teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,549 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Mounika Kotha (mounika.kotha@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.5
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class Sampling:
31
-
32
- def __init__(self,
33
- data = None,
34
- summary_data = None,
35
- stratum_column = None,
36
- strata = None,
37
- sample_fraction = None,
38
- approx_sample_size = None,
39
- seed = 0,
40
- data_sequence_column = None,
41
- summary_data_sequence_column = None,
42
- data_partition_column = "ANY",
43
- data_order_column = None,
44
- summary_data_order_column = None):
45
- """
46
- DESCRIPTION:
47
- The Sample function draws rows randomly from the teradataml DataFrame.
48
- The function offers two sampling schemes:
49
- • A simple Bernoulli (Binomial) sampling on a row-by-row basis
50
- with given sample rates
51
- • Sampling without replacement that selects a given number of
52
- rows.
53
- Sampling can be either unconditional or conditional. Unconditional
54
- sampling applies to all input data and always uses the same random
55
- number generator. Conditional sampling applies only to input data
56
- that meets specified conditions and uses a diƒerent random number
57
- generator for each condition.
58
-
59
- Note: The Sampling function does not guarantee the exact sizes of
60
- samples. If each sample must have an exact number of rows, use the
61
- RandomSample function.
62
-
63
- PARAMETERS:
64
- data:
65
- Required Argument.
66
- Specifies the teradataml DataFrame containing the data to be
67
- sampled.
68
-
69
- data_partition_column:
70
- Optional Argument.
71
- Specifies Partition By columns for data.
72
- Values to this argument can be provided as list, if multiple
73
- columns are used for partition.
74
- Default Value: ANY
75
- Types: str OR list of Strings (str)
76
-
77
- data_order_column:
78
- Optional Argument.
79
- Specifies Order By columns for data.
80
- Values to this argument can be provided as list, if multiple columns
81
- are used for ordering.
82
- Types: str OR list of Strings (str)
83
-
84
- summary_data:
85
- Optional Argument.
86
- Specifies the teradataml DataFrame containing the stratum count
87
- information.
88
- Note: summary_data argument is only available when teradataml is
89
- connected to Vantage 1.1 or later versions.
90
-
91
- summary_data_order_column:
92
- Optional Argument.
93
- Specifies Order By columns for summary_data.
94
- Values to this argument can be provided as list, if multiple columns
95
- are used for ordering.
96
- Types: str OR list of Strings (str)
97
-
98
- stratum_column:
99
- Optional Argument.
100
- Specifies the name of the column that contains the sample conditions.
101
- If the function has only one input teradataml DataFrame (data),
102
- then condition column is in the data teradataml DataFrame. If the function
103
- has two input teradataml DataFrames, data and summary_data, then
104
- condition column is in the summary_data teradataml DataFrame.
105
- Types: str
106
-
107
- strata:
108
- Optional Argument.
109
- Specifies the sample conditions that appear in the stratum_column.
110
- If strata specifies a condition that does not appear in
111
- stratum_column, then the function issues an error message.
112
- Types: str or list of Strings (str)
113
-
114
- sample_fraction:
115
- Optional Argument.
116
- Specifies one or more fractions to use in sampling the data .
117
- (Syntax options that do not use sample_fraction require
118
- approx_sample_size.)
119
- If you specify only one fraction, then the function uses fraction
120
- for all strata defined by the sample conditions. If you specify
121
- more than one fraction, then the function uses each fraction for
122
- sampling a particular stratum defined by the condition arguments.
123
- Note: For conditional sampling with variable sample sizes,
124
- specify one fraction for each condition that you specify with
125
- the strata argument.
126
- Types: float or list of Floats (float)
127
-
128
- approx_sample_size:
129
- Optional Argument.
