teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,565 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Rohit Agrawal (rohit.agrawal@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.20
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.configure import configure
|
|
29
|
-
from teradataml.options.display import display
|
|
30
|
-
|
|
31
|
-
class TextClassifierTrainer:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
data = None,
|
|
35
|
-
text_column = None,
|
|
36
|
-
category_column = None,
|
|
37
|
-
classifier_type = 'maxEnt',
|
|
38
|
-
classifier_parameters = None,
|
|
39
|
-
nlp_parameters = None,
|
|
40
|
-
feature_selection = None,
|
|
41
|
-
model_file = None,
|
|
42
|
-
data_sequence_column = None,
|
|
43
|
-
to_lower_case=True,
|
|
44
|
-
punctuation=None):
|
|
45
|
-
"""
|
|
46
|
-
DESCRIPTION:
|
|
47
|
-
The TextClassifierTrainer function trains a machine-learning
|
|
48
|
-
classifier for text classification and installs the model file on
|
|
49
|
-
the ML Engine. The model file can then be input to the function
|
|
50
|
-
TextClassifier.
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
PARAMETERS:
|
|
54
|
-
data:
|
|
55
|
-
Required Argument.
|
|
56
|
-
Specifies the name of the teradataml DataFrame that contains the
|
|
57
|
-
documents to use to train the model.
|
|
58
|
-
|
|
59
|
-
text_column:
|
|
60
|
-
Required Argument.
|
|
61
|
-
Specifies the name of the column that contains the text of the
|
|
62
|
-
training documents.
|
|
63
|
-
Types: str
|
|
64
|
-
|
|
65
|
-
category_column:
|
|
66
|
-
Required Argument.
|
|
67
|
-
Specifies the name of the column that contains the category of
|
|
68
|
-
the training documents.
|
|
69
|
-
Types: str
|
|
70
|
-
|
|
71
|
-
classifier_type:
|
|
72
|
-
Optional Argument.
|
|
73
|
-
Specifies the classifier type of the model, KNN algorithm or
|
|
74
|
-
maximum entropy model.
|
|
75
|
-
Default Value: "maxEnt"
|
|
76
|
-
Permitted Values: maxEnt, knn
|
|
77
|
-
Types: str
|
|
78
|
-
|
|
79
|
-
classifier_parameters:
|
|
80
|
-
Optional Argument.
|
|
81
|
-
Applies only if the classifier type of the model is KNN.
|
|
82
|
-
Specifies parameters for the classifier.
|
|
83
|
-
Permitted Values:
|
|
84
|
-
* compress: The value must be in the range (0, 1). The n
|
|
85
|
-
training documents are clustered into value*n
|
|
86
|
-
groups and the model uses the center of each group as
|
|
87
|
-
the feature vector.
|
|
88
|
-
For example,
|
|
89
|
-
if there are 100 training documents, then
|
|
90
|
-
classifier_parameters ("compress:0.6") clusters
|
|
91
|
-
them into 60 groups.
|
|
92
|
-
* kvalues: The value must be int value in range
|
|
93
|
-
[1, max(classes, ceil(sqrt(rows)))],
|
|
94
|
-
where:
|
|
95
|
-
* 'classes' is number of classes in "data" teradataml
|
|
96
|
-
Dataframe.
|
|
97
|
-
* 'rows' is number of rows in "data" teradataml
|
|
98
|
-
Dataframe.
|
|
99
|
-
Value specifies number of nearest neighbors to
|
|
100
|
-
consider when deciding label of unseen document.
|
|
101
|
-
Function selects best specified value for deciding
|
|
102
|
-
label of unseen document.
|
|
103
|
-
* power: The value must be int value in range [0, 10]. The
|
|
104
|
-
value specifies power to apply to weight corresponding
|
|
105
|
-
to each vote considered when deciding label of unseen
|
|
106
|
-
document.
|
|
107
|
-
Note:
|
|
108
|
-
All above listed parameter values can be used when teradataml
|
|
109
|
-
is connected to Vantage 1.3, otherwise only 'compress' value
|
|
110
|
-
is supported.
|
|
111
|
-
Types: str OR list of strs
|
|
112
|
-
|
|
113
|
-
nlp_parameters:
|
|
114
|
-
Optional Argument.
