teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,762 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Rohit Agrawal (rohit.agrawal@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.8
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.options.configure import configure
28
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
29
- from teradataml.options.display import display
30
-
31
- class VectorDistance:
32
-
33
- def __init__(self,
34
- target_data = None,
35
- ref_data = None,
36
- target_id = None,
37
- target_feature = None,
38
- target_value = None,
39
- ref_id = None,
40
- ref_feature = None,
41
- ref_value = None,
42
- reftable_size = "small",
43
- distance_measure = "cosine",
44
- ignore_mismatch = True,
45
- replace_invalid = "positiveinfinity",
46
- top_k = None,
47
- max_distance = None,
48
- target_data_sequence_column = None,
49
- ref_data_sequence_column = None,
50
- target_data_partition_column = "ANY",
51
- target_data_order_column = None,
52
- ref_data_order_column = None,
53
- ref_columns = None,
54
- output_format = "sparse",
55
- input_data_same = False,
56
- target_columns = None):
57
- """
58
- DESCRIPTION:
59
- The VectorDistance function takes a teradataml DataFrame of target
60
- vectors and a teradataml DataFrame of reference vectors and returns a
61
- teradataml DataFrame that contains the distance between each
62
- target-reference pair.
63
-
64
-
65
- PARAMETERS:
66
- target_data:
67
- Required Argument.
68
- Specifies a teradataml DataFrame that contains target vectors.
69
-
70
- target_data_partition_column:
71
- Required Argument. Optional when teradataml is connected to
72
- Vantage 1.3 version.
73
- Specifies Partition By columns for target_data.
74
- Values to this argument can be provided as list, if multiple columns
75
- are used for partition.
76
- Note:
77
- 1. If teradataml is not connected to Vantage 1.3 then user must use
78
- this argument by passing column name(s) only, passing "ANY" is
79
- not supported.
80
- 2. If teradataml is connected to Vantage 1.3 and target_data
81
- teradataml DataFrame is in sparse-format then user must use
82
- this argument by passing column name(s).
83
- 3. If teradataml is connected to Vantage 1.3 and target_data
84
- teradataml DataFrame is in dense-format then user must
85
- specify "ANY" to this argument.
86
- Default Value: ANY (If teradataml is connected to Vantage 1.3)
87
- Types: str OR list of Strings (str)
88
-
89
- target_data_order_column:
90
- Optional Argument.
91
- Specifies Order By columns for target_data.
92
- Values to this argument can be provided as a list, if multiple
93
- columns are used for ordering.
94
- Types: str OR list of Strings (str)
95
-
96
- ref_data:
97
- Required Argument.
98
- Specifies a teradataml DataFrame that contains reference vectors.
99
-
100
- ref_data_order_column:
101
- Optional Argument.
102
- Specifies Order By columns for ref_data.
103
- Values to this argument can be provided as a list, if multiple
104
- columns are used for ordering.
105
- Types: str OR list of Strings (str)
106
-
107
- target_id:
108
- Required Argument.
109
- Specifies the names of the columns that comprise the target vector
110
- identifier. You must partition the target input teradataml DataFrame
111
- by these columns and specify them with this argument.
112
- Types: str OR list of Strings (str)
113
-
114
- target_feature:
115
- Required Argument. Optional when teradataml is connected to
116
- Vantage 1.3 version.
117
- Specifies the name of the column that contains the target vector
118
- feature name (for example, the axis of a 3-D vector).
119
- Note: An entry with a NULL value in a feature_column is dropped.
120
- Types: str
121
-
122
- target_value:
123
- Optional Argument.
124
- Specifies the name of the column that contains the value for the
125
- target vector feature. The default value is 1.
126
- Note: An entry with a NULL value in a value_column is dropped.
127
- Types: str
128
-
129
- ref_id:
130
- Optional Argument.
131
- Specifies the names of the columns that comprise the reference vector
132
- identifier. The default value is the target_id argument value.
133
- Types: str OR list of Strings (str)
134
-
135
- ref_feature:
136
- Optional Argument.
