teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,502 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 3.10
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class TextTokenizer:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
dict_data = None,
|
|
35
|
-
text_column = None,
|
|
36
|
-
language = "en",
|
|
37
|
-
model = None,
|
|
38
|
-
output_delimiter = "/",
|
|
39
|
-
output_byword = False,
|
|
40
|
-
user_dictionary = None,
|
|
41
|
-
accumulate = None,
|
|
42
|
-
data_sequence_column = None,
|
|
43
|
-
dict_data_sequence_column = None,
|
|
44
|
-
data_order_column = None,
|
|
45
|
-
dict_data_order_column = None):
|
|
46
|
-
"""
|
|
47
|
-
DESCRIPTION:
|
|
48
|
-
The TextTokenizer function extracts English, Chinese, or Japanese
|
|
49
|
-
tokens from text. Examples of tokens are words, punctuation marks,
|
|
50
|
-
and numbers. Tokenization is the first step of many types of
|
|
51
|
-
text analysis.
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
PARAMETERS:
|
|
55
|
-
data:
|
|
56
|
-
Required Argument.
|
|
57
|
-
teradataml DataFrame that contains the text to be scanned.
|
|
58
|
-
|
|
59
|
-
data_order_column:
|
|
60
|
-
Optional Argument.
|
|
61
|
-
Specifies Order By columns for data.
|
|
62
|
-
Values to this argument can be provided as a list, if multiple
|
|
63
|
-
columns are used for ordering.
|
|
64
|
-
Types: str OR list of Strings (str)
|
|
65
|
-
|
|
66
|
-
dict_data:
|
|
67
|
-
Optional Argument.
|
|
68
|
-
teradataml DataFrame that contains the dictionary for
|
|
69
|
-
segementing words.
|
|
70
|
-
|
|
71
|
-
dict_data_order_column:
|
|
72
|
-
Optional Argument.
|
|
73
|
-
Specifies Order By columns for dict_data.
|
|
74
|
-
Values to this argument can be provided as a list, if multiple
|
|
75
|
-
columns are used for ordering.
|
|
76
|
-
Types: str OR list of Strings (str)
|
|
77
|
-
|
|
78
|
-
text_column:
|
|
79
|
-
Required Argument.
|
|
80
|
-
Specifies name of the column in the argument data, that contains
|
|
81
|
-
the text to tokenize.
|
|
82
|
-
Types: str
|
|
83
|
-
|
|
84
|
-
language:
|
|
85
|
-
Optional Argument.
|
|
86
|
-
Specifies the language of the text in text_column.
|
|
87
|
-
Default Value: "en"
|
|
88
|
-
Permitted Values: en, zh_CN, zh_TW, jp
|
|
89
|
-
Types: str
|
|
90
|
-
|
|
91
|
-
model:
|
|
92
|
-
Optional Argument.
|
|
93
|
-
Specifies the name of model file that the function uses for
|
|
94
|
-
tokenizing. The model must be a conditional random-fields model and
|
|
95
|
-
model_file must already be installed on the database. If you omit
|
|
96
|
-
this argument, or if model_file is not installed on the database,
|
|
97
|
-
then the function uses white spaces to separate English words and an
|
|
98
|
-
embedded dictionary to tokenize Chinese text.
|
|
99
|
-
Note: If you specify the argument "language" with value "jp", the
|
|
100
|
-
function ignores this argument.
|
|
101
|
-
Types: str
|
|
102
|
-
|
|
103
|
-
output_delimiter:
|
|
104
|
-
Optional Argument.
|
|
105
|
-
Specifies the delimiter for separating tokens in the output.
|
|
106
|
-
Default Value: "/"
|
|
107
|
-
Types: str
|
|
108
|
-
|
|
109
|
-
output_byword:
|
|
110
|
-
Optional Argument.
|
|
111
|
-
Specifies whether to output one token in each row (output one
|
|
112
|
-
line of text in each row).
|
|
113
|
-
Default Value: False
|
|
114
|
-
Types: bool
|
|
115
|
-
|
|
116
|
-
user_dictionary:
|
|
117
|
-
Optional Argument.
|
|
118
|
-
Specifies the name of the user dictionary to use to correct
|
|
119
|
-
results specified by the model. If you specify both this
|
|
120
|
-
argument and a dictionary teradataml DataFrame (dict_data), then
|
|
121
|
-
the function uses the union of user_dictionary and dict_data as
|
|
122
|
-
its dictionary. That describes the format of user_dictionary_file
|
|
123
|
-
and dict.