|
|
115
|
-
Specifies natural language processing (NLP) parameters for
|
|
116
|
-
preprocessing the text data and produce tokens:
|
|
117
|
-
* tokenDictFile: token_file - token_file is name of ML
|
|
118
|
-
Engine file in which each line contains a phrase, followed
|
|
119
|
-
by a space, followed by the token for the phrase (and
|
|
120
|
-
nothing else).
|
|
121
|
-
* stopwordsFile:stopword_file - stopword_file is the name
|
|
122
|
-
of an ML Engine file in which each line contains
|
|
123
|
-
exactly one stop word (a word to ignore during tokenization,
|
|
124
|
-
such as a, an, or the).
|
|
125
|
-
* useStem:{true|false} - Specifies whether the function
|
|
126
|
-
stems the tokens. The default value is "false".
|
|
127
|
-
* stemIgnoreFile:stem_ignore_file - stem_ignore_file is
|
|
128
|
-
the name of an ML Engine file in which each line
|
|
129
|
-
contains exactly one word to ignore during stemming.
|
|
130
|
-
Specifying this parameter with "useStem:false" causes an
|
|
131
|
-
exception.
|
|
132
|
-
* useBgram:{ true | false } - Specifies whether the function
|
|
133
|
-
uses Bigram, which considers the proximity of adjacent
|
|
134
|
-
tokens when analyzing them. The default value is "false".
|
|
135
|
-
* language:{ en | zh_CN | zh_TW } - Specifies the language
|
|
136
|
-
of the input text - English (en), Simplified Chinese (zh_CN),
|
|
137
|
-
or Traditional Chinese (zh_TW). The default value is en.
|
|
138
|
-
For the values zh_CN and zh_TW, the function ignores the
|
|
139
|
-
parameters useStem and stemIgnoreFile.
|
|
140
|
-
Example: nlp_parameters("tokenDictFile:token_dict.txt",
|
|
141
|
-
"stopwordsFile:fileName",
|
|
142
|
-
"useStem:true",
|
|
143
|
-
"stemIgnoreFile:fileName",
|
|
144
|
-
"useBgram:true", "language:zh_CN")
|
|
145
|
-
Types: str OR list of strs
|
|
146
|
-
|
|
147
|
-
feature_selection:
|
|
148
|
-
Optional Argument.
|
|
149
|
-
Specifies the feature selection method, DF (document frequency).
|
|
150
|
-
The values min and max must be in the range (0, 1). The function
|
|
151
|
-
selects only the tokens that appear in at least min*n documents
|
|
152
|
-
and at most max*n documents, where n is the number of training
|
|
153
|
-
documents. For example, FeatureSelection ("DF:[0.1:0.9]") causes
|
|
154
|
-
the function to select only the tokens that appear in at least
|
|
155
|
-
10% but no more than 90% of the training documents. If min
|
|
156
|
-
exceeds max, the function uses min as max and max as min.
|
|
157
|
-
Types: str
|
|
158
|
-
|
|
159
|
-
model_file:
|
|
160
|
-
Required Argument.
|
|
161
|
-
Specifies the name of the model file to be generated.
|
|
162
|
-
Types: str
|
|
163
|
-
|
|
164
|
-
data_sequence_column:
|
|
165
|
-
Optional Argument.
|
|
166
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
167
|
-
the input argument "data". The argument is used to ensure
|
|
168
|
-
deterministic results for functions which produce results that vary
|
|
169
|
-
from run to run.
|
|
170
|
-
Types: str OR list of Strings (str)
|
|
171
|
-
|
|
172
|
-
to_lower_case:
|
|
173
|
-
Optional Argument.
|
|
174
|
-
Specifies whether to convert input text to lowercase.
|
|
175
|
-
Note:
|
|
176
|
-
"to_lower_case" argument support is only available when teradataml
|
|
177
|
-
is connected to Vantage 1.3 version.
|
|
178
|
-
Default Value: True
|
|
179
|
-
Types: bool
|
|
180
|
-
|
|
181
|
-
punctuation:
|
|
182
|
-
Optional Argument.
|
|
183
|
-
Specifies a regular expression that represents the punctuation
|
|
184
|
-
characters to remove from the input text.
|
|
185
|
-
Note:
|
|
186
|
-
"punctuation" argument support is only available when teradataml
|
|
187
|
-
is connected to Vantage 1.3 version.
|
|
188
|
-
Types: str
|
|
189
|
-
|
|
190
|
-
RETURNS:
|
|
191
|
-
Instance of TextClassifierTrainer.