137
- Specifies the name of the column that contains the reference vector
138
- feature name. The default value is the target_feature argument value.
139
- Types: str
140
-
141
- ref_value:
142
- Optional Argument.
143
- Specifies the name of the column that contains the value for the
144
- reference vector feature. The default value is the target_value
145
- argument value.
146
- Note: An entry with a NULL value in a value_column is dropped.
147
- Types: str
148
-
149
- reftable_size:
150
- Optional Argument.
151
- Specifies the size of the reference table. Specify "LARGE" only if
152
- the reference teradataml DataFrame does not fit in memory.
153
- Default Value: "small"
154
- Permitted Values: small, large
155
- Types: str
156
-
157
- distance_measure:
158
- Optional Argument.
159
- Specifies the distance measures that the function uses.
160
- Default Value: "cosine"
161
- Permitted Values: COSINE, EUCLIDEAN, MANHATTAN, BINARY
162
- Types: str OR list of Strings (str)
163
-
164
- ignore_mismatch:
165
- Optional Argument.
166
- Specifies whether to drop mismatched dimensions. If distance_measure
167
- is "cosine", then this argument is "False". If you specify "True",
168
- then two vectors with no common features become two empty vectors
169
- when only their common features are considered, and the function
170
- cannot measure the distance between them.
171
- Default Value: True
172
- Types: bool
173
-
174
- replace_invalid:
175
- Optional Argument.
176
- Specifies the value to return when the function encounters an
177
- infinite value or empty vectors. For custom, you can supply any float
178
- value.
179
- Default Value: "positiveinfinity"
180
- Types: str
181
-
182
- top_k:
183
- Optional Argument.
184
- Specifies, for each target vector and for each measure, the maximum
185
- number of closest reference vectors to include in the output table.
186
- For k, you can supply any integer value.
187
- Types: int
188
-
189
- max_distance:
190
- Optional Argument.
191
- Specifies the maximum distance between a pair of target and reference
192
- vectors. If the distance exceeds the threshold, the pair does not
193
- appear in the output table. If the distance_measure argument
194
- specifies multiple measures, then the max_distance argument must
195
- specify a threshold for each measure. The ith threshold corresponds
196
- to the ith measure. Each threshold can be any float value. If you
197
- omit this argument, then the function returns all results.
198
- Types: float OR list of Floats (float)
199
-
200
- target_data_sequence_column:
201
- Optional Argument.
202
- Specifies the list of column(s) that uniquely identifies each row of
203
- the input argument "target_data". The argument is used to ensure
204
- deterministic results for functions which produce results that vary
205
- from run to run.
206
- Types: str OR list of Strings (str)
207
-
208
- ref_data_sequence_column:
209
- Optional Argument.
210
- Specifies the list of column(s) that uniquely identifies each row of
211
- the input argument "ref_data". The argument is used to ensure
212
- deterministic results for functions which produce results that vary
213
- from run to run.
214
- Types: str OR list of Strings (str)
215
-
216
- ref_columns:
217
- Optional Argument.
218
- Specifies the columns that contains the value for the ref vector
219
- features.
220
- For Example:
221
- The names of the three axes of a 3-D vector.
222
- Note:
223
- 1. "ref_columns" argument support is only available when teradataml
224
- is connected to Vantage 1.3 version.
225
- 2. If "target_data" teradataml DataFrame is in dense-format input,
226
- "target_columns" and "ref_columns" must specify the same columns;
227
- otherwise results are invalid.
228
- Types: str OR list of Strings (str)
229
-
230
- output_format:
231
- Optional Argument.
232
- Specifies the format of the output teradataml DataFrame.
233
- For large data sets, Teradata recommends input in dense format,
234
- for which computing distances is faster.
235
- Note:
236
- "output_format" argument support is only available when teradataml
237
- is connected to Vantage 1.3 version.
238
- Default Value: "sparse"
239
- Permitted Values: sparse, dense
240
- Types: str
241
-
242
- input_data_same:
243
- Optional with "top_k" Argument, disallowed otherwise.
