teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,565 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Rohit Agrawal (rohit.agrawal@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.20
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.configure import configure
29
- from teradataml.options.display import display
30
-
31
- class TextClassifierTrainer:
32
-
33
- def __init__(self,
34
- data = None,
35
- text_column = None,
36
- category_column = None,
37
- classifier_type = 'maxEnt',
38
- classifier_parameters = None,
39
- nlp_parameters = None,
40
- feature_selection = None,
41
- model_file = None,
42
- data_sequence_column = None,
43
- to_lower_case=True,
44
- punctuation=None):
45
- """
46
- DESCRIPTION:
47
- The TextClassifierTrainer function trains a machine-learning
48
- classifier for text classification and installs the model file on
49
- the ML Engine. The model file can then be input to the function
50
- TextClassifier.
51
-
52
-
53
- PARAMETERS:
54
- data:
55
- Required Argument.
56
- Specifies the name of the teradataml DataFrame that contains the
57
- documents to use to train the model.
58
-
59
- text_column:
60
- Required Argument.
61
- Specifies the name of the column that contains the text of the
62
- training documents.
63
- Types: str
64
-
65
- category_column:
66
- Required Argument.
67
- Specifies the name of the column that contains the category of
68
- the training documents.
69
- Types: str
70
-
71
- classifier_type:
72
- Optional Argument.
73
- Specifies the classifier type of the model, KNN algorithm or
74
- maximum entropy model.
75
- Default Value: "maxEnt"
76
- Permitted Values: maxEnt, knn
77
- Types: str
78
-
79
- classifier_parameters:
80
- Optional Argument.
81
- Applies only if the classifier type of the model is KNN.
82
- Specifies parameters for the classifier.
83
- Permitted Values:
84
- * compress: The value must be in the range (0, 1). The n
85
- training documents are clustered into value*n
86
- groups and the model uses the center of each group as
87
- the feature vector.
88
- For example,
89
- if there are 100 training documents, then
90
- classifier_parameters ("compress:0.6") clusters
91
- them into 60 groups.
92
- * kvalues: The value must be int value in range
93
- [1, max(classes, ceil(sqrt(rows)))],
94
- where:
95
- * 'classes' is number of classes in "data" teradataml
96
- Dataframe.
97
- * 'rows' is number of rows in "data" teradataml
98
- Dataframe.
99
- Value specifies number of nearest neighbors to
100
- consider when deciding label of unseen document.
101
- Function selects best specified value for deciding
102
- label of unseen document.
103
- * power: The value must be int value in range [0, 10]. The
104
- value specifies power to apply to weight corresponding
105
- to each vote considered when deciding label of unseen
106
- document.
107
- Note:
108
- All above listed parameter values can be used when teradataml
109
- is connected to Vantage 1.3, otherwise only 'compress' value
110
- is supported.
111
- Types: str OR list of strs
112
-
113
- nlp_parameters:
114
- Optional Argument.
115
- Specifies natural language processing (NLP) parameters for
116
- preprocessing the text data and produce tokens:
117
- * tokenDictFile: token_file - token_file is name of ML
118
- Engine file in which each line contains a phrase, followed
119
- by a space, followed by the token for the phrase (and
120
- nothing else).
121
- * stopwordsFile:stopword_file - stopword_file is the name
122
- of an ML Engine file in which each line contains
123
- exactly one stop word (a word to ignore during tokenization,
124
- such as a, an, or the).
125
- * useStem:{true|false} - Specifies whether the function
126
- stems the tokens. The default value is "false".
127
- * stemIgnoreFile:stem_ignore_file - stem_ignore_file is
128
- the name of an ML Engine file in which each line
129
- contains exactly one word to ignore during stemming.
130
- Specifying this parameter with "useStem:false" causes an
131
- exception.
132
- * useBgram:{ true | false } - Specifies whether the function
133
- uses Bigram, which considers the proximity of adjacent
134
- tokens when analyzing them. The default value is "false".
135
- * language:{ en | zh_CN | zh_TW } - Specifies the language
136
- of the input text - English (en), Simplified Chinese (zh_CN),
137
- or Traditional Chinese (zh_TW). The default value is en.