|
|
192
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
193
|
-
references, such as TextClassifierTrainerObj.<attribute_name>.
|
|
194
|
-
Output teradataml DataFrame attribute name is:
|
|
195
|
-
result
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
RAISES:
|
|
199
|
-
TeradataMlException, TypeError, ValueError
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
EXAMPLES:
|
|
203
|
-
# Load example data.
|
|
204
|
-
load_example_data("textclassifiertrainer", "texttrainer_input")
|
|
205
|
-
|
|
206
|
-
# Create teradataml DataFrame objects.
|
|
207
|
-
# The input table contains text of the training documents and the
|
|
208
|
-
# category of the training documents.
|
|
209
|
-
texttrainer_input = DataFrame.from_table("texttrainer_input")
|
|
210
|
-
|
|
211
|
-
# Example 1 - The function outputs a binary file with the name
|
|
212
|
-
# specified by "model_file" argument.
|
|
213
|
-
TextClassifierTrainer_out1 = TextClassifierTrainer(data = texttrainer_input,
|
|
214
|
-
text_column = "content",
|
|
215
|
-
category_column = "category",
|
|
216
|
-
classifier_type = "knn",
|
|
217
|
-
classifier_parameters = ["compress:0.9"],
|
|
218
|
-
nlp_parameters = ["useStem:true", "stopwordsFile: stopwords.txt"],
|
|
219
|
-
feature_selection = "DF:[0.1:0.99]",
|
|
220
|
-
model_file = "knn.bin"
|
|
221
|
-
)
|
|
222
|
-
|
|
223
|
-
# Print the result teradataml DataFrame
|
|
224
|
-
print(TextClassifierTrainer_out1)
|
|
225
|
-
|
|
226
|
-
# Example 2 - This example uses parameters 'kvalues' and 'power' as input
|
|
227
|
-
# to argument "classifier_parameters" and outputs a binary file with the name
|
|
228
|
-
# specified by "model_file" argument.
|
|
229
|
-
# Note:
|
|
230
|
-
# This Example will work only when teradataml is connected
|
|
231
|
-
# to Vantage 1.3 or later.
|
|
232
|
-
TextClassifierTrainer_out2 = TextClassifierTrainer(data = texttrainer_input,
|
|
233
|
-
text_column = "content",
|
|
234
|
-
category_column = "category",
|
|
235
|
-
classifier_type = "knn",
|
|
236
|
-
classifier_parameters = ["compress:0.9", "kvalues:{1,3}", "power:2"],
|
|
237
|
-
nlp_parameters = ["useStem:true", "stopwordsFile: stopwords.txt"],
|
|
238
|
-
feature_selection = "DF:[0.1:0.99]",
|
|
239
|
-
model_file = "knn.bin",
|
|
240
|
-
to_lower_case=False,
|
|
241
|
-
punctuation='[a-z]'
|
|
242
|
-
)
|
|
243
|
-
|
|
244
|
-
# Print the result teradataml DataFrame
|
|
245
|
-
print(TextClassifierTrainer_out2)
|
|
246
|
-
|
|
247
|
-
"""
|
|
248
|
-
|
|
249
|
-
# Start the timer to get the build time
|
|
250
|
-
_start_time = time.time()
|
|
251
|
-
|
|
252
|
-
self.data = data
|
|
253
|
-
self.text_column = text_column
|
|
254
|
-
self.category_column = category_column
|
|
255
|
-
self.classifier_type = classifier_type
|
|
256
|
-
self.classifier_parameters = classifier_parameters
|
|
257
|
-
self.nlp_parameters = nlp_parameters
|
|
258
|
-
self.feature_selection = feature_selection
|
|
259
|
-
self.model_file = model_file
|
|
260
|
-
self.data_sequence_column = data_sequence_column
|
|
261
|
-
self.to_lower_case = to_lower_case
|
|
262
|
-
self.punctuation = punctuation
|
|
263
|
-
|
|
264
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
265
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
266
|
-
self.__aed_utils = AedUtils()
|
|
267
|
-
|
|
268
|
-
# Create argument information matrix to do parameter checking
|
|
269
|
-
self.__arg_info_matrix = []
|
|
270
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
271
|
-
self.__arg_info_matrix.append(["text_column", self.text_column, False, (str)])
|
|
272
|
-
self.__arg_info_matrix.append(["category_column", self.category_column, False, (str)])
|
|
273
|
-
self.__arg_info_matrix.append(["classifier_type", self.classifier_type, True, (str)])
|
|
274
|
-
