-
self.__func_other_arg_sql_names = []
|
|
362
|
-
self.__func_other_args = []
|
|
363
|
-
self.__func_other_arg_json_datatypes = []
|
|
364
|
-
|
|
365
|
-
self.__func_other_arg_sql_names.append("AttrTableGroupbyColumns")
|
|
366
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attr_groupby_columns, "\""), "'"))
|
|
367
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
368
|
-
|
|
369
|
-
self.__func_other_arg_sql_names.append("AttrTablePidColumns")
|
|
370
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attr_pid_columns, "\""), "'"))
|
|
371
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
372
|
-
|
|
373
|
-
self.__func_other_arg_sql_names.append("AttrTableValColumn")
|
|
374
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attr_val_column, "\""), "'"))
|
|
375
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
376
|
-
|
|
377
|
-
if self.accumulate is not None:
|
|
378
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
379
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
380
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
381
|
-
|
|
382
|
-
if self.output_response_probdist is not None and self.output_response_probdist != False:
|
|
383
|
-
self.__func_other_arg_sql_names.append("OutputResponseProbDist")
|
|
384
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_response_probdist, "'"))
|
|
385
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
386
|
-
|
|
387
|
-
if self.output_responses is not None:
|
|
388
|
-
self.__func_other_arg_sql_names.append("Responses")
|
|
389
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_responses, "'"))
|
|
390
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
391
|
-
|
|
392
|
-
# Generate lists for rest of the function arguments
|
|
393
|
-
sequence_input_by_list = []
|
|
394
|
-
if self.newdata_sequence_column is not None:
|
|
395
|
-
sequence_input_by_list.append("AttributeTable:" + UtilFuncs._teradata_collapse_arglist(self.newdata_sequence_column, ""))
|
|
396
|
-
|
|
397
|
-
if self.object_sequence_column is not None:
|
|
398
|
-
sequence_input_by_list.append("Model:" + UtilFuncs._teradata_collapse_arglist(self.object_sequence_column, ""))
|
|
399
|
-
|
|
400
|
-
if len(sequence_input_by_list) > 0:
|
|
401
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
402
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
403
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
404
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
405
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
# Declare empty lists to hold input table information.
|
|
409
|
-
self.__func_input_arg_sql_names = []
|
|
410
|
-
self.__func_input_table_view_query = []
|
|
411
|
-
self.__func_input_dataframe_type = []
|
|
412
|
-
self.__func_input_distribution = []
|
|
413
|
-
self.__func_input_partition_by_cols = []
|
|
414
|
-
self.__func_input_order_by_cols = []
|
|
415
|
-
|
|
416
|
-
# Process newdata
|
|
417
|
-
self.newdata_partition_column = UtilFuncs._teradata_collapse_arglist(self.newdata_partition_column, "\"")
|
|
418
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.newdata, False)
|
|
419
|
-
self.__func_input_distribution.append("FACT")
|
|
420
|
-
self.__func_input_arg_sql_names.append("AttributeTable")
|
|
421
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
422
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
423
|
-
self.__func_input_partition_by_cols.append(self.newdata_partition_column)
|
|
424
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.newdata_order_column, "\""))
|
|
425
|
-
|
|
426
|
-
# Process object
|
|
427
|
-
object_order_column = ["classifier_id", "node_id"]
|
|
428
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.object, False)
|
|
429
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
430
|
-
self.__func_input_arg_sql_names.append("Model")
|
|
431
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
432
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
433
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
434
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(object_order_column, "\""))
|
|
435
|
-
|
|
436
|
-
function_name = "AdaBoostPredict"
|
|
437
|
-
# Create instance to generate SQLMR.
|
|
438
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
439
|
-
self.__func_input_arg_sql_names,
|
|
440
|
-
self.__func_input_table_view_query,
|
|
441
|
-
self.__func_input_dataframe_type,
|
|
442
|
-
self.__func_input_distribution,
|
|
443
|
-
self.__func_input_partition_by_cols,
|
|
444
|
-
self.__func_input_order_by_cols,
|
|
445
|
-
self.__func_other_arg_sql_names,
|
|
446
|
-
self.__func_other_args,
|
|
447
|
-
self.__func_other_arg_json_datatypes,
|
|
448
|
-
self.__func_output_args_sql_names,
|
|
449
|
-
self.__func_output_args,
|
|
450
|
-
engine="ENGINE_ML")
|
|
451
|
-
# Invoke call to SQL-MR generation.
|
|
452
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
453
|
-
|
|
454
|
-
# Print SQL-MR query if requested to do so.
|
|
455
|
-
if display.print_sqlmr_query:
|
|
456
|
-
print(self.sqlmr_query)
|
|
457
|
-
|
|
458
|
-
# Set the algorithm name for Model Cataloging.
|
|
459
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
460
|
-
|
|
461
|
-
def __execute(self):
|
|
462
|
-
"""
|
|
463
|
-
Function to execute SQL-MR queries.