138
- For the values zh_CN and zh_TW, the function ignores the
139
- parameters useStem and stemIgnoreFile.
140
- Example: nlp_parameters("tokenDictFile:token_dict.txt",
141
- "stopwordsFile:fileName",
142
- "useStem:true",
143
- "stemIgnoreFile:fileName",
144
- "useBgram:true", "language:zh_CN")
145
- Types: str OR list of strs
146
-
147
- feature_selection:
148
- Optional Argument.
149
- Specifies the feature selection method, DF (document frequency).
150
- The values min and max must be in the range (0, 1). The function
151
- selects only the tokens that appear in at least min*n documents
152
- and at most max*n documents, where n is the number of training
153
- documents. For example, FeatureSelection ("DF:[0.1:0.9]") causes
154
- the function to select only the tokens that appear in at least
155
- 10% but no more than 90% of the training documents. If min
156
- exceeds max, the function uses min as max and max as min.
157
- Types: str
158
-
159
- model_file:
160
- Required Argument.
161
- Specifies the name of the model file to be generated.
162
- Types: str
163
-
164
- data_sequence_column:
165
- Optional Argument.
166
- Specifies the list of column(s) that uniquely identifies each row of
167
- the input argument "data". The argument is used to ensure
168
- deterministic results for functions which produce results that vary
169
- from run to run.
170
- Types: str OR list of Strings (str)
171
-
172
- to_lower_case:
173
- Optional Argument.
174
- Specifies whether to convert input text to lowercase.
175
- Note:
176
- "to_lower_case" argument support is only available when teradataml
177
- is connected to Vantage 1.3 version.
178
- Default Value: True
179
- Types: bool
180
-
181
- punctuation:
182
- Optional Argument.
183
- Specifies a regular expression that represents the punctuation
184
- characters to remove from the input text.
185
- Note:
186
- "punctuation" argument support is only available when teradataml
187
- is connected to Vantage 1.3 version.
188
- Types: str
189
-
190
- RETURNS:
191
- Instance of TextClassifierTrainer.
192
- Output teradataml DataFrames can be accessed using attribute
193
- references, such as TextClassifierTrainerObj.<attribute_name>.
194
- Output teradataml DataFrame attribute name is:
195
- result
196
-
197
-
198
- RAISES:
199
- TeradataMlException, TypeError, ValueError
200
-
201
-
202
- EXAMPLES:
203
- # Load example data.
204
- load_example_data("textclassifiertrainer", "texttrainer_input")
205
-
206
- # Create teradataml DataFrame objects.
207
- # The input table contains text of the training documents and the
208
- # category of the training documents.
209
- texttrainer_input = DataFrame.from_table("texttrainer_input")
210
-
211
- # Example 1 - The function outputs a binary file with the name
212
- # specified by "model_file" argument.
213
- TextClassifierTrainer_out1 = TextClassifierTrainer(data = texttrainer_input,
214
- text_column = "content",
215
- category_column = "category",
216
- classifier_type = "knn",
217
- classifier_parameters = ["compress:0.9"],
218
- nlp_parameters = ["useStem:true", "stopwordsFile: stopwords.txt"],
219
- feature_selection = "DF:[0.1:0.99]",
220
- model_file = "knn.bin"
221
- )
222
-
223
- # Print the result teradataml DataFrame
224
- print(TextClassifierTrainer_out1)
225
-
226
- # Example 2 - This example uses parameters 'kvalues' and 'power' as input
227
- # to argument "classifier_parameters" and outputs a binary file with the name
228
- # specified by "model_file" argument.
229
- # Note:
230
- # This Example will work only when teradataml is connected
231
- # to Vantage 1.3 or later.