130
- Specifies one or more approximate sample sizes to use in sampling the
131
- data (syntax options that do not use approx_sample_size require
132
- sample_fraction). Each sample size is approximate because the
133
- function maps the size to the sample fractions and then generates the
134
- sample data. If you specify only one size, then it represents the
135
- total sample size for the entire population. If you also specify the
136
- strata argument, then the function proportionally generates sample
137
- units for each stratum. If you specify more than one size, then each
138
- size corresponds to a stratum, and the function uses each size to
139
- generate sample units for the corresponding stratum.
140
- Note: For conditional sampling with variable approximate sample
141
- sizes, specify one size for each condition that you specify with
142
- the strata argument.
143
- Types: int or list of Integers (int)
144
-
145
- seed:
146
- Optional Argument.
147
- Specifies the random seed used to initialize the algorithm.
148
- Default Value: 0
149
- Types: int
150
-
151
- data_sequence_column:
152
- Optional Argument.
153
- Specifies the list of column(s) that uniquely identifies each row of
154
- the input argument "data". The argument is used to ensure
155
- deterministic results for functions which produce results that vary
156
- from run to run.
157
- Types: str OR list of Strings (str)
158
-
159
- summary_data_sequence_column:
160
- Optional Argument.
161
- Specifies the list of column(s) that uniquely identifies each row of
162
- the input argument "summary_data". The argument is used to ensure
163
- deterministic results for functions which produce results that vary
164
- from run to run.
165
- Types: str OR list of Strings (str)
166
-
167
- RETURNS:
168
- Instance of Sampling.
169
- Output teradataml DataFrames can be accessed using attribute
170
- references, such as SamplingObj.<attribute_name>.
171
- Output teradataml DataFrame attribute name is:
172
- result
173
-
174
-
175
- RAISES:
176
- TeradataMlException
177
-
178
-
179
- EXAMPLES:
180
- # Load example data.
181
- load_example_data("Sampling", ["students","score_category","score_summary"])
182
-
183
- # Create teradataml DataFrame objects.
184
- # The input table "score_category" is obtained by categorizing the
185
- # students in the "students" table based on their score in a given
186
- # subject. There are 100 students grouped into three categories -
187
- # excellent (score > 90), very good (80 < score < 90) and fair
188
- # (score < 80). The table "score_summary" groups the score_category
189
- # table based on the stratum column and also has their corresponding
190
- # count.
191
-
192
- students = DataFrame.from_table("students")
193
- score_category = DataFrame.from_table("score_category")
194
- score_summary = DataFrame.from_table("score_summary")
195
-
196
- # Example 1 - This example selects a sample of approximately 20%
197
- # of the rows in the student table.
198
- sampling_out1 = Sampling(data = students,
199
- sample_fraction = 0.2,
200
- seed = 2
201
- )
202
-
203
- # Print the result teradataml DataFrame
204
- print(sampling_out1)
205
-
206
- # Example 2 - This example applies sampling rates 20%, 30%, and 40%
207
- # to categories fair, very good, and excellent, respectively, and
208
- # rounds the number sampled to the nearest integer.
209
- sampling_out2 = Sampling(data = score_category,
210
- data_partition_column = "stratum",
211
- stratum_column = "stratum",
212
- strata = ["fair", "very good", "excellent"],
213
- sample_fraction = [0.2, 0.3, 0.4],
214
- seed = 2
215
- )
216
-
217
- # Print the result teradataml DataFrame
218
- print(sampling_out2.result)
219
-
220
- # Example 3 - This examples demonstrates conditional sampling with
221
- # Approximate Sample Size.
222
- sampling_out3 = Sampling(data=score_category,
223
- summary_data=score_summary,
224
- stratum_column='stratum',
225
- strata=['excellent','fair','very good'],
226
- approx_sample_size=[5,10,5],
227
- seed=2
228
- )
229
- # Print the result teradataml DataFrame
230
- print(sampling_out3.result)
231
-
232
- """
233
-
234
- # Start the timer to get the build time
235
- _start_time = time.time()
236
-
237
- self.data = data
238
- self.summary_data = summary_data
239
- self.stratum_column = stratum_column
240
- self.strata = strata
241
- self.sample_fraction = sample_fraction
242
- self.approx_sample_size = approx_sample_size
243
- self.seed = seed
244
- self.data_sequence_column = data_sequence_column
245
- self.summary_data_sequence_column = summary_data_sequence_column
246
- self.data_partition_column = data_partition_column
247
- self.data_order_column = data_order_column
248
- self.summary_data_order_column = summary_data_order_column
249
-
250
- # Create TeradataPyWrapperUtils instance which contains validation functions.
