teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,488 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: N Bhavana (bhavana.n@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.7
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class KNNRecommender:
31
-
32
- def __init__(self,
33
- rating_table = None,
34
- userid_column = None,
35
- itemid_column = None,
36
- rating_column = None,
37
- k = 20,
38
- learning_rate = 0.001,
39
- max_iternum = 10,
40
- threshold = 2.0E-4,
41
- item_similarity = "Pearson",
42
- rating_table_sequence_column = None):
43
- """
44
- DESCRIPTION:
45
- The KNNRecommender function trains a interpolation weight model based on
46
- weighted collaborative filtering approach. It uses the input user
47
- ratings data to create three model tables: the weights model table,
48
- the bias model table and the optional nearest items or neighbors table.
49
- These tables are then used by KNNRecommenderPredict to predict the ratings or
50
- preferences that users assign to entities like books, songs, movies
51
- and other products.
52
-
53
- PARAMETERS:
54
- rating_table:
55
- Required Argument.
56
- Specifies the TeraDataMl DataFrame containing the user ratings.
57
-
58
- userid_column:
59
- Optional Argument.
60
- Specifies the user id column in the rating table. The default is the first
61
- column in the rating table.
62
- Types: str
63
-
64
- itemid_column:
65
- Optional Argument.
66
- Specifies the item id column in the rating table. The default is the second
67
- column in the rating table.
68
- Types: str
69
-
70
- rating_column:
71
- Optional Argument.
72
- Specifies the rating column in the rating table. The default is the third
73
- column in the rating table.
74
- Types: str
75
-
76
- k:
77
- Optional Argument.
78
- Specifies the number of nearest neighbors used in the calculation of the
79
- interpolation weights.
80
- Default Value: 20
81
- Types: int
82
-
83
- learning_rate:
84
- Optional Argument.
85
- Specifies initial learning rate. The learning rate adjusts automatically during
86
- training based on changes in the rmse.
87
- Default Value: 0.001
88
- Types: float
89
-
90
- max_iternum:
91
- Optional Argument.
92
- Specifies the maximum number of iterations.
93
- Default Value: 10
94
- Types: int
95
-
96
- threshold:
97
- Optional Argument.
98
- The function stops when the rmse drops below this level.
99
- Default Value: 2.0E-4
100
- Types: float
101
-
102
- item_similarity:
103
- Optional Argument.
104
- Specifies the method used to calculate item similarity. Options include: Pearson (Pearson
105
- correlation coefficient), adjustedcosine (adjusted cosine similarity)
106
- Default Value: "Pearson"
107
- Permitted Values: AdjustedCosine, Pearson
108
- Types: str
109
-
110
- rating_table_sequence_column:
111
- Optional Argument.
112
- Specifies the list of column(s) that uniquely identifies each row of
113
- the input argument "rating_table". The argument is used to ensure
114
- deterministic results for functions which produce results that vary
115
- from run to run.
116
- Types: str OR list of Strings (str)
117
-
118
- RETURNS:
119
- Instance of KNNRecommender.
120
- Output teradataml DataFrames can be accessed using attribute
121
- references, such as KNNRecommenderObj.<attribute_name>.
122
- Output teradataml DataFrame attribute names are:
123
- 1. weight_model_table
124
- 2. bias_model_table
125
- 3. nearest_items
126
- 4. output
127
-
128
-
129
- RAISES:
130
- TeradataMlException
131
-
132
- EXAMPLES:
133
-
134
- # Load the data to run the example
135
- load_example_data("knnrecommender", "ml_ratings")
136
-
137
- # Create teradataml DataFrame objects.
138
- # The ml_ratings table has movie ratings from 50 users on
139
- # approximately 2900 movies, with an average of about 150 ratings
140
- # for each user. The 10 possible ratings range from 0.5 to 5
141
- # in steps of 0.5. A higher number indicates a better rating.
142
- ml_ratings = DataFrame.from_table("ml_ratings")
143
-
144
- # Example 1 - Train the KNN Recommender system on the user ratings data
145
- knn_recommender_out = KNNRecommender(rating_table = ml_ratings,
146
- userid_column = "userid",
147
- itemid_column = "itemid",
148
- rating_column = "rating"
149
- )
150
-
151
- # Print the result DataFrame
152
- print(knn_recommender_out)
153
-
154
- """
155
-
156
- # Start the timer to get the build time
157
- _start_time = time.time()
158
-
159
- self.rating_table = rating_table
160
- self.userid_column = userid_column
161
- self.itemid_column = itemid_column
162
- self.rating_column = rating_column
163
- self.k = k
164
- self.learning_rate = learning_rate
165
- self.max_iternum = max_iternum
166
- self.threshold = threshold
167
- self.item_similarity = item_similarity
168
- self.rating_table_sequence_column = rating_table_sequence_column
169
-
170
- # Create TeradataPyWrapperUtils instance which contains validation functions.