244
- Specifies whether target_data and ref_data teradataml DataFrame
245
- are same. Specify 'True' to increase speed of computing distances
246
- when both the DataFrames are same..
247
- Note:
248
- "input_data_same" argument support is only available when teradataml
249
- is connected to Vantage 1.3 version.
250
- Default Value: False
251
- Types: bool
252
-
253
- target_columns:
254
- Optional Argument.
255
- Specifies the columns that contains the value for the target vector
256
- features.
257
- For Example:
258
- The names of the three axes of a 3-D vector.
259
- Note:
260
- "target_columns" argument support is only available when teradataml
261
- is connected to Vantage 1.3 version.
262
- Types: str OR list of Strings (str)
263
-
264
- RETURNS:
265
- Instance of VectorDistance.
266
- Output teradataml DataFrames can be accessed using attribute
267
- references, such as VectorDistanceObj.<attribute_name>.
268
- Output teradataml DataFrame attribute name is:
269
- result
270
-
271
-
272
- RAISES:
273
- TeradataMlException, TypeError, ValueError
274
-
275
-
276
- EXAMPLES:
277
- # Load example data.
278
- load_example_data("vectordistance", ["target_mobile_data", "ref_mobile_data",
279
- "target_mobile_data_dense", "ref_mobile_data_dense"])
280
-
281
- # Create teradataml DataFrame objects.
282
- target_mobile_data = DataFrame.from_table("target_mobile_data")
283
- ref_mobile_data = DataFrame.from_table("ref_mobile_data")
284
- target_mobile_data_dense = DataFrame.from_table("target_mobile_data_dense")
285
- ref_mobile_data_dense = DataFrame.from_table("ref_mobile_data_dense")
286
-
287
- # Example 1 - Using the default ("cosine") distance measure with no threshold.
288
- VectorDistance_out1 = VectorDistance(target_data = target_mobile_data,
289
- target_data_partition_column = ["userid"],
290
- ref_data = ref_mobile_data,
291
- target_id = ["userid"],
292
- target_feature = "feature",
293
- target_value = "value1"
294
- )
295
- # Print the output data.
296
- print(VectorDistance_out1)
297
-
298
- # Example 2 - Using three distance measures with corresponding thresholds (max.distance).
299
- VectorDistance_out2 = VectorDistance(target_data = target_mobile_data,
300
- target_data_partition_column = ["userid"],
301
- ref_data = ref_mobile_data,
302
- target_id = ["userid"],
303
- target_feature = "feature",
304
- target_value = "value1",
305
- distance_measure = ["Cosine","Euclidean","Manhattan"],
306
- max_distance = [0.03,0.8,1.0]
307
- )
308
- # Print the output data.
309
- print(VectorDistance_out2)
310
-
311
- # Example 3 - target_data DataFrame is in 'dense' format with no threshold.
312
- # Note:
313
- # This Example will work only when teradataml is connected
314
- # to Vantage 1.3 or later.
315
- VectorDistance_out3 = VectorDistance(target_data = target_mobile_data_dense,
316
- target_data_partition_column = "ANY",
317
- ref_data = ref_mobile_data_dense,
318
- target_id = ["userid"],
319
- target_columns=["CallDuration", "DataCounter", "SMS"],
320
- distance_measure = "Euclidean"
321
- )
322
- # Print the output data.
323
- print(VectorDistance_out3)
324
-
325
- # Example 4 - Using the same "target_data" and "ref_data" teradata DataFrame same
326
- # with "input_data_same" set to 'True'.
327
- # Note:
328
- # This Example will work only when teradataml is connected
329
- # to Vantage 1.3 or later.
330
- VectorDistance_out4 = VectorDistance(target_data = target_mobile_data,
331
- target_data_partition_column = ["userid"],
332
- ref_data = target_mobile_data,
333
- target_id = ["userid"],
334
- target_feature = "feature",
335
- target_value = "value1",
336
- distance_measure = "Euclidean",
337
- input_data_same = True
338
- )
339
- # Print the output data.