|
|
464
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
465
|
-
"""
|
|
466
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
467
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
468
|
-
try:
|
|
469
|
-
# Generate the output.
|
|
470
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
471
|
-
except Exception as emsg:
|
|
472
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
473
|
-
|
|
474
|
-
# Update output table data frames.
|
|
475
|
-
self._mlresults = []
|
|
476
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
477
|
-
self._mlresults.append(self.result)
|
|
478
|
-
|
|
479
|
-
def show_query(self):
|
|
480
|
-
"""
|
|
481
|
-
Function to return the underlying SQL query.
|
|
482
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
483
|
-
"""
|
|
484
|
-
return self.sqlmr_query
|
|
485
|
-
|
|
486
|
-
def get_prediction_type(self):
|
|
487
|
-
"""
|
|
488
|
-
Function to return the Prediction type of the algorithm.
|
|
489
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
490
|
-
as saved in the Model Catalog.
|
|
491
|
-
"""
|
|
492
|
-
return self._prediction_type
|
|
493
|
-
|
|
494
|
-
def get_target_column(self):
|
|
495
|
-
"""
|
|
496
|
-
Function to return the Target Column of the algorithm.
|
|
497
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
498
|
-
as saved in the Model Catalog.
|
|
499
|
-
"""
|
|
500
|
-
return self._target_column
|
|
501
|
-
|
|
502
|
-
def get_build_time(self):
|
|
503
|
-
"""
|
|
504
|
-
Function to return the build time of the algorithm in seconds.
|
|
505
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
506
|
-
as saved in the Model Catalog.
|
|
507
|
-
"""
|
|
508
|
-
return self._build_time
|
|
509
|
-
|
|
510
|
-
def _get_algorithm_name(self):
|
|
511
|
-
"""
|
|
512
|
-
Function to return the name of the algorithm.
|
|
513
|
-
"""
|
|
514
|
-
return self._algorithm_name
|
|
515
|
-
|
|
516
|
-
def _get_sql_specific_attributes(self):
|
|
517
|
-
"""
|
|
518
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
519
|
-
"""
|
|
520
|
-
return self._sql_specific_attributes
|
|
521
|
-
|
|
522
|
-
@classmethod
|
|
523
|
-
def _from_model_catalog(cls,
|
|
524
|
-
result = None,
|
|
525
|
-
**kwargs):
|
|
526
|
-
"""
|
|
527
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
528
|
-
"""
|
|
529
|
-
kwargs.pop("result", None)
|
|
530
|
-
|
|
531
|
-
# Model Cataloging related attributes.
|
|
532
|
-
target_column = kwargs.pop("__target_column", None)
|
|
533
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
534
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
535
|
-
build_time = kwargs.pop("__build_time", None)
|
|
536
|
-
|
|
537
|
-
# Let's create an object of this class.
|
|
538
|
-
obj = cls(**kwargs)
|
|
539
|
-
obj.result = result
|
|
540
|
-
|
|
541
|
-
# Initialize the sqlmr_query class attribute.
|
|
542
|
-
obj.sqlmr_query = None
|
|
543
|
-
|
|
544
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
545
|
-
obj._sql_specific_attributes = None
|
|
546
|
-
obj._target_column = target_column
|
|
547
|
-
obj._prediction_type = prediction_type
|
|
548
|
-
obj._algorithm_name = algorithm_name
|
|
549
|
-
obj._build_time = build_time
|
|
550
|
-
|
|
551
|
-
# Update output table data frames.
|
|
552
|
-
obj._mlresults = []
|
|
553
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
554
|
-
obj._mlresults.append(obj.result)
|
|
555
|
-
return obj
|
|
556
|
-
|
|
557
|
-
def __repr__(self):
|
|
558
|
-
"""
|
|
559
|
-
Returns the string representation for a AdaBoostPredict class instance.
|
|
560
|
-
"""
|
|
561
|
-
repr_string="############ STDOUT Output ############"
|
|
562
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
563
|
-
return repr_string
|
|
564
|
-
|