251
- self.__awu = AnalyticsWrapperUtils()
252
- self.__aed_utils = AedUtils()
253
-
254
- # Create argument information matrix to do parameter checking
255
- self.__arg_info_matrix = []
256
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
257
- self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, True, (str,list)])
258
- self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
259
- self.__arg_info_matrix.append(["summary_data", self.summary_data, True, (DataFrame)])
260
- self.__arg_info_matrix.append(["summary_data_order_column", self.summary_data_order_column, True, (str,list)])
261
- self.__arg_info_matrix.append(["stratum_column", self.stratum_column, True, (str)])
262
- self.__arg_info_matrix.append(["strata", self.strata, True, (str,list)])
263
- self.__arg_info_matrix.append(["sample_fraction", self.sample_fraction, True, (float,list)])
264
- self.__arg_info_matrix.append(["approx_sample_size", self.approx_sample_size, True, (int,list)])
265
- self.__arg_info_matrix.append(["seed", self.seed, True, (int)])
266
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
267
- self.__arg_info_matrix.append(["summary_data_sequence_column", self.summary_data_sequence_column, True, (str,list)])
268
-
269
- if inspect.stack()[1][3] != '_from_model_catalog':
270
- # Perform the function validations
271
- self.__validate()
272
- # Generate the ML query
273
- self.__form_tdml_query()
274
- # Execute ML query
275
- self.__execute()
276
- # Get the prediction type
277
- self._prediction_type = self.__awu._get_function_prediction_type(self)
278
-
279
- # End the timer to get the build time
280
- _end_time = time.time()
281
-
282
- # Calculate the build time
283
- self._build_time = (int)(_end_time - _start_time)
284
-
285
- def __validate(self):
286
- """
287
- Function to validate sqlmr function arguments, which verifies missing
288
- arguments, input argument and table types. Also processes the
289
- argument values.
290
- """
291
- # Make sure that either sample.fraction or approx.sample.size is provided
292
- if ((self.sample_fraction is None and self.approx_sample_size is None) or
293
- (self.sample_fraction is not None and self.approx_sample_size is not None)):
294
- raise TeradataMlException(Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT,
295
- "sample_fraction", "approx_sample_size"),
296
- MessageCodes.MISSING_ARGS)
297
-
298
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
299
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
300
-
301
- # Make sure that a non-NULL value has been supplied correct type of argument
302
- self.__awu._validate_argument_types(self.__arg_info_matrix)
303
-
304
- # Check to make sure input table types are strings or data frame objects or of valid type.
305
- self.__awu._validate_input_table_datatype(self.data, "data", None)
306
- self.__awu._validate_input_table_datatype(self.summary_data, "summary_data", None)
307
-
308
- # Check whether the input columns passed to the argument are not empty.
309
- # Also check whether the input columns passed to the argument valid or not.
310
- self.__awu._validate_input_columns_not_empty(self.stratum_column, "stratum_column")
311
- self.__awu._validate_dataframe_has_argument_columns(self.stratum_column, "stratum_column", self.data, "data", False)
312
-
313
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
314
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
315
-
316
- self.__awu._validate_input_columns_not_empty(self.summary_data_sequence_column, "summary_data_sequence_column")
317
- self.__awu._validate_dataframe_has_argument_columns(self.summary_data_sequence_column, "summary_data_sequence_column", self.summary_data, "summary_data", False)
318
-
319
- self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
320
- if self.__awu._is_default_or_not(self.data_partition_column, "ANY"):
321
- self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
322
- self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
323
- self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
324
-
325
- self.__awu._validate_input_columns_not_empty(self.summary_data_order_column, "summary_data_order_column")
326
- self.__awu._validate_dataframe_has_argument_columns(self.summary_data_order_column, "summary_data_order_column", self.summary_data, "summary_data", False)
327
-
328
-
329
- def __form_tdml_query(self):
330
- """
331
- Function to generate the analytical function queries. The function defines
332
- variables and list of arguments required to form the query.