232
- TextClassifierTrainer_out2 = TextClassifierTrainer(data = texttrainer_input,
233
- text_column = "content",
234
- category_column = "category",
235
- classifier_type = "knn",
236
- classifier_parameters = ["compress:0.9", "kvalues:{1,3}", "power:2"],
237
- nlp_parameters = ["useStem:true", "stopwordsFile: stopwords.txt"],
238
- feature_selection = "DF:[0.1:0.99]",
239
- model_file = "knn.bin",
240
- to_lower_case=False,
241
- punctuation='[a-z]'
242
- )
243
-
244
- # Print the result teradataml DataFrame
245
- print(TextClassifierTrainer_out2)
246
-
247
- """
248
-
249
- # Start the timer to get the build time
250
- _start_time = time.time()
251
-
252
- self.data = data
253
- self.text_column = text_column
254
- self.category_column = category_column
255
- self.classifier_type = classifier_type
256
- self.classifier_parameters = classifier_parameters
257
- self.nlp_parameters = nlp_parameters
258
- self.feature_selection = feature_selection
259
- self.model_file = model_file
260
- self.data_sequence_column = data_sequence_column
261
- self.to_lower_case = to_lower_case
262
- self.punctuation = punctuation
263
-
264
- # Create TeradataPyWrapperUtils instance which contains validation functions.
265
- self.__awu = AnalyticsWrapperUtils()
266
- self.__aed_utils = AedUtils()
267
-
268
- # Create argument information matrix to do parameter checking
269
- self.__arg_info_matrix = []
270
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
271
- self.__arg_info_matrix.append(["text_column", self.text_column, False, (str)])
272
- self.__arg_info_matrix.append(["category_column", self.category_column, False, (str)])
273
- self.__arg_info_matrix.append(["classifier_type", self.classifier_type, True, (str)])
274
- self.__arg_info_matrix.append(["classifier_parameters", self.classifier_parameters, True, (str,list)])
275
- self.__arg_info_matrix.append(["nlp_parameters", self.nlp_parameters, True, (str,list)])
276
- self.__arg_info_matrix.append(["feature_selection", self.feature_selection, True, (str)])
277
- self.__arg_info_matrix.append(["model_file", self.model_file, False, (str)])
278
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
279
- self.__arg_info_matrix.append(["to_lower_case", self.to_lower_case, True, (bool)])
280
- self.__arg_info_matrix.append(["punctuation", self.punctuation, True, (str)])
281
-
282
- if inspect.stack()[1][3] != '_from_model_catalog':
283
- # Perform the function validations
284
- self.__validate()
285
- # Generate the ML query
286
- self.__form_tdml_query()
287
- # Execute ML query
288
- self.__execute()
289
- # Get the prediction type
290
- self._prediction_type = self.__awu._get_function_prediction_type(self)
291
-
292
- # End the timer to get the build time
293
- _end_time = time.time()
294
-
295
- # Calculate the build time
296
- self._build_time = (int)(_end_time - _start_time)
297
-
298
- def __validate(self):
299
- """
300
- Function to validate sqlmr function arguments, which verifies missing
301
- arguments, input argument and table types. Also processes the
302
- argument values.
303
- """
304
-
305
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
306
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
307
-
308
- # Make sure that a non-NULL value has been supplied correct type of argument
309
- self.__awu._validate_argument_types(self.__arg_info_matrix)
310
-
311
- # Check to make sure input table types are strings or data frame objects or of valid type.
312
- self.__awu._validate_input_table_datatype(self.data, "data", None)
313
-
314
- # Check for permitted values
315
- classifier_type_permitted_values = ["MAXENT", "KNN"]
316
- self.__awu._validate_permitted_values(self.classifier_type, classifier_type_permitted_values, "classifier_type")
317
-
318
- # Check for permitted values for argument classifier_parameters.
319
- if self.classifier_parameters is not None:
320
- __classifier_parameters = self.classifier_parameters
321
- classifier_parameters_permitted_values = ["compress"]
322
- if configure._vantage_version == "vantage1.3":
323
- classifier_parameters_permitted_values.extend(["kvalues", "power"])
324
-
325
- if isinstance(__classifier_parameters, str):
326
- __classifier_parameters = [__classifier_parameters]
327
-
328
- # Check for parameters supported or not.
329
- for __classifier_parameter in __classifier_parameters:
330
- __parameter = __classifier_parameter.split(":")[0]
331
- self.__awu._validate_permitted_values(__parameter, classifier_parameters_permitted_values, "classifier_parameters")
332
-
333
- # Check whether the input columns passed to the argument are not empty.