|
|
124
|
-
Note: If the function finds more than one matched term,
|
|
125
|
-
it selects the longest term for the first match.
|
|
126
|
-
Types: str
|
|
127
|
-
|
|
128
|
-
accumulate:
|
|
129
|
-
Optional Argument.
|
|
130
|
-
Specifies the name of the column in the argument data, to copy
|
|
131
|
-
to the output table.
|
|
132
|
-
Types: str OR list of Strings (str)
|
|
133
|
-
|
|
134
|
-
data_sequence_column:
|
|
135
|
-
Optional Argument.
|
|
136
|
-
Specifies the list of column(s) that uniquely identifies each
|
|
137
|
-
row of the input argument "data". The argument is used to ensure
|
|
138
|
-
deterministic results for functions which produce results that
|
|
139
|
-
vary from run to run.
|
|
140
|
-
Types: str OR list of Strings (str)
|
|
141
|
-
|
|
142
|
-
dict_data_sequence_column:
|
|
143
|
-
Optional Argument.
|
|
144
|
-
Specifies the list of column(s) that uniquely identifies each
|
|
145
|
-
row of the input argument "dict_data". The argument is used to
|
|
146
|
-
ensure deterministic results for functions which produce results
|
|
147
|
-
that vary from run to run.
|
|
148
|
-
Types: str OR list of Strings (str)
|
|
149
|
-
|
|
150
|
-
RETURNS:
|
|
151
|
-
Instance of TextTokenizer.
|
|
152
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
153
|
-
references, such as TextTokenizerObj.<attribute_name>.
|
|
154
|
-
Output teradataml DataFrame attribute name is:
|
|
155
|
-
result
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
RAISES:
|
|
159
|
-
TeradataMlException
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
EXAMPLES:
|
|
163
|
-
# Load the data to run the example.
|
|
164
|
-
load_example_data("TextTokenizer","complaints")
|
|
165
|
-
|
|
166
|
-
# Create teradataml DataFrame
|
|
167
|
-
complaints = DataFrame.from_table("complaints")
|
|
168
|
-
|
|
169
|
-
# Example 1 -
|
|
170
|
-
text_tokenizer_out = TextTokenizer(data=complaints,
|
|
171
|
-
text_column='text_data',
|
|
172
|
-
language='en',
|
|
173
|
-
output_delimiter=' ',
|
|
174
|
-
output_byword =True,
|
|
175
|
-
accumulate='doc_id')
|
|
176
|
-
# Print the result DataFrame
|
|
177
|
-
print(text_tokenizer_out.result)
|
|
178
|
-
|
|
179
|
-
"""
|
|
180
|
-
|
|
181
|
-
# Start the timer to get the build time
|
|
182
|
-
_start_time = time.time()
|
|
183
|
-
|
|
184
|
-
self.data = data
|
|
185
|
-
self.dict_data = dict_data
|
|
186
|
-
self.text_column = text_column
|
|
187
|
-
self.language = language
|
|
188
|
-
self.model = model
|
|
189
|
-
self.output_delimiter = output_delimiter
|
|
190
|
-
self.output_byword = output_byword
|
|
191
|
-
self.user_dictionary = user_dictionary
|
|
192
|
-
self.accumulate = accumulate
|
|
193
|
-
self.data_sequence_column = data_sequence_column
|
|
194
|
-
self.dict_data_sequence_column = dict_data_sequence_column
|
|
195
|
-
self.data_order_column = data_order_column
|
|
196
|
-
self.dict_data_order_column = dict_data_order_column
|
|
197
|
-
|
|
198
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
199
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
200
|
-
self.__aed_utils = AedUtils()
|
|
201
|
-
|
|
202
|
-
# Create argument information matrix to do parameter checking
|
|
203
|
-
self.__arg_info_matrix = []
|
|
204
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
205
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
|
|
206
|
-
self.__arg_info_matrix.append(["dict_data", self.dict_data, True, (DataFrame)])
|
|
207
|
-
self.__arg_info_matrix.append(["dict_data_order_column", self.dict_data_order_column, True, (str,list)])
|
|
208
|
-
self.__arg_info_matrix.append(["text_column", self.text_column, False, (str)])
|
|
209
|
-
self.__arg_info_matrix.append(["language", self.language, True, (str)])
|
|
210
|
-
self.__arg_info_matrix.append(["model", self.model, True, (str)])