333
- """
334
-
335
- # Output table arguments list
336
- self.__func_output_args_sql_names = []
337
- self.__func_output_args = []
338
-
339
- # Model Cataloging related attributes.
340
- self._sql_specific_attributes = {}
341
- self._sql_formula_attribute_mapper = {}
342
- self._target_column = None
343
- self._algorithm_name = None
344
-
345
- # Generate lists for rest of the function arguments
346
- self.__func_other_arg_sql_names = []
347
- self.__func_other_args = []
348
- self.__func_other_arg_json_datatypes = []
349
-
350
- if self.stratum_column is not None:
351
- self.__func_other_arg_sql_names.append("StratumColumn")
352
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.stratum_column, "\""), "'"))
353
- self.__func_other_arg_json_datatypes.append("COLUMNS")
354
-
355
- if self.sample_fraction is not None:
356
- self.__func_other_arg_sql_names.append("SampleFraction")
357
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.sample_fraction, "'"))
358
- self.__func_other_arg_json_datatypes.append("DOUBLE")
359
-
360
- if self.approx_sample_size is not None:
361
- self.__func_other_arg_sql_names.append("ApproxSampleSize")
362
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.approx_sample_size, "'"))
363
- self.__func_other_arg_json_datatypes.append("INTEGER")
364
-
365
- if self.strata is not None:
366
- self.__func_other_arg_sql_names.append("Strata")
367
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.strata, "'"))
368
- self.__func_other_arg_json_datatypes.append("STRING")
369
-
370
- if self.seed is not None and self.seed != 0:
371
- self.__func_other_arg_sql_names.append("Seed")
372
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seed, "'"))
373
- self.__func_other_arg_json_datatypes.append("LONG")
374
-
375
- # Generate lists for rest of the function arguments
376
- sequence_input_by_list = []
377
- if self.data_sequence_column is not None:
378
- sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
379
-
380
- if self.summary_data_sequence_column is not None:
381
- sequence_input_by_list.append("SummaryTable :" + UtilFuncs._teradata_collapse_arglist(self.summary_data_sequence_column, ""))
382
-
383
- if len(sequence_input_by_list) > 0:
384
- self.__func_other_arg_sql_names.append("SequenceInputBy")
385
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
386
- self.__func_other_args.append(sequence_input_by_arg_value)
387
- self.__func_other_arg_json_datatypes.append("STRING")
388
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
389
-
390
-
391
- # Declare empty lists to hold input table information.
392
- self.__func_input_arg_sql_names = []
393
- self.__func_input_table_view_query = []
394
- self.__func_input_dataframe_type = []
395
- self.__func_input_distribution = []
396
- self.__func_input_partition_by_cols = []
397
- self.__func_input_order_by_cols = []
398
-
399
- # Process data
400
- if self.__awu._is_default_or_not(self.data_partition_column, "ANY"):
401
- self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
402
-
403
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
404
- self.__func_input_distribution.append("FACT")
405
- self.__func_input_arg_sql_names.append("input")
406
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
407
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
408
- self.__func_input_partition_by_cols.append(self.data_partition_column)
409
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
410
-
411
- # Process summary_data
412
- if self.summary_data is not None:
413
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.summary_data, False)
414
- self.__func_input_distribution.append("DIMENSION")
415
- self.__func_input_arg_sql_names.append("SummaryTable ")
416
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
417
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
418
- self.__func_input_partition_by_cols.append("NA_character_")
419
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.summary_data_order_column, "\""))
420
-
421
- function_name = "Sampling"
422
- # Create instance to generate SQLMR.