171
- self.__awu = AnalyticsWrapperUtils()
172
- self.__aed_utils = AedUtils()
173
-
174
- # Create argument information matrix to do parameter checking
175
- self.__arg_info_matrix = []
176
- self.__arg_info_matrix.append(["rating_table", self.rating_table, False, (DataFrame)])
177
- self.__arg_info_matrix.append(["userid_column", self.userid_column, True, (str)])
178
- self.__arg_info_matrix.append(["itemid_column", self.itemid_column, True, (str)])
179
- self.__arg_info_matrix.append(["rating_column", self.rating_column, True, (str)])
180
- self.__arg_info_matrix.append(["k", self.k, True, (int)])
181
- self.__arg_info_matrix.append(["learning_rate", self.learning_rate, True, (float)])
182
- self.__arg_info_matrix.append(["max_iternum", self.max_iternum, True, (int)])
183
- self.__arg_info_matrix.append(["threshold", self.threshold, True, (float)])
184
- self.__arg_info_matrix.append(["item_similarity", self.item_similarity, True, (str)])
185
- self.__arg_info_matrix.append(["rating_table_sequence_column", self.rating_table_sequence_column, True, (str,list)])
186
-
187
- if inspect.stack()[1][3] != '_from_model_catalog':
188
- # Perform the function validations
189
- self.__validate()
190
- # Generate the ML query
191
- self.__form_tdml_query()
192
- # Execute ML query
193
- self.__execute()
194
- # Get the prediction type
195
- self._prediction_type = self.__awu._get_function_prediction_type(self)
196
-
197
- # End the timer to get the build time
198
- _end_time = time.time()
199
-
200
- # Calculate the build time
201
- self._build_time = (int)(_end_time - _start_time)
202
-
203
- def __validate(self):
204
- """
205
- Function to validate sqlmr function arguments, which verifies missing
206
- arguments, input argument and table types. Also processes the
207
- argument values.
208
- """
209
-
210
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
211
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
212
-
213
- # Make sure that a non-NULL value has been supplied correct type of argument
214
- self.__awu._validate_argument_types(self.__arg_info_matrix)
215
-
216
- # Check to make sure input table types are strings or data frame objects or of valid type.
217
- self.__awu._validate_input_table_datatype(self.rating_table, "rating_table", None)
218
-
219
- # Check for permitted values
220
- item_similarity_permitted_values = ["ADJUSTEDCOSINE", "PEARSON"]
221
- self.__awu._validate_permitted_values(self.item_similarity, item_similarity_permitted_values, "item_similarity")
222
-
223
- # Check whether the input columns passed to the argument are not empty.
224
- # Also check whether the input columns passed to the argument valid or not.
225
- self.__awu._validate_input_columns_not_empty(self.userid_column, "userid_column")
226
- self.__awu._validate_dataframe_has_argument_columns(self.userid_column, "userid_column", self.rating_table, "rating_table", False)
227
-
228
- self.__awu._validate_input_columns_not_empty(self.itemid_column, "itemid_column")
229
- self.__awu._validate_dataframe_has_argument_columns(self.itemid_column, "itemid_column", self.rating_table, "rating_table", False)
230
-
231
- self.__awu._validate_input_columns_not_empty(self.rating_column, "rating_column")
232
- self.__awu._validate_dataframe_has_argument_columns(self.rating_column, "rating_column", self.rating_table, "rating_table", False)
233
-
234
- self.__awu._validate_input_columns_not_empty(self.rating_table_sequence_column, "rating_table_sequence_column")
235
- self.__awu._validate_dataframe_has_argument_columns(self.rating_table_sequence_column, "rating_table_sequence_column", self.rating_table, "rating_table", False)
236
-
237
-
238
- def __form_tdml_query(self):
239
- """
240
- Function to generate the analytical function queries. The function defines
241
- variables and list of arguments required to form the query.
242
- """
243
- # Generate temp table names for output table parameters if any.
244
- self.__weight_model_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_knnrecommender0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
245
- self.__bias_model_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_knnrecommender1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
246
- self.__nearest_items_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_knnrecommender2", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
247
-
248
- # Output table arguments list
249
- self.__func_output_args_sql_names = ["WeightModelTable", "BiasModelTable", "NearestItemsTable"]
250
- self.__func_output_args = [self.__weight_model_table_temp_tablename, self.__bias_model_table_temp_tablename, self.__nearest_items_temp_tablename]
251
-
252
- # Model Cataloging related attributes.