self.__arg_info_matrix.append(["classifier_parameters", self.classifier_parameters, True, (str,list)])
|
|
275
|
-
self.__arg_info_matrix.append(["nlp_parameters", self.nlp_parameters, True, (str,list)])
|
|
276
|
-
self.__arg_info_matrix.append(["feature_selection", self.feature_selection, True, (str)])
|
|
277
|
-
self.__arg_info_matrix.append(["model_file", self.model_file, False, (str)])
|
|
278
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
279
|
-
self.__arg_info_matrix.append(["to_lower_case", self.to_lower_case, True, (bool)])
|
|
280
|
-
self.__arg_info_matrix.append(["punctuation", self.punctuation, True, (str)])
|
|
281
|
-
|
|
282
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
283
|
-
# Perform the function validations
|
|
284
|
-
self.__validate()
|
|
285
|
-
# Generate the ML query
|
|
286
|
-
self.__form_tdml_query()
|
|
287
|
-
# Execute ML query
|
|
288
|
-
self.__execute()
|
|
289
|
-
# Get the prediction type
|
|
290
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
291
|
-
|
|
292
|
-
# End the timer to get the build time
|
|
293
|
-
_end_time = time.time()
|
|
294
|
-
|
|
295
|
-
# Calculate the build time
|
|
296
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
297
|
-
|
|
298
|
-
def __validate(self):
|
|
299
|
-
"""
|
|
300
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
301
|
-
arguments, input argument and table types. Also processes the
|
|
302
|
-
argument values.
|
|
303
|
-
"""
|
|
304
|
-
|
|
305
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
306
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
307
|
-
|
|
308
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
309
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
310
|
-
|
|
311
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
312
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
313
|
-
|
|
314
|
-
# Check for permitted values
|
|
315
|
-
classifier_type_permitted_values = ["MAXENT", "KNN"]
|
|
316
|
-
self.__awu._validate_permitted_values(self.classifier_type, classifier_type_permitted_values, "classifier_type")
|
|
317
|
-
|
|
318
|
-
# Check for permitted values for argument classifier_parameters.
|
|
319
|
-
if self.classifier_parameters is not None:
|
|
320
|
-
__classifier_parameters = self.classifier_parameters
|
|
321
|
-
classifier_parameters_permitted_values = ["compress"]
|
|
322
|
-
if configure._vantage_version == "vantage1.3":
|
|
323
|
-
classifier_parameters_permitted_values.extend(["kvalues", "power"])
|
|
324
|
-
|
|
325
|
-
if isinstance(__classifier_parameters, str):
|
|
326
|
-
__classifier_parameters = [__classifier_parameters]
|
|
327
|
-
|
|
328
|
-
# Check for parameters supported or not.
|
|
329
|
-
for __classifier_parameter in __classifier_parameters:
|
|
330
|
-
__parameter = __classifier_parameter.split(":")[0]
|
|
331
|
-
self.__awu._validate_permitted_values(__parameter, classifier_parameters_permitted_values, "classifier_parameters")
|
|
332
|
-
|
|
333
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
334
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
335
|
-
self.__awu._validate_input_columns_not_empty(self.text_column, "text_column")
|
|
336
|
-
self.__awu._validate_dataframe_has_argument_columns(self.text_column, "text_column", self.data, "data", False)
|
|
337
|
-
|
|
338
|
-
self.__awu._validate_input_columns_not_empty(self.category_column, "category_column")
|
|
339
|
-
self.__awu._validate_dataframe_has_argument_columns(self.category_column, "category_column", self.data, "data", False)
|
|
340
|
-
|
|
341
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
342
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
def __form_tdml_query(self):
|
|
346
|
-
"""
|
|
347
|
-
Function to generate the analytical function queries. The function defines
|
|
348
|
-
variables and list of arguments required to form the query.