|
|
211
|
-
self.__arg_info_matrix.append(["output_delimiter", self.output_delimiter, True, (str)])
|
|
212
|
-
self.__arg_info_matrix.append(["output_byword", self.output_byword, True, (bool)])
|
|
213
|
-
self.__arg_info_matrix.append(["user_dictionary", self.user_dictionary, True, (str)])
|
|
214
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
|
|
215
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
216
|
-
self.__arg_info_matrix.append(["dict_data_sequence_column", self.dict_data_sequence_column, True, (str,list)])
|
|
217
|
-
|
|
218
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
219
|
-
# Perform the function validations
|
|
220
|
-
self.__validate()
|
|
221
|
-
# Generate the ML query
|
|
222
|
-
self.__form_tdml_query()
|
|
223
|
-
# Execute ML query
|
|
224
|
-
self.__execute()
|
|
225
|
-
# Get the prediction type
|
|
226
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
227
|
-
|
|
228
|
-
# End the timer to get the build time
|
|
229
|
-
_end_time = time.time()
|
|
230
|
-
|
|
231
|
-
# Calculate the build time
|
|
232
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
233
|
-
|
|
234
|
-
def __validate(self):
|
|
235
|
-
"""
|
|
236
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
237
|
-
arguments, input argument and table types. Also processes the
|
|
238
|
-
argument values.
|
|
239
|
-
"""
|
|
240
|
-
|
|
241
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
242
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
243
|
-
|
|
244
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
245
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
246
|
-
|
|
247
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
248
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
249
|
-
self.__awu._validate_input_table_datatype(self.dict_data, "dict_data", None)
|
|
250
|
-
|
|
251
|
-
# Check for permitted values
|
|
252
|
-
language_permitted_values = ["EN", "ZH_CN", "ZH_TW", "JP"]
|
|
253
|
-
self.__awu._validate_permitted_values(self.language, language_permitted_values, "language")
|
|
254
|
-
|
|
255
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
256
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
257
|
-
self.__awu._validate_input_columns_not_empty(self.text_column, "text_column")
|
|
258
|
-
self.__awu._validate_dataframe_has_argument_columns(self.text_column, "text_column", self.data, "data", False)
|
|
259
|
-
|
|
260
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
261
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.data, "data", False)
|
|
262
|
-
|
|
263
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
264
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
265
|
-
|
|
266
|
-
self.__awu._validate_input_columns_not_empty(self.dict_data_sequence_column, "dict_data_sequence_column")
|
|
267
|
-
self.__awu._validate_dataframe_has_argument_columns(self.dict_data_sequence_column, "dict_data_sequence_column", self.dict_data, "dict_data", False)
|
|
268
|
-
|
|
269
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
270
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
271
|
-
|
|
272
|
-
self.__awu._validate_input_columns_not_empty(self.dict_data_order_column, "dict_data_order_column")
|
|
273
|
-
self.__awu._validate_dataframe_has_argument_columns(self.dict_data_order_column, "dict_data_order_column", self.dict_data, "dict_data", False)
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
def __form_tdml_query(self):
|
|
277
|
-
"""
|
|
278
|
-
Function to generate the analytical function queries. The function defines
|
|
279
|
-
variables and list of arguments required to form the query.
|
|
280
|
-
"""
|
|
281
|
-
|
|
282
|
-
# Output table arguments list
|
|
283
|
-
self.__func_output_args_sql_names = []
|
|
284
|
-
self.__func_output_args = []