253
- self._sql_specific_attributes = {}
254
- self._sql_formula_attribute_mapper = {}
255
- self._target_column = None
256
- self._algorithm_name = None
257
-
258
- # Generate lists for rest of the function arguments
259
- self.__func_other_arg_sql_names = []
260
- self.__func_other_args = []
261
- self.__func_other_arg_json_datatypes = []
262
-
263
- if self.userid_column is not None:
264
- self.__func_other_arg_sql_names.append("UserIdColumn")
265
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.userid_column, "\""), "'"))
266
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
267
-
268
- if self.itemid_column is not None:
269
- self.__func_other_arg_sql_names.append("ItemIdColumn")
270
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.itemid_column, "\""), "'"))
271
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
272
-
273
- if self.rating_column is not None:
274
- self.__func_other_arg_sql_names.append("RatingColumn")
275
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.rating_column, "\""), "'"))
276
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
277
-
278
- if self.learning_rate is not None and self.learning_rate != 0.001:
279
- self.__func_other_arg_sql_names.append("LearningRate")
280
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.learning_rate, "'"))
281
- self.__func_other_arg_json_datatypes.append("DOUBLE")
282
-
283
- if self.max_iternum is not None and self.max_iternum != 10:
284
- self.__func_other_arg_sql_names.append("MaxIterNum")
285
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_iternum, "'"))
286
- self.__func_other_arg_json_datatypes.append("INTEGER")
287
-
288
- if self.k is not None and self.k != 20:
289
- self.__func_other_arg_sql_names.append("K")
290
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.k, "'"))
291
- self.__func_other_arg_json_datatypes.append("INTEGER")
292
-
293
- if self.threshold is not None and self.threshold != 2.0E-4:
294
- self.__func_other_arg_sql_names.append("StopThreshold")
295
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.threshold, "'"))
296
- self.__func_other_arg_json_datatypes.append("DOUBLE")
297
-
298
- if self.item_similarity is not None and self.item_similarity != "Pearson":
299
- self.__func_other_arg_sql_names.append("SimilarityMethod")
300
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.item_similarity, "'"))
301
- self.__func_other_arg_json_datatypes.append("STRING")
302
-
303
- # Generate lists for rest of the function arguments
304
- sequence_input_by_list = []
305
- if self.rating_table_sequence_column is not None:
306
- sequence_input_by_list.append("RatingTable:" + UtilFuncs._teradata_collapse_arglist(self.rating_table_sequence_column, ""))
307
-
308
- if len(sequence_input_by_list) > 0:
309
- self.__func_other_arg_sql_names.append("SequenceInputBy")
310
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
311
- self.__func_other_args.append(sequence_input_by_arg_value)
312
- self.__func_other_arg_json_datatypes.append("STRING")
313
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
314
-
315
-
316
- # Declare empty lists to hold input table information.
317
- self.__func_input_arg_sql_names = []
318
- self.__func_input_table_view_query = []
319
- self.__func_input_dataframe_type = []
320
- self.__func_input_distribution = []
321
- self.__func_input_partition_by_cols = []
322
- self.__func_input_order_by_cols = []
323
-
324
- # Process rating_table
325
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.rating_table, False)
326
- self.__func_input_distribution.append("NONE")
327
- self.__func_input_arg_sql_names.append("RatingTable")
328
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
329
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
330
- self.__func_input_partition_by_cols.append("NA_character_")
331
- self.__func_input_order_by_cols.append("NA_character_")
332
-
333
- function_name = "KNNRecommender"
334
- # Create instance to generate SQLMR.
335
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
336
- self.__func_input_arg_sql_names,
337
- self.__func_input_table_view_query,
338
- self.__func_input_dataframe_type,
339
- self.__func_input_distribution,
340
- self.__func_input_partition_by_cols,
341
- self.__func_input_order_by_cols,
342
- self.__func_other_arg_sql_names,
343
- self.__func_other_args,
344
- self.__func_other_arg_json_datatypes,
345
- self.__func_output_args_sql_names,
346
- self.__func_output_args,
347
- engine="ENGINE_ML")
348
- # Invoke call to SQL-MR generation.
349
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
350
-
351
- # Print SQL-MR query if requested to do so.
352
- if display.print_sqlmr_query:
353
- print(self.sqlmr_query)
354
-
355
- # Set the algorithm name for Model Cataloging.
356
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
357
-
358
- def __execute(self):
359
- """
360
- Function to execute SQL-MR queries.
361
- Create DataFrames for the required SQL-MR outputs.
362
- """
363
- # Generate STDOUT table name and add it to the output table list.
364
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
365
- try:
366
- # Generate the output.