|
|
349
|
-
"""
|
|
350
|
-
|
|
351
|
-
# Output table arguments list
|
|
352
|
-
self.__func_output_args_sql_names = []
|
|
353
|
-
self.__func_output_args = []
|
|
354
|
-
|
|
355
|
-
# Model Cataloging related attributes.
|
|
356
|
-
self._sql_specific_attributes = {}
|
|
357
|
-
self._sql_formula_attribute_mapper = {}
|
|
358
|
-
self._target_column = None
|
|
359
|
-
self._algorithm_name = None
|
|
360
|
-
|
|
361
|
-
# Generate lists for rest of the function arguments
|
|
362
|
-
self.__func_other_arg_sql_names = []
|
|
363
|
-
self.__func_other_args = []
|
|
364
|
-
self.__func_other_arg_json_datatypes = []
|
|
365
|
-
|
|
366
|
-
self.__func_other_arg_sql_names.append("TextColumn")
|
|
367
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.text_column, "\""), "'"))
|
|
368
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
369
|
-
|
|
370
|
-
self.__func_other_arg_sql_names.append("CategoryColumn")
|
|
371
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.category_column, "\""), "'"))
|
|
372
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
373
|
-
|
|
374
|
-
self.__func_other_arg_sql_names.append("ClassifierType")
|
|
375
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.classifier_type, "'"))
|
|
376
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
377
|
-
|
|
378
|
-
self.__func_other_arg_sql_names.append("ModelFile")
|
|
379
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.model_file, "'"))
|
|
380
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
381
|
-
|
|
382
|
-
if self.classifier_parameters is not None:
|
|
383
|
-
self.__func_other_arg_sql_names.append("ClassifierParameters")
|
|
384
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.classifier_parameters, "'"))
|
|
385
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
386
|
-
|
|
387
|
-
if self.nlp_parameters is not None:
|
|
388
|
-
self.__func_other_arg_sql_names.append("NlpParameters")
|
|
389
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.nlp_parameters, "'"))
|
|
390
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
391
|
-
|
|
392
|
-
if self.feature_selection is not None:
|
|
393
|
-
self.__func_other_arg_sql_names.append("FeatureSelectionMethod")
|
|
394
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.feature_selection, "'"))
|
|
395
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
396
|
-
|
|
397
|
-
if self.to_lower_case is not None and self.to_lower_case != True:
|
|
398
|
-
self.__func_other_arg_sql_names.append("ConvertToLowerCase")
|
|
399
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.to_lower_case, "'"))
|
|
400
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
401
|
-
|
|
402
|
-
if self.punctuation is not None:
|
|
403
|
-
self.__func_other_arg_sql_names.append("Punctuation")
|
|
404
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.punctuation, "'"))
|
|
405
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
406
|
-
|
|
407
|
-
# Generate lists for rest of the function arguments
|
|
408
|
-
sequence_input_by_list = []
|
|
409
|
-
if self.data_sequence_column is not None:
|
|
410
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
411
|
-
|
|
412
|
-
if len(sequence_input_by_list) > 0:
|
|
413
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
414
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
415
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
416
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
417
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
418
|
-
|
|
419
|
-
|
|
420
|
-
# Declare empty lists to hold input table information.
|
|
421
|
-
self.__func_input_arg_sql_names = []
|
|
422
|
-
self.__func_input_table_view_query = []
|
|
423
|
-
self.__func_input_dataframe_type = []
|
|
424
|
-
self.__func_input_distribution = []
|
|
425
|
-
self.__func_input_partition_by_cols = []
|
|
426
|
-
self.__func_input_order_by_cols = []
|
|
427
|
-
|
|
428
|
-
# Process data
|
|
429
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
430
|
-
self.__func_input_distribution.append("NONE")
|
|
431
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
432
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
433
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
434
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
435
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
436
|
-
|
|
437
|
-
function_name = "TextClassifierTrainer"
|
|
438
|
-
# Create instance to generate SQLMR.
|
|
439
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
440
|
-
self.__func_input_arg_sql_names,
|
|
441
|
-
self.__func_input_table_view_query,
|
|
442
|
-
self.__func_input_dataframe_type,
|
|
443
|
-
self.__func_input_distribution,
|
|
444
|
-
self.__func_input_partition_by_cols,
|
|
445
|
-
self.__func_input_order_by_cols,
|
|
446
|
-
self.__func_other_arg_sql_names,
|
|
447
|
-
self.__func_other_args,
|
|
448
|
-
self.__func_other_arg_json_datatypes,
|
|
449
|
-
self.__func_output_args_sql_names,
|
|
450
|
-
self.__func_output_args,
|
|
451
|
-
engine="ENGINE_ML")
|
|
452
|
-
# Invoke call to SQL-MR generation.
|
|
453
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
454
|
-
|
|
455
|
-
# Print SQL-MR query if requested to do so.
|
|
456
|
-
if display.print_sqlmr_query:
|
|
457
|
-
print(self.sqlmr_query)
|
|
458
|
-
|
|
459
|
-
# Set the algorithm name for Model Cataloging.
|
|
460
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
461
|
-
|
|
462
|
-
def __execute(self):
|
|
463
|
-
"""
|
|
464
|
-
Function to execute SQL-MR queries.