340
- print(VectorDistance_out4)
341
-
342
- """
343
-
344
- # Start the timer to get the build time
345
- _start_time = time.time()
346
-
347
- self.target_data = target_data
348
- self.ref_data = ref_data
349
- self.target_id = target_id
350
- self.target_feature = target_feature
351
- self.target_value = target_value
352
- self.ref_id = ref_id
353
- self.ref_feature = ref_feature
354
- self.ref_value = ref_value
355
- self.reftable_size = reftable_size
356
- self.distance_measure = distance_measure
357
- self.ignore_mismatch = ignore_mismatch
358
- self.replace_invalid = replace_invalid
359
- self.top_k = top_k
360
- self.max_distance = max_distance
361
- self.ref_columns = ref_columns
362
- self.output_format = output_format
363
- self.input_data_same = input_data_same
364
- self.target_columns = target_columns
365
- self.target_data_sequence_column = target_data_sequence_column
366
- self.ref_data_sequence_column = ref_data_sequence_column
367
- self.target_data_partition_column = target_data_partition_column
368
- if configure._vantage_version != "vantage1.3" and target_data_partition_column == "ANY":
369
- self.target_data_partition_column = None
370
- self.target_data_order_column = target_data_order_column
371
- self.ref_data_order_column = ref_data_order_column
372
-
373
- # Create TeradataPyWrapperUtils instance which contains validation functions.
374
- self.__awu = AnalyticsWrapperUtils()
375
- self.__aed_utils = AedUtils()
376
-
377
- # Create argument information matrix to do parameter checking
378
- self.__arg_info_matrix = []
379
- self.__arg_info_matrix.append(["target_data", self.target_data, False, (DataFrame)])
380
- self.__arg_info_matrix.append(["target_data_partition_column", self.target_data_partition_column, configure._vantage_version == "vantage1.3", (str,list)])
381
- self.__arg_info_matrix.append(["target_data_order_column", self.target_data_order_column, True, (str,list)])
382
- self.__arg_info_matrix.append(["ref_data", self.ref_data, False, (DataFrame)])
383
- self.__arg_info_matrix.append(["ref_data_order_column", self.ref_data_order_column, True, (str,list)])
384
- self.__arg_info_matrix.append(["target_id", self.target_id, False, (str,list)])
385
- self.__arg_info_matrix.append(["target_feature", self.target_feature, configure._vantage_version == "vantage1.3", (str)])
386
- self.__arg_info_matrix.append(["target_value", self.target_value, True, (str)])
387
- self.__arg_info_matrix.append(["ref_id", self.ref_id, True, (str,list)])
388
- self.__arg_info_matrix.append(["ref_feature", self.ref_feature, True, (str)])
389
- self.__arg_info_matrix.append(["ref_value", self.ref_value, True, (str)])
390
- self.__arg_info_matrix.append(["reftable_size", self.reftable_size, True, (str)])
391
- self.__arg_info_matrix.append(["distance_measure", self.distance_measure, True, (str,list)])
392
- self.__arg_info_matrix.append(["ignore_mismatch", self.ignore_mismatch, True, (bool)])
393
- self.__arg_info_matrix.append(["replace_invalid", self.replace_invalid, True, (str)])
394
- self.__arg_info_matrix.append(["top_k", self.top_k, True, (int)])
395
- self.__arg_info_matrix.append(["max_distance", self.max_distance, True, (float,list)])
396
- self.__arg_info_matrix.append(["ref_columns", self.ref_columns, True, (str,list)])
397
- self.__arg_info_matrix.append(["output_format", self.output_format, True, (str)])
398
- self.__arg_info_matrix.append(["input_data_same", self.input_data_same, True, (bool)])
399
- self.__arg_info_matrix.append(["target_columns", self.target_columns, True, (str,list)])
400
- self.__arg_info_matrix.append(["target_data_sequence_column", self.target_data_sequence_column, True, (str,list)])
401
- self.__arg_info_matrix.append(["ref_data_sequence_column", self.ref_data_sequence_column, True, (str,list)])
402
-
403
- if inspect.stack()[1][3] != '_from_model_catalog':
404
- # Perform the function validations
405
- self.__validate()
406
- # Generate the ML query
407
- self.__form_tdml_query()
408
- # Execute ML query
409
- self.__execute()
410
- # Get the prediction type
411
- self._prediction_type = self.__awu._get_function_prediction_type(self)
412
-
413
- # End the timer to get the build time
414
- _end_time = time.time()
415
-
416
- # Calculate the build time
417
- self._build_time = (int)(_end_time - _start_time)
418
-
419
- def __validate(self):
420
- """
421
- Function to validate sqlmr function arguments, which verifies missing
422
- arguments, input argument and table types. Also processes the
423
- argument values.
