teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,488 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: N Bhavana (bhavana.n@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.7
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class KNNRecommender:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
rating_table = None,
|
|
34
|
-
userid_column = None,
|
|
35
|
-
itemid_column = None,
|
|
36
|
-
rating_column = None,
|
|
37
|
-
k = 20,
|
|
38
|
-
learning_rate = 0.001,
|
|
39
|
-
max_iternum = 10,
|
|
40
|
-
threshold = 2.0E-4,
|
|
41
|
-
item_similarity = "Pearson",
|
|
42
|
-
rating_table_sequence_column = None):
|
|
43
|
-
"""
|
|
44
|
-
DESCRIPTION:
|
|
45
|
-
The KNNRecommender function trains a interpolation weight model based on
|
|
46
|
-
weighted collaborative filtering approach. It uses the input user
|
|
47
|
-
ratings data to create three model tables: the weights model table,
|
|
48
|
-
the bias model table and the optional nearest items or neighbors table.
|
|
49
|
-
These tables are then used by KNNRecommenderPredict to predict the ratings or
|
|
50
|
-
preferences that users assign to entities like books, songs, movies
|
|
51
|
-
and other products.
|
|
52
|
-
|
|
53
|
-
PARAMETERS:
|
|
54
|
-
rating_table:
|
|
55
|
-
Required Argument.
|
|
56
|
-
Specifies the TeraDataMl DataFrame containing the user ratings.
|
|
57
|
-
|
|
58
|
-
userid_column:
|
|
59
|
-
Optional Argument.
|
|
60
|
-
Specifies the user id column in the rating table. The default is the first
|
|
61
|
-
column in the rating table.
|
|
62
|
-
Types: str
|
|
63
|
-
|
|
64
|
-
itemid_column:
|
|
65
|
-
Optional Argument.
|
|
66
|
-
Specifies the item id column in the rating table. The default is the second
|
|
67
|
-
column in the rating table.
|
|
68
|
-
Types: str
|
|
69
|
-
|
|
70
|
-
rating_column:
|
|
71
|
-
Optional Argument.
|
|
72
|
-
Specifies the rating column in the rating table. The default is the third
|
|
73
|
-
column in the rating table.
|
|
74
|
-
Types: str
|
|
75
|
-
|
|
76
|
-
k:
|
|
77
|
-
Optional Argument.
|
|
78
|
-
Specifies the number of nearest neighbors used in the calculation of the
|
|
79
|
-
interpolation weights.
|
|
80
|
-
Default Value: 20
|
|
81
|
-
Types: int
|
|
82
|
-
|
|
83
|
-
learning_rate:
|
|
84
|
-
Optional Argument.
|
|
85
|
-
Specifies initial learning rate. The learning rate adjusts automatically during
|
|
86
|
-
training based on changes in the rmse.
|
|
87
|
-
Default Value: 0.001
|
|
88
|
-
Types: float
|
|
89
|
-
|
|
90
|
-
max_iternum:
|
|
91
|
-
Optional Argument.
|
|
92
|
-
Specifies the maximum number of iterations.
|
|
93
|
-
Default Value: 10
|
|
94
|
-
Types: int
|
|
95
|
-
|
|
96
|
-
threshold:
|
|
97
|
-
Optional Argument.
|
|
98
|
-
The function stops when the rmse drops below this level.
|
|
99
|
-
Default Value: 2.0E-4
|
|
100
|
-
Types: float
|
|
101
|
-
|
|
102
|
-
item_similarity:
|
|
103
|
-
Optional Argument.
|
|
104
|
-
Specifies the method used to calculate item similarity. Options include: Pearson (Pearson
|
|
105
|
-
correlation coefficient), adjustedcosine (adjusted cosine similarity)
|
|
106
|
-
Default Value: "Pearson"
|
|
107
|
-
Permitted Values: AdjustedCosine, Pearson
|
|
108
|
-
Types: str
|
|
109
|
-
|
|
110
|
-
rating_table_sequence_column:
|
|
111
|
-
Optional Argument.