423
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
424
- self.__func_input_arg_sql_names,
425
- self.__func_input_table_view_query,
426
- self.__func_input_dataframe_type,
427
- self.__func_input_distribution,
428
- self.__func_input_partition_by_cols,
429
- self.__func_input_order_by_cols,
430
- self.__func_other_arg_sql_names,
431
- self.__func_other_args,
432
- self.__func_other_arg_json_datatypes,
433
- self.__func_output_args_sql_names,
434
- self.__func_output_args,
435
- engine="ENGINE_ML")
436
- # Invoke call to SQL-MR generation.
437
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
438
-
439
- # Print SQL-MR query if requested to do so.
440
- if display.print_sqlmr_query:
441
- print(self.sqlmr_query)
442
-
443
- # Set the algorithm name for Model Cataloging.
444
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
445
-
446
- def __execute(self):
447
- """
448
- Function to execute SQL-MR queries.
449
- Create DataFrames for the required SQL-MR outputs.
450
- """
451
- # Generate STDOUT table name and add it to the output table list.
452
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
453
- try:
454
- # Generate the output.
455
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
456
- except Exception as emsg:
457
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
458
-
459
- # Update output table data frames.
460
- self._mlresults = []
461
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
462
- self._mlresults.append(self.result)
463
-
464
- def show_query(self):
465
- """
466
- Function to return the underlying SQL query.
467
- When model object is created using retrieve_model(), then None is returned.
468
- """
469
- return self.sqlmr_query
470
-
471
- def get_prediction_type(self):
472
- """
473
- Function to return the Prediction type of the algorithm.
474
- When model object is created using retrieve_model(), then the value returned is
475
- as saved in the Model Catalog.
476
- """
477
- return self._prediction_type
478
-
479
- def get_target_column(self):
480
- """
481
- Function to return the Target Column of the algorithm.
482
- When model object is created using retrieve_model(), then the value returned is
483
- as saved in the Model Catalog.
484
- """
485
- return self._target_column
486
-
487
- def get_build_time(self):
488
- """
489
- Function to return the build time of the algorithm in seconds.
490
- When model object is created using retrieve_model(), then the value returned is
491
- as saved in the Model Catalog.
492
- """
493
- return self._build_time
494
-
495
- def _get_algorithm_name(self):
496
- """
497
- Function to return the name of the algorithm.
498
- """
499
- return self._algorithm_name
500
-
501
- def _get_sql_specific_attributes(self):
502
- """
503
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
504
- """
505
- return self._sql_specific_attributes
506
-
507
- @classmethod
508
- def _from_model_catalog(cls,
509
- result = None,
510
- **kwargs):
511
- """
512
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
513
- """
514
- kwargs.pop("result", None)
515
-
516
- # Model Cataloging related attributes.
517
- target_column = kwargs.pop("__target_column", None)
518
- prediction_type = kwargs.pop("__prediction_type", None)
519
- algorithm_name = kwargs.pop("__algorithm_name", None)
520
- build_time = kwargs.pop("__build_time", None)
521
-
522
- # Let's create an object of this class.
523
- obj = cls(**kwargs)
524
- obj.result = result
525
-
526
- # Initialize the sqlmr_query class attribute.
527
- obj.sqlmr_query = None
528
-
529
- # Initialize the SQL specific Model Cataloging attributes.
530
- obj._sql_specific_attributes = None
531
- obj._target_column = target_column
532
- obj._prediction_type = prediction_type
533
- obj._algorithm_name = algorithm_name
534
- obj._build_time = build_time
535
-
536
- # Update output table data frames.
537
- obj._mlresults = []
538
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
539
- obj._mlresults.append(obj.result)
540
- return obj
541
-
542
- def __repr__(self):
543
- """
544
- Returns the string representation for a Sampling class instance.
545
- """
546
- repr_string="############ STDOUT Output ############"
547
- repr_string = "{}\n\n{}".format(repr_string,self.result)
548
- return repr_string
549
-