424
- """
425
-
426
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
427
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
428
-
429
- # Make sure that a non-NULL value has been supplied correct type of argument
430
- self.__awu._validate_argument_types(self.__arg_info_matrix)
431
-
432
- # Check to make sure input table types are strings or data frame objects or of valid type.
433
- self.__awu._validate_input_table_datatype(self.target_data, "target_data", None)
434
- self.__awu._validate_input_table_datatype(self.ref_data, "ref_data", None)
435
-
436
- # Check for permitted values
437
- reftable_size_permitted_values = ["SMALL", "LARGE"]
438
- self.__awu._validate_permitted_values(self.reftable_size, reftable_size_permitted_values, "reftable_size")
439
-
440
- distance_measure_permitted_values = ["COSINE", "EUCLIDEAN", "MANHATTAN", "BINARY"]
441
- self.__awu._validate_permitted_values(self.distance_measure, distance_measure_permitted_values, "distance_measure")
442
-
443
- output_format_permitted_values = ["SPARSE", "DENSE"]
444
- self.__awu._validate_permitted_values(self.output_format, output_format_permitted_values, "output_format")
445
-
446
- # Check whether the input columns passed to the argument are not empty.
447
- # Also check whether the input columns passed to the argument valid or not.
448
- self.__awu._validate_input_columns_not_empty(self.target_id, "target_id")
449
- self.__awu._validate_dataframe_has_argument_columns(self.target_id, "target_id", self.target_data, "target_data", False)
450
-
451
- self.__awu._validate_input_columns_not_empty(self.target_feature, "target_feature")
452
- self.__awu._validate_dataframe_has_argument_columns(self.target_feature, "target_feature", self.target_data, "target_data", False)
453
-
454
- self.__awu._validate_input_columns_not_empty(self.target_value, "target_value")
455
- self.__awu._validate_dataframe_has_argument_columns(self.target_value, "target_value", self.target_data, "target_data", False)
456
-
457
- self.__awu._validate_input_columns_not_empty(self.ref_id, "ref_id")
458
- self.__awu._validate_dataframe_has_argument_columns(self.ref_id, "ref_id", self.ref_data, "ref_data", False)
459
-
460
- self.__awu._validate_input_columns_not_empty(self.ref_feature, "ref_feature")
461
- self.__awu._validate_dataframe_has_argument_columns(self.ref_feature, "ref_feature", self.ref_data, "ref_data", False)
462
-
463
- self.__awu._validate_input_columns_not_empty(self.ref_value, "ref_value")
464
- self.__awu._validate_dataframe_has_argument_columns(self.ref_value, "ref_value", self.ref_data, "ref_data", False)
465
-
466
- self.__awu._validate_input_columns_not_empty(self.target_columns, "target_columns")
467
- self.__awu._validate_dataframe_has_argument_columns(self.target_columns, "target_columns", self.target_data, "target_data", False)
468
-
469
- self.__awu._validate_input_columns_not_empty(self.ref_columns, "ref_columns")
470
- self.__awu._validate_dataframe_has_argument_columns(self.ref_columns, "ref_columns", self.ref_data, "ref_data", False)
471
-
472
- self.__awu._validate_input_columns_not_empty(self.target_data_sequence_column, "target_data_sequence_column")
473
- self.__awu._validate_dataframe_has_argument_columns(self.target_data_sequence_column, "target_data_sequence_column", self.target_data, "target_data", False)
474
-
475
- self.__awu._validate_input_columns_not_empty(self.ref_data_sequence_column, "ref_data_sequence_column")
476
- self.__awu._validate_dataframe_has_argument_columns(self.ref_data_sequence_column, "ref_data_sequence_column", self.ref_data, "ref_data", False)
477
-
478
- self.__awu._validate_input_columns_not_empty(self.target_data_partition_column, "target_data_partition_column")
479
- if self.__awu._is_default_or_not(self.target_data_partition_column, "ANY"):
480
- self.__awu._validate_dataframe_has_argument_columns(self.target_data_partition_column, "target_data_partition_column", self.target_data, "target_data", True)