|
|
285
|
-
|
|
286
|
-
# Model Cataloging related attributes.
|
|
287
|
-
self._sql_specific_attributes = {}
|
|
288
|
-
self._sql_formula_attribute_mapper = {}
|
|
289
|
-
self._target_column = None
|
|
290
|
-
self._algorithm_name = None
|
|
291
|
-
|
|
292
|
-
# Generate lists for rest of the function arguments
|
|
293
|
-
self.__func_other_arg_sql_names = []
|
|
294
|
-
self.__func_other_args = []
|
|
295
|
-
self.__func_other_arg_json_datatypes = []
|
|
296
|
-
|
|
297
|
-
self.__func_other_arg_sql_names.append("TextColumn")
|
|
298
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.text_column, "\""), "'"))
|
|
299
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
300
|
-
|
|
301
|
-
if self.accumulate is not None:
|
|
302
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
303
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
304
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
305
|
-
|
|
306
|
-
if self.language is not None and self.language != "en":
|
|
307
|
-
self.__func_other_arg_sql_names.append("InputLanguage")
|
|
308
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.language, "'"))
|
|
309
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
310
|
-
|
|
311
|
-
if self.output_delimiter is not None and self.output_delimiter != "/":
|
|
312
|
-
self.__func_other_arg_sql_names.append("OutputDelimiter")
|
|
313
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_delimiter, "'"))
|
|
314
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
315
|
-
|
|
316
|
-
if self.output_byword is not None and self.output_byword != False:
|
|
317
|
-
self.__func_other_arg_sql_names.append("OutputByWord")
|
|
318
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_byword , "'"))
|
|
319
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
320
|
-
|
|
321
|
-
if self.user_dictionary is not None:
|
|
322
|
-
self.__func_other_arg_sql_names.append("userDictionaryFile")
|
|
323
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.user_dictionary, "'"))
|
|
324
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
325
|
-
|
|
326
|
-
if self.model is not None:
|
|
327
|
-
self.__func_other_arg_sql_names.append("ModelFile")
|
|
328
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.model, "'"))
|
|
329
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
330
|
-
|
|
331
|
-
# Generate lists for rest of the function arguments
|
|
332
|
-
sequence_input_by_list = []
|
|
333
|
-
if self.data_sequence_column is not None:
|
|
334
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
335
|
-
|
|
336
|
-
if self.dict_data_sequence_column is not None:
|
|
337
|
-
sequence_input_by_list.append("dict:" + UtilFuncs._teradata_collapse_arglist(self.dict_data_sequence_column, ""))
|
|
338
|
-
|
|
339
|
-
if len(sequence_input_by_list) > 0:
|
|
340
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
341
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
342
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
343
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
344
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
# Declare empty lists to hold input table information.
|
|
348
|
-
self.__func_input_arg_sql_names = []
|
|
349
|
-
self.__func_input_table_view_query = []
|
|
350
|
-
self.__func_input_dataframe_type = []
|
|
351
|
-
self.__func_input_distribution = []
|
|
352
|
-
self.__func_input_partition_by_cols = []
|
|
353
|
-
self.__func_input_order_by_cols = []
|
|
354
|
-
|
|
355
|
-
# Process data
|
|
356
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
357
|
-
self.__func_input_distribution.append("FACT")
|
|
358
|
-
self.__func_input_arg_sql_names.append("input")
|
|
359
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
360
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
361
|
-
self.__func_input_partition_by_cols.append("ANY")
|
|
362
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
363
|
-
|
|
364
|
-
# Process dict_data
|
|
365
|
-
if self.dict_data is not None:
|
|
366
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.dict_data, False)
|
|
367
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
368
|
-
self.__func_input_arg_sql_names.append("dict")
|
|
369
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
370
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
371
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
372
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.dict_data_order_column, "\""))
|
|
373
|
-
|
|
374
|
-
function_name = "TextTokenizer"
|
|
375
|
-
# Create instance to generate SQLMR.
|
|
376
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
377
|
-
self.__func_input_arg_sql_names,
|
|
378
|
-
self.__func_input_table_view_query,
|
|
379
|
-
self.__func_input_dataframe_type,
|
|
380
|
-
self.__func_input_distribution,
|
|
381
|
-
self.__func_input_partition_by_cols,
|
|
382
|
-
self.__func_input_order_by_cols,
|
|
383
|
-
self.__func_other_arg_sql_names,
|
|
384
|
-
self.__func_other_args,
|
|
385
|
-
self.__func_other_arg_json_datatypes,
|
|
386
|
-
self.__func_output_args_sql_names,
|
|
387
|
-
self.__func_output_args,
|
|
388
|
-
engine="ENGINE_ML")
|
|
389
|
-
# Invoke call to SQL-MR generation.
|
|
390
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
391
|
-
|
|
392
|
-
# Print SQL-MR query if requested to do so.
|
|
393
|
-
if display.print_sqlmr_query:
|
|
394
|
-
print(self.sqlmr_query)
|
|
395
|
-
|
|
396
|
-
# Set the algorithm name for Model Cataloging.
|
|
397
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
398
|
-
|
|
399
|
-
def __execute(self):
|
|
400
|
-
"""
|
|
401
|
-
Function to execute SQL-MR queries.