|
|
112
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
113
|
-
the input argument "rating_table". The argument is used to ensure
|
|
114
|
-
deterministic results for functions which produce results that vary
|
|
115
|
-
from run to run.
|
|
116
|
-
Types: str OR list of Strings (str)
|
|
117
|
-
|
|
118
|
-
RETURNS:
|
|
119
|
-
Instance of KNNRecommender.
|
|
120
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
121
|
-
references, such as KNNRecommenderObj.<attribute_name>.
|
|
122
|
-
Output teradataml DataFrame attribute names are:
|
|
123
|
-
1. weight_model_table
|
|
124
|
-
2. bias_model_table
|
|
125
|
-
3. nearest_items
|
|
126
|
-
4. output
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
RAISES:
|
|
130
|
-
TeradataMlException
|
|
131
|
-
|
|
132
|
-
EXAMPLES:
|
|
133
|
-
|
|
134
|
-
# Load the data to run the example
|
|
135
|
-
load_example_data("knnrecommender", "ml_ratings")
|
|
136
|
-
|
|
137
|
-
# Create teradataml DataFrame objects.
|
|
138
|
-
# The ml_ratings table has movie ratings from 50 users on
|
|
139
|
-
# approximately 2900 movies, with an average of about 150 ratings
|
|
140
|
-
# for each user. The 10 possible ratings range from 0.5 to 5
|
|
141
|
-
# in steps of 0.5. A higher number indicates a better rating.
|
|
142
|
-
ml_ratings = DataFrame.from_table("ml_ratings")
|
|
143
|
-
|
|
144
|
-
# Example 1 - Train the KNN Recommender system on the user ratings data
|
|
145
|
-
knn_recommender_out = KNNRecommender(rating_table = ml_ratings,
|
|
146
|
-
userid_column = "userid",
|
|
147
|
-
itemid_column = "itemid",
|
|
148
|
-
rating_column = "rating"
|
|
149
|
-
)
|
|
150
|
-
|
|
151
|
-
# Print the result DataFrame
|
|
152
|
-
print(knn_recommender_out)
|
|
153
|
-
|
|
154
|
-
"""
|
|
155
|
-
|
|
156
|
-
# Start the timer to get the build time
|
|
157
|
-
_start_time = time.time()
|
|
158
|
-
|
|
159
|
-
self.rating_table = rating_table
|
|
160
|
-
self.userid_column = userid_column
|
|
161
|
-
self.itemid_column = itemid_column
|
|
162
|
-
self.rating_column = rating_column
|
|
163
|
-
self.k = k
|
|
164
|
-
self.learning_rate = learning_rate
|
|
165
|
-
self.max_iternum = max_iternum
|
|
166
|
-
self.threshold = threshold
|
|
167
|
-
self.item_similarity = item_similarity
|
|
168
|
-
self.rating_table_sequence_column = rating_table_sequence_column
|
|
169
|
-
|
|
170
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
171
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
172
|
-
self.__aed_utils = AedUtils()
|
|
173
|
-
|
|
174
|
-
# Create argument information matrix to do parameter checking
|
|
175
|
-
self.__arg_info_matrix = []
|
|
176
|
-
self.__arg_info_matrix.append(["rating_table", self.rating_table, False, (DataFrame)])
|
|
177
|
-
self.__arg_info_matrix.append(["userid_column", self.userid_column, True, (str)])
|
|
178
|
-
self.__arg_info_matrix.append(["itemid_column", self.itemid_column, True, (str)])
|
|
179
|
-
self.__arg_info_matrix.append(["rating_column", self.rating_column, True, (str)])
|
|
180
|
-
self.__arg_info_matrix.append(["k", self.k, True, (int)])
|
|
181
|
-
self.__arg_info_matrix.append(["learning_rate", self.learning_rate, True, (float)])
|
|
182
|
-
self.__arg_info_matrix.append(["max_iternum", self.max_iternum, True, (int)])