481
-
482
- self.__awu._validate_input_columns_not_empty(self.target_data_order_column, "target_data_order_column")
483
- self.__awu._validate_dataframe_has_argument_columns(self.target_data_order_column, "target_data_order_column", self.target_data, "target_data", False)
484
-
485
- self.__awu._validate_input_columns_not_empty(self.ref_data_order_column, "ref_data_order_column")
486
- self.__awu._validate_dataframe_has_argument_columns(self.ref_data_order_column, "ref_data_order_column", self.ref_data, "ref_data", False)
487
-
488
-
489
- def __form_tdml_query(self):
490
- """
491
- Function to generate the analytical function queries. The function defines
492
- variables and list of arguments required to form the query.
493
- """
494
-
495
- # Output table arguments list
496
- self.__func_output_args_sql_names = []
497
- self.__func_output_args = []
498
-
499
- # Model Cataloging related attributes.
500
- self._sql_specific_attributes = {}
501
- self._sql_formula_attribute_mapper = {}
502
- self._target_column = None
503
- self._algorithm_name = None
504
-
505
- # Generate lists for rest of the function arguments
506
- self.__func_other_arg_sql_names = []
507
- self.__func_other_args = []
508
- self.__func_other_arg_json_datatypes = []
509
-
510
- self.__func_other_arg_sql_names.append("TargetIdColumns")
511
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.target_id, "\""), "'"))
512
- self.__func_other_arg_json_datatypes.append("COLUMNS")
513
-
514
- if self.target_feature is not None:
515
- self.__func_other_arg_sql_names.append("TargetFeatureColumn")
516
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.target_feature, "\""), "'"))
517
- self.__func_other_arg_json_datatypes.append("COLUMNS")
518
-
519
- if self.target_value is not None:
520
- self.__func_other_arg_sql_names.append("TargetValueColumn")
521
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.target_value, "\""), "'"))
522
- self.__func_other_arg_json_datatypes.append("COLUMNS")
523
-
524
- if self.ref_id is not None:
525
- self.__func_other_arg_sql_names.append("RefIdColumns")
526
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.ref_id, "\""), "'"))
527
- self.__func_other_arg_json_datatypes.append("COLUMNS")
528
-
529
- if self.ref_feature is not None:
530
- self.__func_other_arg_sql_names.append("RefFeatureColumn")
531
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.ref_feature, "\""), "'"))
532
- self.__func_other_arg_json_datatypes.append("COLUMNS")
533
-
534
- if self.ref_value is not None:
535
- self.__func_other_arg_sql_names.append("RefValueColumn")
536
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.ref_value, "\""), "'"))
537
- self.__func_other_arg_json_datatypes.append("COLUMNS")
538
-
539
- if self.target_columns is not None:
540
- self.__func_other_arg_sql_names.append("TargetColumns")
541
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.target_columns, "\""), "'"))
542
- self.__func_other_arg_json_datatypes.append("COLUMNS")
543
-
544
- if self.ref_columns is not None:
545
- self.__func_other_arg_sql_names.append("RefColumns")
546
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.ref_columns, "\""), "'"))
547
- self.__func_other_arg_json_datatypes.append("COLUMNS")
548
-
549
- if self.replace_invalid is not None and self.replace_invalid != "positiveinfinity":
550
- self.__func_other_arg_sql_names.append("ReplaceInvalid")
551
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.replace_invalid, "'"))
552
- self.__func_other_arg_json_datatypes.append("STRING")
553
-
554
- if self.reftable_size is not None and self.reftable_size != "small":
555
- self.__func_other_arg_sql_names.append("RefTableSize")
556
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.reftable_size, "'"))
557
- self.__func_other_arg_json_datatypes.append("STRING")
558
-
559
- if self.distance_measure is not None and self.distance_measure != "cosine":