367
- UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
368
- except Exception as emsg:
369
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
370
-
371
- # Update output table data frames.
372
- self._mlresults = []
373
- self.weight_model_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__weight_model_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__weight_model_table_temp_tablename))
374
- self.bias_model_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__bias_model_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__bias_model_table_temp_tablename))
375
- self.nearest_items = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__nearest_items_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__nearest_items_temp_tablename))
376
- self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
377
- self._mlresults.append(self.weight_model_table)
378
- self._mlresults.append(self.bias_model_table)
379
- self._mlresults.append(self.nearest_items)
380
- self._mlresults.append(self.output)
381
-
382
- def show_query(self):
383
- """
384
- Function to return the underlying SQL query.
385
- When model object is created using retrieve_model(), then None is returned.
386
- """
387
- return self.sqlmr_query
388
-
389
- def get_prediction_type(self):
390
- """
391
- Function to return the Prediction type of the algorithm.
392
- When model object is created using retrieve_model(), then the value returned is
393
- as saved in the Model Catalog.
394
- """
395
- return self._prediction_type
396
-
397
- def get_target_column(self):
398
- """
399
- Function to return the Target Column of the algorithm.
400
- When model object is created using retrieve_model(), then the value returned is
401
- as saved in the Model Catalog.
402
- """
403
- return self._target_column
404
-
405
- def get_build_time(self):
406
- """
407
- Function to return the build time of the algorithm in seconds.
408
- When model object is created using retrieve_model(), then the value returned is
409
- as saved in the Model Catalog.
410
- """
411
- return self._build_time
412
-
413
- def _get_algorithm_name(self):
414
- """
415
- Function to return the name of the algorithm.
416
- """
417
- return self._algorithm_name
418
-
419
- def _get_sql_specific_attributes(self):
420
- """
421
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
422
- """
423
- return self._sql_specific_attributes
424
-
425
- @classmethod
426
- def _from_model_catalog(cls,
427
- weight_model_table = None,
428
- bias_model_table = None,
429
- nearest_items = None,
430
- output = None,
431
- **kwargs):
432
- """
433
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
434
- """
435
- kwargs.pop("weight_model_table", None)
436
- kwargs.pop("bias_model_table", None)
437
- kwargs.pop("nearest_items", None)
438
- kwargs.pop("output", None)
439
-
440
- # Model Cataloging related attributes.
441
- target_column = kwargs.pop("__target_column", None)
442
- prediction_type = kwargs.pop("__prediction_type", None)
443
- algorithm_name = kwargs.pop("__algorithm_name", None)
444
- build_time = kwargs.pop("__build_time", None)
445
-
446
- # Let's create an object of this class.
447
- obj = cls(**kwargs)
448
- obj.weight_model_table = weight_model_table
449
- obj.bias_model_table = bias_model_table
450
- obj.nearest_items = nearest_items
451
- obj.output = output
452
-
453
- # Initialize the sqlmr_query class attribute.
454
- obj.sqlmr_query = None
455
-
456
- # Initialize the SQL specific Model Cataloging attributes.
457
- obj._sql_specific_attributes = None
458
- obj._target_column = target_column
459
- obj._prediction_type = prediction_type
460
- obj._algorithm_name = algorithm_name
461
- obj._build_time = build_time
462
-
463
- # Update output table data frames.
464
- obj._mlresults = []
465
- obj.weight_model_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.weight_model_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.weight_model_table))
466
- obj.bias_model_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.bias_model_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.bias_model_table))
467
- obj.nearest_items = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.nearest_items), source_type="table", database_name=UtilFuncs._extract_db_name(obj.nearest_items))
468
- obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
469
- obj._mlresults.append(obj.weight_model_table)
470
- obj._mlresults.append(obj.bias_model_table)
471
- obj._mlresults.append(obj.nearest_items)
472
- obj._mlresults.append(obj.output)
473
- return obj
474
-
475
- def __repr__(self):
476
- """
477
- Returns the string representation for a KNNRecommender class instance.
478
- """
479
- repr_string="############ STDOUT Output ############"
480
- repr_string = "{}\n\n{}".format(repr_string,self.output)
481
- repr_string="{}\n\n\n############ weight_model_table Output ############".format(repr_string)
482
- repr_string = "{}\n\n{}".format(repr_string,self.weight_model_table)
483
- repr_string="{}\n\n\n############ bias_model_table Output ############".format(repr_string)
484
- repr_string = "{}\n\n{}".format(repr_string,self.bias_model_table)
485
- repr_string="{}\n\n\n############ nearest_items Output ############".format(repr_string)
486
- repr_string = "{}\n\n{}".format(repr_string,self.nearest_items)
487
- return repr_string
488
-