|
|
183
|
-
self.__arg_info_matrix.append(["threshold", self.threshold, True, (float)])
|
|
184
|
-
self.__arg_info_matrix.append(["item_similarity", self.item_similarity, True, (str)])
|
|
185
|
-
self.__arg_info_matrix.append(["rating_table_sequence_column", self.rating_table_sequence_column, True, (str,list)])
|
|
186
|
-
|
|
187
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
188
|
-
# Perform the function validations
|
|
189
|
-
self.__validate()
|
|
190
|
-
# Generate the ML query
|
|
191
|
-
self.__form_tdml_query()
|
|
192
|
-
# Execute ML query
|
|
193
|
-
self.__execute()
|
|
194
|
-
# Get the prediction type
|
|
195
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
196
|
-
|
|
197
|
-
# End the timer to get the build time
|
|
198
|
-
_end_time = time.time()
|
|
199
|
-
|
|
200
|
-
# Calculate the build time
|
|
201
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
202
|
-
|
|
203
|
-
def __validate(self):
|
|
204
|
-
"""
|
|
205
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
206
|
-
arguments, input argument and table types. Also processes the
|
|
207
|
-
argument values.
|
|
208
|
-
"""
|
|
209
|
-
|
|
210
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
211
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
212
|
-
|
|
213
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
214
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
215
|
-
|
|
216
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
217
|
-
self.__awu._validate_input_table_datatype(self.rating_table, "rating_table", None)
|
|
218
|
-
|
|
219
|
-
# Check for permitted values
|
|
220
|
-
item_similarity_permitted_values = ["ADJUSTEDCOSINE", "PEARSON"]
|
|
221
|
-
self.__awu._validate_permitted_values(self.item_similarity, item_similarity_permitted_values, "item_similarity")
|
|
222
|
-
|
|
223
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
224
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
225
|
-
self.__awu._validate_input_columns_not_empty(self.userid_column, "userid_column")
|
|
226
|
-
self.__awu._validate_dataframe_has_argument_columns(self.userid_column, "userid_column", self.rating_table, "rating_table", False)
|
|
227
|
-
|
|
228
|
-
self.__awu._validate_input_columns_not_empty(self.itemid_column, "itemid_column")
|
|
229
|
-
self.__awu._validate_dataframe_has_argument_columns(self.itemid_column, "itemid_column", self.rating_table, "rating_table", False)
|
|
230
|
-
|
|
231
|
-
self.__awu._validate_input_columns_not_empty(self.rating_column, "rating_column")
|
|
232
|
-
self.__awu._validate_dataframe_has_argument_columns(self.rating_column, "rating_column", self.rating_table, "rating_table", False)
|
|
233
|
-
|
|
234
|
-
self.__awu._validate_input_columns_not_empty(self.rating_table_sequence_column, "rating_table_sequence_column")
|
|
235
|
-
self.__awu._validate_dataframe_has_argument_columns(self.rating_table_sequence_column, "rating_table_sequence_column", self.rating_table, "rating_table", False)
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
def __form_tdml_query(self):
|
|
239
|
-
"""
|
|
240
|
-
Function to generate the analytical function queries. The function defines
|
|
241
|
-
variables and list of arguments required to form the query.