334
- # Also check whether the input columns passed to the argument valid or not.
335
- self.__awu._validate_input_columns_not_empty(self.text_column, "text_column")
336
- self.__awu._validate_dataframe_has_argument_columns(self.text_column, "text_column", self.data, "data", False)
337
-
338
- self.__awu._validate_input_columns_not_empty(self.category_column, "category_column")
339
- self.__awu._validate_dataframe_has_argument_columns(self.category_column, "category_column", self.data, "data", False)
340
-
341
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
342
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
343
-
344
-
345
- def __form_tdml_query(self):
346
- """
347
- Function to generate the analytical function queries. The function defines
348
- variables and list of arguments required to form the query.
349
- """
350
-
351
- # Output table arguments list
352
- self.__func_output_args_sql_names = []
353
- self.__func_output_args = []
354
-
355
- # Model Cataloging related attributes.
356
- self._sql_specific_attributes = {}
357
- self._sql_formula_attribute_mapper = {}
358
- self._target_column = None
359
- self._algorithm_name = None
360
-
361
- # Generate lists for rest of the function arguments
362
- self.__func_other_arg_sql_names = []
363
- self.__func_other_args = []
364
- self.__func_other_arg_json_datatypes = []
365
-
366
- self.__func_other_arg_sql_names.append("TextColumn")
367
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.text_column, "\""), "'"))
368
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
369
-
370
- self.__func_other_arg_sql_names.append("CategoryColumn")
371
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.category_column, "\""), "'"))
372
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
373
-
374
- self.__func_other_arg_sql_names.append("ClassifierType")
375
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.classifier_type, "'"))
376
- self.__func_other_arg_json_datatypes.append("STRING")
377
-
378
- self.__func_other_arg_sql_names.append("ModelFile")
379
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.model_file, "'"))
380
- self.__func_other_arg_json_datatypes.append("STRING")
381
-
382
- if self.classifier_parameters is not None:
383
- self.__func_other_arg_sql_names.append("ClassifierParameters")
384
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.classifier_parameters, "'"))
385
- self.__func_other_arg_json_datatypes.append("STRING")
386
-
387
- if self.nlp_parameters is not None:
388
- self.__func_other_arg_sql_names.append("NlpParameters")
389
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.nlp_parameters, "'"))
390
- self.__func_other_arg_json_datatypes.append("STRING")
391
-
392
- if self.feature_selection is not None:
393
- self.__func_other_arg_sql_names.append("FeatureSelectionMethod")
394
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.feature_selection, "'"))
395
- self.__func_other_arg_json_datatypes.append("STRING")
396
-
397
- if self.to_lower_case is not None and self.to_lower_case != True:
398
- self.__func_other_arg_sql_names.append("ConvertToLowerCase")
399
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.to_lower_case, "'"))
400
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
401
-
402
- if self.punctuation is not None:
403
- self.__func_other_arg_sql_names.append("Punctuation")
404
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.punctuation, "'"))
405
- self.__func_other_arg_json_datatypes.append("STRING")
406
-
407
- # Generate lists for rest of the function arguments
408
- sequence_input_by_list = []
409
- if self.data_sequence_column is not None:
410
- sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
411
-
412
- if len(sequence_input_by_list) > 0:
413
- self.__func_other_arg_sql_names.append("SequenceInputBy")
414
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
415
- self.__func_other_args.append(sequence_input_by_arg_value)
416
- self.__func_other_arg_json_datatypes.append("STRING")
417
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
418
-
419
-
420
- # Declare empty lists to hold input table information.
421
- self.__func_input_arg_sql_names = []
422
- self.__func_input_table_view_query = []
423
- self.__func_input_dataframe_type = []
424
- self.__func_input_distribution = []
425
- self.__func_input_partition_by_cols = []
426
- self.__func_input_order_by_cols = []
427
-
428
- # Process data
429
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
430
- self.__func_input_distribution.append("NONE")
431
- self.__func_input_arg_sql_names.append("InputTable")
432
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
433
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
434
- self.__func_input_partition_by_cols.append("NA_character_")
435
- self.__func_input_order_by_cols.append("NA_character_")
436
-
437
- function_name = "TextClassifierTrainer"
438
- # Create instance to generate SQLMR.