|
|
402
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
403
|
-
"""
|
|
404
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
405
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
406
|
-
try:
|
|
407
|
-
# Generate the output.
|
|
408
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
409
|
-
except Exception as emsg:
|
|
410
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
411
|
-
|
|
412
|
-
# Update output table data frames.
|
|
413
|
-
self._mlresults = []
|
|
414
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
415
|
-
self._mlresults.append(self.result)
|
|
416
|
-
|
|
417
|
-
def show_query(self):
|
|
418
|
-
"""
|
|
419
|
-
Function to return the underlying SQL query.
|
|
420
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
421
|
-
"""
|
|
422
|
-
return self.sqlmr_query
|
|
423
|
-
|
|
424
|
-
def get_prediction_type(self):
|
|
425
|
-
"""
|
|
426
|
-
Function to return the Prediction type of the algorithm.
|
|
427
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
428
|
-
as saved in the Model Catalog.
|
|
429
|
-
"""
|
|
430
|
-
return self._prediction_type
|
|
431
|
-
|
|
432
|
-
def get_target_column(self):
|
|
433
|
-
"""
|
|
434
|
-
Function to return the Target Column of the algorithm.
|
|
435
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
436
|
-
as saved in the Model Catalog.
|
|
437
|
-
"""
|
|
438
|
-
return self._target_column
|
|
439
|
-
|
|
440
|
-
def get_build_time(self):
|
|
441
|
-
"""
|
|
442
|
-
Function to return the build time of the algorithm in seconds.
|
|
443
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
444
|
-
as saved in the Model Catalog.
|
|
445
|
-
"""
|
|
446
|
-
return self._build_time
|
|
447
|
-
|
|
448
|
-
def _get_algorithm_name(self):
|
|
449
|
-
"""
|
|
450
|
-
Function to return the name of the algorithm.
|
|
451
|
-
"""
|
|
452
|
-
return self._algorithm_name
|
|
453
|
-
|
|
454
|
-
def _get_sql_specific_attributes(self):
|
|
455
|
-
"""
|
|
456
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
457
|
-
"""
|
|
458
|
-
return self._sql_specific_attributes
|
|
459
|
-
|
|
460
|
-
@classmethod
|
|
461
|
-
def _from_model_catalog(cls,
|
|
462
|
-
result = None,
|
|
463
|
-
**kwargs):
|
|
464
|
-
"""
|
|
465
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
466
|
-
"""
|
|
467
|
-
kwargs.pop("result", None)
|
|
468
|
-
|
|
469
|
-
# Model Cataloging related attributes.
|
|
470
|
-
target_column = kwargs.pop("__target_column", None)
|
|
471
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
472
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
473
|
-
build_time = kwargs.pop("__build_time", None)
|
|
474
|
-
|
|
475
|
-
# Let's create an object of this class.
|
|
476
|
-
obj = cls(**kwargs)
|
|
477
|
-
obj.result = result
|
|
478
|
-
|
|
479
|
-
# Initialize the sqlmr_query class attribute.
|
|
480
|
-
obj.sqlmr_query = None
|
|
481
|
-
|
|
482
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
483
|
-
obj._sql_specific_attributes = None
|
|
484
|
-
obj._target_column = target_column
|
|
485
|
-
obj._prediction_type = prediction_type
|
|
486
|
-
obj._algorithm_name = algorithm_name
|
|
487
|
-
obj._build_time = build_time
|
|
488
|
-
|
|
489
|
-
# Update output table data frames.
|
|
490
|
-
obj._mlresults = []
|
|
491
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
492
|
-
obj._mlresults.append(obj.result)
|
|
493
|
-
return obj
|
|
494
|
-
|
|
495
|
-
def __repr__(self):
|
|
496
|
-
"""
|
|
497
|
-
Returns the string representation for a TextTokenizer class instance.
|
|
498
|
-
"""
|
|
499
|
-
repr_string="############ STDOUT Output ############"
|
|
500
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
501
|
-
return repr_string
|
|
502
|
-
|