|
|
242
|
-
"""
|
|
243
|
-
# Generate temp table names for output table parameters if any.
|
|
244
|
-
self.__weight_model_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_knnrecommender0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
245
|
-
self.__bias_model_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_knnrecommender1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
246
|
-
self.__nearest_items_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_knnrecommender2", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
247
|
-
|
|
248
|
-
# Output table arguments list
|
|
249
|
-
self.__func_output_args_sql_names = ["WeightModelTable", "BiasModelTable", "NearestItemsTable"]
|
|
250
|
-
self.__func_output_args = [self.__weight_model_table_temp_tablename, self.__bias_model_table_temp_tablename, self.__nearest_items_temp_tablename]
|
|
251
|
-
|
|
252
|
-
# Model Cataloging related attributes.
|
|
253
|
-
self._sql_specific_attributes = {}
|
|
254
|
-
self._sql_formula_attribute_mapper = {}
|
|
255
|
-
self._target_column = None
|
|
256
|
-
self._algorithm_name = None
|
|
257
|
-
|
|
258
|
-
# Generate lists for rest of the function arguments
|
|
259
|
-
self.__func_other_arg_sql_names = []
|
|
260
|
-
self.__func_other_args = []
|
|
261
|
-
self.__func_other_arg_json_datatypes = []
|
|
262
|
-
|
|
263
|
-
if self.userid_column is not None:
|
|
264
|
-
self.__func_other_arg_sql_names.append("UserIdColumn")
|
|
265
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.userid_column, "\""), "'"))
|
|
266
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
267
|
-
|
|
268
|
-
if self.itemid_column is not None:
|
|
269
|
-
self.__func_other_arg_sql_names.append("ItemIdColumn")
|
|
270
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.itemid_column, "\""), "'"))
|
|
271
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
272
|
-
|
|
273
|
-
if self.rating_column is not None:
|
|
274
|
-
self.__func_other_arg_sql_names.append("RatingColumn")
|
|
275
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.rating_column, "\""), "'"))
|
|
276
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
277
|
-
|
|
278
|
-
if self.learning_rate is not None and self.learning_rate != 0.001:
|
|
279
|
-
self.__func_other_arg_sql_names.append("LearningRate")
|
|
280
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.learning_rate, "'"))
|
|
281
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
282
|
-
|
|
283
|
-
if self.max_iternum is not None and self.max_iternum != 10:
|
|
284
|
-
self.__func_other_arg_sql_names.append("MaxIterNum")
|
|
285
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_iternum, "'"))
|
|
286
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
287
|
-
|
|
288
|
-
if self.k is not None and self.k != 20:
|
|
289
|
-
self.__func_other_arg_sql_names.append("K")
|
|
290
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.k, "'"))
|
|
291
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
292
|
-
|
|
293
|
-
if self.threshold is not None and self.threshold != 2.0E-4:
|
|
294
|
-
self.__func_other_arg_sql_names.append("StopThreshold")
|
|
295
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.threshold, "'"))
|
|
296
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
297
|
-
|
|
298
|
-
if self.item_similarity is not None and self.item_similarity != "Pearson":
|
|
299
|
-
self.__func_other_arg_sql_names.append("SimilarityMethod")
|
|
300
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.item_similarity, "'"))
|
|
301
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
302
|
-
|
|
303
|
-
# Generate lists for rest of the function arguments
|
|
304
|
-
sequence_input_by_list = []
|
|
305
|
-
if self.rating_table_sequence_column is not None:
|
|
306
|
-
sequence_input_by_list.append("RatingTable:" + UtilFuncs._teradata_collapse_arglist(self.rating_table_sequence_column, ""))
|
|
307
|
-
|
|
308
|
-
if len(sequence_input_by_list) > 0:
|
|
309
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
310
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
311
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
312
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
313
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
# Declare empty lists to hold input table information.
|
|
317
|
-
self.__func_input_arg_sql_names = []
|
|
318
|
-
self.__func_input_table_view_query = []
|
|
319
|
-
self.__func_input_dataframe_type = []
|
|
320
|
-
self.__func_input_distribution = []
|
|
321
|
-
self.__func_input_partition_by_cols = []
|
|
322
|
-
self.__func_input_order_by_cols = []
|
|
323
|
-
|
|
324
|
-
# Process rating_table
|
|
325
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.rating_table, False)
|
|
326
|
-
self.__func_input_distribution.append("NONE")
|
|
327
|
-
self.__func_input_arg_sql_names.append("RatingTable")
|
|
328
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
329
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
330
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
331
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
332
|
-
|
|
333
|
-
function_name = "KNNRecommender"