560
- self.__func_other_arg_sql_names.append("DistanceMeasure")
561
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.distance_measure, "'"))
562
- self.__func_other_arg_json_datatypes.append("STRING")
563
-
564
- if self.max_distance is not None:
565
- self.__func_other_arg_sql_names.append("MaxDistance")
566
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_distance, "'"))
567
- self.__func_other_arg_json_datatypes.append("DOUBLE")
568
-
569
- if self.ignore_mismatch is not None and self.ignore_mismatch != True:
570
- self.__func_other_arg_sql_names.append("IgnoreMismatch")
571
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.ignore_mismatch, "'"))
572
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
573
-
574
- if self.top_k is not None:
575
- self.__func_other_arg_sql_names.append("TopK")
576
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.top_k, "'"))
577
- self.__func_other_arg_json_datatypes.append("INTEGER")
578
-
579
- if self.output_format is not None and self.output_format != "sparse":
580
- self.__func_other_arg_sql_names.append("OutputFormat")
581
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_format, "'"))
582
- self.__func_other_arg_json_datatypes.append("STRING")
583
-
584
- if self.input_data_same is not None and self.input_data_same != False:
585
- self.__func_other_arg_sql_names.append("InputTablesSame")
586
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.input_data_same, "'"))
587
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
588
-
589
- # Generate lists for rest of the function arguments
590
- sequence_input_by_list = []
591
- if self.target_data_sequence_column is not None:
592
- sequence_input_by_list.append("target:" + UtilFuncs._teradata_collapse_arglist(self.target_data_sequence_column, ""))
593
-
594
- if self.ref_data_sequence_column is not None:
595
- sequence_input_by_list.append("ref:" + UtilFuncs._teradata_collapse_arglist(self.ref_data_sequence_column, ""))
596
-
597
- if len(sequence_input_by_list) > 0:
598
- self.__func_other_arg_sql_names.append("SequenceInputBy")
599
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
600
- self.__func_other_args.append(sequence_input_by_arg_value)
601
- self.__func_other_arg_json_datatypes.append("STRING")
602
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
603
-
604
-
605
- # Declare empty lists to hold input table information.
606
- self.__func_input_arg_sql_names = []
607
- self.__func_input_table_view_query = []
608
- self.__func_input_dataframe_type = []
609
- self.__func_input_distribution = []
610
- self.__func_input_partition_by_cols = []
611
- self.__func_input_order_by_cols = []
612
-
613
- # Process target_data
614
- if self.__awu._is_default_or_not(self.target_data_partition_column, "ANY"):
615
- self.target_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.target_data_partition_column, "\"")
616
-
617
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.target_data, False)
618
- self.__func_input_distribution.append("FACT")
619
- self.__func_input_arg_sql_names.append("target")
620
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
621
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
622
- self.__func_input_partition_by_cols.append(self.target_data_partition_column)
623
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.target_data_order_column, "\""))
624
-
625
- # Process ref_data
626
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.ref_data, False)
627
- self.__func_input_distribution.append("DIMENSION")
628
- self.__func_input_arg_sql_names.append("ref")
629
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
630
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
631
- self.__func_input_partition_by_cols.append("NA_character_")
632
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.ref_data_order_column, "\""))
633
-
634
- function_name = "VectorDistance"
635
- # Create instance to generate SQLMR.