439
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
440
- self.__func_input_arg_sql_names,
441
- self.__func_input_table_view_query,
442
- self.__func_input_dataframe_type,
443
- self.__func_input_distribution,
444
- self.__func_input_partition_by_cols,
445
- self.__func_input_order_by_cols,
446
- self.__func_other_arg_sql_names,
447
- self.__func_other_args,
448
- self.__func_other_arg_json_datatypes,
449
- self.__func_output_args_sql_names,
450
- self.__func_output_args,
451
- engine="ENGINE_ML")
452
- # Invoke call to SQL-MR generation.
453
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
454
-
455
- # Print SQL-MR query if requested to do so.
456
- if display.print_sqlmr_query:
457
- print(self.sqlmr_query)
458
-
459
- # Set the algorithm name for Model Cataloging.
460
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
461
-
462
- def __execute(self):
463
- """
464
- Function to execute SQL-MR queries.
465
- Create DataFrames for the required SQL-MR outputs.
466
- """
467
- # Generate STDOUT table name and add it to the output table list.
468
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
469
- try:
470
- # Generate the output.
471
- UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
472
- except Exception as emsg:
473
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
474
-
475
- # Update output table data frames.
476
- self._mlresults = []
477
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
478
- self._mlresults.append(self.result)
479
-
480
- def show_query(self):
481
- """
482
- Function to return the underlying SQL query.
483
- When model object is created using retrieve_model(), then None is returned.
484
- """
485
- return self.sqlmr_query
486
-
487
- def get_prediction_type(self):
488
- """
489
- Function to return the Prediction type of the algorithm.
490
- When model object is created using retrieve_model(), then the value returned is
491
- as saved in the Model Catalog.
492
- """
493
- return self._prediction_type
494
-
495
- def get_target_column(self):
496
- """
497
- Function to return the Target Column of the algorithm.
498
- When model object is created using retrieve_model(), then the value returned is
499
- as saved in the Model Catalog.
500
- """
501
- return self._target_column
502
-
503
- def get_build_time(self):
504
- """
505
- Function to return the build time of the algorithm in seconds.
506
- When model object is created using retrieve_model(), then the value returned is
507
- as saved in the Model Catalog.
508
- """
509
- return self._build_time
510
-
511
- def _get_algorithm_name(self):
512
- """
513
- Function to return the name of the algorithm.
514
- """
515
- return self._algorithm_name
516
-
517
- def _get_sql_specific_attributes(self):
518
- """
519
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
520
- """
521
- return self._sql_specific_attributes
522
-
523
- @classmethod
524
- def _from_model_catalog(cls,
525
- result = None,
526
- **kwargs):
527
- """
528
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
529
- """
530
- kwargs.pop("result", None)
531
-
532
- # Model Cataloging related attributes.
533
- target_column = kwargs.pop("__target_column", None)
534
- prediction_type = kwargs.pop("__prediction_type", None)
535
- algorithm_name = kwargs.pop("__algorithm_name", None)
536
- build_time = kwargs.pop("__build_time", None)
537
-
538
- # Let's create an object of this class.
539
- obj = cls(**kwargs)
540
- obj.result = result
541
-
542
- # Initialize the sqlmr_query class attribute.
543
- obj.sqlmr_query = None
544
-
545
- # Initialize the SQL specific Model Cataloging attributes.
546
- obj._sql_specific_attributes = None
547
- obj._target_column = target_column
548
- obj._prediction_type = prediction_type
549
- obj._algorithm_name = algorithm_name
550
- obj._build_time = build_time
551
-
552
- # Update output table data frames.
553
- obj._mlresults = []
554
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
555
- obj._mlresults.append(obj.result)
556
- return obj
557
-
558
- def __repr__(self):
559
- """
560
- Returns the string representation for a TextClassifierTrainer class instance.
561
- """
562
- repr_string="############ STDOUT Output ############"
563
- repr_string = "{}\n\n{}".format(repr_string,self.result)
564
- return repr_string
565
-