|
|
334
|
-
# Create instance to generate SQLMR.
|
|
335
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
336
|
-
self.__func_input_arg_sql_names,
|
|
337
|
-
self.__func_input_table_view_query,
|
|
338
|
-
self.__func_input_dataframe_type,
|
|
339
|
-
self.__func_input_distribution,
|
|
340
|
-
self.__func_input_partition_by_cols,
|
|
341
|
-
self.__func_input_order_by_cols,
|
|
342
|
-
self.__func_other_arg_sql_names,
|
|
343
|
-
self.__func_other_args,
|
|
344
|
-
self.__func_other_arg_json_datatypes,
|
|
345
|
-
self.__func_output_args_sql_names,
|
|
346
|
-
self.__func_output_args,
|
|
347
|
-
engine="ENGINE_ML")
|
|
348
|
-
# Invoke call to SQL-MR generation.
|
|
349
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
350
|
-
|
|
351
|
-
# Print SQL-MR query if requested to do so.
|
|
352
|
-
if display.print_sqlmr_query:
|
|
353
|
-
print(self.sqlmr_query)
|
|
354
|
-
|
|
355
|
-
# Set the algorithm name for Model Cataloging.
|
|
356
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
357
|
-
|
|
358
|
-
def __execute(self):
|
|
359
|
-
"""
|
|
360
|
-
Function to execute SQL-MR queries.
|
|
361
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
362
|
-
"""
|
|
363
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
364
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
365
|
-
try:
|
|
366
|
-
# Generate the output.
|
|
367
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
368
|
-
except Exception as emsg:
|
|
369
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
370
|
-
|
|
371
|
-
# Update output table data frames.
|
|
372
|
-
self._mlresults = []
|
|
373
|
-
self.weight_model_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__weight_model_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__weight_model_table_temp_tablename))
|
|
374
|
-
self.bias_model_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__bias_model_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__bias_model_table_temp_tablename))
|
|
375
|
-
self.nearest_items = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__nearest_items_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__nearest_items_temp_tablename))
|
|
376
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
377
|
-
self._mlresults.append(self.weight_model_table)
|
|
378
|
-
self._mlresults.append(self.bias_model_table)
|
|
379
|
-
self._mlresults.append(self.nearest_items)
|
|
380
|
-
self._mlresults.append(self.output)
|
|
381
|
-
|
|
382
|
-
def show_query(self):
|
|
383
|
-
"""
|
|
384
|
-
Function to return the underlying SQL query.
|
|
385
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
386
|
-
"""
|
|
387
|
-
return self.sqlmr_query
|
|
388
|
-
|
|
389
|
-
def get_prediction_type(self):
|
|
390
|
-
"""
|
|
391
|
-
Function to return the Prediction type of the algorithm.
|
|
392
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
393
|
-
as saved in the Model Catalog.
|
|
394
|
-
"""
|
|
395
|
-
return self._prediction_type
|
|
396
|
-
|
|
397
|
-
def get_target_column(self):
|
|
398
|
-
"""
|
|
399
|
-
Function to return the Target Column of the algorithm.
|
|
400
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
401
|
-
as saved in the Model Catalog.
|
|
402
|
-
"""
|
|
403
|
-
return self._target_column
|
|
404
|
-
|
|
405
|
-
def get_build_time(self):
|
|
406
|
-
"""
|
|
407
|
-
Function to return the build time of the algorithm in seconds.
|
|
408
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
409
|
-
as saved in the Model Catalog.
|
|
410
|
-
"""
|
|
411
|
-
return self._build_time
|
|
412
|
-
|
|
413
|
-
def _get_algorithm_name(self):
|
|
414
|
-
"""
|
|
415
|
-
Function to return the name of the algorithm.