|
|
465
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
466
|
-
"""
|
|
467
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
468
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
469
|
-
try:
|
|
470
|
-
# Generate the output.
|
|
471
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
472
|
-
except Exception as emsg:
|
|
473
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
474
|
-
|
|
475
|
-
# Update output table data frames.
|
|
476
|
-
self._mlresults = []
|
|
477
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
478
|
-
self._mlresults.append(self.result)
|
|
479
|
-
|
|
480
|
-
def show_query(self):
|
|
481
|
-
"""
|
|
482
|
-
Function to return the underlying SQL query.
|
|
483
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
484
|
-
"""
|
|
485
|
-
return self.sqlmr_query
|
|
486
|
-
|
|
487
|
-
def get_prediction_type(self):
|
|
488
|
-
"""
|
|
489
|
-
Function to return the Prediction type of the algorithm.
|
|
490
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
491
|
-
as saved in the Model Catalog.
|
|
492
|
-
"""
|
|
493
|
-
return self._prediction_type
|
|
494
|
-
|
|
495
|
-
def get_target_column(self):
|
|
496
|
-
"""
|
|
497
|
-
Function to return the Target Column of the algorithm.
|
|
498
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
499
|
-
as saved in the Model Catalog.
|
|
500
|
-
"""
|
|
501
|
-
return self._target_column
|
|
502
|
-
|
|
503
|
-
def get_build_time(self):
|
|
504
|
-
"""
|
|
505
|
-
Function to return the build time of the algorithm in seconds.
|
|
506
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
507
|
-
as saved in the Model Catalog.
|
|
508
|
-
"""
|
|
509
|
-
return self._build_time
|
|
510
|
-
|
|
511
|
-
def _get_algorithm_name(self):
|
|
512
|
-
"""
|
|
513
|
-
Function to return the name of the algorithm.
|
|
514
|
-
"""
|
|
515
|
-
return self._algorithm_name
|
|
516
|
-
|
|
517
|
-
def _get_sql_specific_attributes(self):
|
|
518
|
-
"""
|
|
519
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
520
|
-
"""
|
|
521
|
-
return self._sql_specific_attributes
|
|
522
|
-
|
|
523
|
-
@classmethod
|
|
524
|
-
def _from_model_catalog(cls,
|
|
525
|
-
result = None,
|
|
526
|
-
**kwargs):
|
|
527
|
-
"""
|
|
528
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
529
|
-
"""
|
|
530
|
-
kwargs.pop("result", None)
|
|
531
|
-
|
|
532
|
-
# Model Cataloging related attributes.
|
|
533
|
-
target_column = kwargs.pop("__target_column", None)
|
|
534
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
535
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
536
|
-
build_time = kwargs.pop("__build_time", None)
|
|
537
|
-
|
|
538
|
-
# Let's create an object of this class.
|
|
539
|
-
obj = cls(**kwargs)
|
|
540
|
-
obj.result = result
|
|
541
|
-
|
|
542
|
-
# Initialize the sqlmr_query class attribute.
|
|
543
|
-
obj.sqlmr_query = None
|
|
544
|
-
|
|
545
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
546
|
-
obj._sql_specific_attributes = None
|
|
547
|
-
obj._target_column = target_column
|
|
548
|
-
obj._prediction_type = prediction_type
|
|
549
|
-
obj._algorithm_name = algorithm_name
|
|
550
|
-
obj._build_time = build_time
|
|
551
|
-
|
|
552
|
-
# Update output table data frames.
|
|
553
|
-
obj._mlresults = []
|
|
554
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
555
|
-
obj._mlresults.append(obj.result)
|
|
556
|
-
return obj
|
|
557
|
-
|
|
558
|
-
def __repr__(self):
|
|
559
|
-
"""
|
|
560
|
-
Returns the string representation for a TextClassifierTrainer class instance.
|
|
561
|
-
"""
|
|
562
|
-
repr_string="############ STDOUT Output ############"
|
|
563
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
564
|
-
return repr_string
|
|
565
|
-
|