636
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
637
- self.__func_input_arg_sql_names,
638
- self.__func_input_table_view_query,
639
- self.__func_input_dataframe_type,
640
- self.__func_input_distribution,
641
- self.__func_input_partition_by_cols,
642
- self.__func_input_order_by_cols,
643
- self.__func_other_arg_sql_names,
644
- self.__func_other_args,
645
- self.__func_other_arg_json_datatypes,
646
- self.__func_output_args_sql_names,
647
- self.__func_output_args,
648
- engine="ENGINE_ML")
649
- # Invoke call to SQL-MR generation.
650
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
651
-
652
- # Print SQL-MR query if requested to do so.
653
- if display.print_sqlmr_query:
654
- print(self.sqlmr_query)
655
-
656
- # Set the algorithm name for Model Cataloging.
657
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
658
-
659
- def __execute(self):
660
- """
661
- Function to execute SQL-MR queries.
662
- Create DataFrames for the required SQL-MR outputs.
663
- """
664
- # Generate STDOUT table name and add it to the output table list.
665
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
666
- try:
667
- # Generate the output.
668
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
669
- except Exception as emsg:
670
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
671
-
672
- # Update output table data frames.
673
- self._mlresults = []
674
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
675
- self._mlresults.append(self.result)
676
-
677
- def show_query(self):
678
- """
679
- Function to return the underlying SQL query.
680
- When model object is created using retrieve_model(), then None is returned.
681
- """
682
- return self.sqlmr_query
683
-
684
- def get_prediction_type(self):
685
- """
686
- Function to return the Prediction type of the algorithm.
687
- When model object is created using retrieve_model(), then the value returned is
688
- as saved in the Model Catalog.
689
- """
690
- return self._prediction_type
691
-
692
- def get_target_column(self):
693
- """
694
- Function to return the Target Column of the algorithm.
695
- When model object is created using retrieve_model(), then the value returned is
696
- as saved in the Model Catalog.
697
- """
698
- return self._target_column
699
-
700
- def get_build_time(self):
701
- """
702
- Function to return the build time of the algorithm in seconds.
703
- When model object is created using retrieve_model(), then the value returned is
704
- as saved in the Model Catalog.
705
- """
706
- return self._build_time
707
-
708
- def _get_algorithm_name(self):
709
- """
710
- Function to return the name of the algorithm.
711
- """
712
- return self._algorithm_name
713
-
714
- def _get_sql_specific_attributes(self):
715
- """
716
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
717
- """
718
- return self._sql_specific_attributes
719
-
720
- @classmethod
721
- def _from_model_catalog(cls,
722
- result = None,
723
- **kwargs):
724
- """
725
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
726
- """
727
- kwargs.pop("result", None)
728
-
729
- # Model Cataloging related attributes.
730
- target_column = kwargs.pop("__target_column", None)
731
- prediction_type = kwargs.pop("__prediction_type", None)
732
- algorithm_name = kwargs.pop("__algorithm_name", None)
733
- build_time = kwargs.pop("__build_time", None)
734
-
735
- # Let's create an object of this class.
736
- obj = cls(**kwargs)
737
- obj.result = result
738
-
739
- # Initialize the sqlmr_query class attribute.
740
- obj.sqlmr_query = None
741
-
742
- # Initialize the SQL specific Model Cataloging attributes.
743
- obj._sql_specific_attributes = None
744
- obj._target_column = target_column
745
- obj._prediction_type = prediction_type
746
- obj._algorithm_name = algorithm_name
747
- obj._build_time = build_time
748
-
749
- # Update output table data frames.
750
- obj._mlresults = []
751
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
752
- obj._mlresults.append(obj.result)
753
- return obj
754
-
755
- def __repr__(self):
756
- """
757
- Returns the string representation for a VectorDistance class instance.
758
- """
759
- repr_string="############ STDOUT Output ############"
760
- repr_string = "{}\n\n{}".format(repr_string,self.result)
761
- return repr_string
762
-