|
|
416
|
-
"""
|
|
417
|
-
return self._algorithm_name
|
|
418
|
-
|
|
419
|
-
def _get_sql_specific_attributes(self):
|
|
420
|
-
"""
|
|
421
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
422
|
-
"""
|
|
423
|
-
return self._sql_specific_attributes
|
|
424
|
-
|
|
425
|
-
@classmethod
|
|
426
|
-
def _from_model_catalog(cls,
|
|
427
|
-
weight_model_table = None,
|
|
428
|
-
bias_model_table = None,
|
|
429
|
-
nearest_items = None,
|
|
430
|
-
output = None,
|
|
431
|
-
**kwargs):
|
|
432
|
-
"""
|
|
433
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
434
|
-
"""
|
|
435
|
-
kwargs.pop("weight_model_table", None)
|
|
436
|
-
kwargs.pop("bias_model_table", None)
|
|
437
|
-
kwargs.pop("nearest_items", None)
|
|
438
|
-
kwargs.pop("output", None)
|
|
439
|
-
|
|
440
|
-
# Model Cataloging related attributes.
|
|
441
|
-
target_column = kwargs.pop("__target_column", None)
|
|
442
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
443
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
444
|
-
build_time = kwargs.pop("__build_time", None)
|
|
445
|
-
|
|
446
|
-
# Let's create an object of this class.
|
|
447
|
-
obj = cls(**kwargs)
|
|
448
|
-
obj.weight_model_table = weight_model_table
|
|
449
|
-
obj.bias_model_table = bias_model_table
|
|
450
|
-
obj.nearest_items = nearest_items
|
|
451
|
-
obj.output = output
|
|
452
|
-
|
|
453
|
-
# Initialize the sqlmr_query class attribute.
|
|
454
|
-
obj.sqlmr_query = None
|
|
455
|
-
|
|
456
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
457
|
-
obj._sql_specific_attributes = None
|
|
458
|
-
obj._target_column = target_column
|
|
459
|
-
obj._prediction_type = prediction_type
|
|
460
|
-
obj._algorithm_name = algorithm_name
|
|
461
|
-
obj._build_time = build_time
|
|
462
|
-
|
|
463
|
-
# Update output table data frames.
|
|
464
|
-
obj._mlresults = []
|
|
465
|
-
obj.weight_model_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.weight_model_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.weight_model_table))
|
|
466
|
-
obj.bias_model_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.bias_model_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.bias_model_table))
|
|
467
|
-
obj.nearest_items = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.nearest_items), source_type="table", database_name=UtilFuncs._extract_db_name(obj.nearest_items))
|
|
468
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
469
|
-
obj._mlresults.append(obj.weight_model_table)
|
|
470
|
-
obj._mlresults.append(obj.bias_model_table)
|
|
471
|
-
obj._mlresults.append(obj.nearest_items)
|
|
472
|
-
obj._mlresults.append(obj.output)
|
|
473
|
-
return obj
|
|
474
|
-
|
|
475
|
-
def __repr__(self):
|
|
476
|
-
"""
|
|
477
|
-
Returns the string representation for a KNNRecommender class instance.
|
|
478
|
-
"""
|
|
479
|
-
repr_string="############ STDOUT Output ############"
|
|
480
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
481
|
-
repr_string="{}\n\n\n############ weight_model_table Output ############".format(repr_string)
|
|
482
|
-
repr_string = "{}\n\n{}".format(repr_string,self.weight_model_table)
|
|
483
|
-
repr_string="{}\n\n\n############ bias_model_table Output ############".format(repr_string)
|
|
484
|
-
repr_string = "{}\n\n{}".format(repr_string,self.bias_model_table)
|
|
485
|
-
repr_string="{}\n\n\n############ nearest_items Output ############".format(repr_string)
|
|
486
|
-
repr_string = "{}\n\n{}".format(repr_string,self.nearest_items)
|
|
487
|
-
return repr_string
|
|
488
|
-
|