teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,549 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.5
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class Sampling:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
summary_data = None,
|
|
35
|
-
stratum_column = None,
|
|
36
|
-
strata = None,
|
|
37
|
-
sample_fraction = None,
|
|
38
|
-
approx_sample_size = None,
|
|
39
|
-
seed = 0,
|
|
40
|
-
data_sequence_column = None,
|
|
41
|
-
summary_data_sequence_column = None,
|
|
42
|
-
data_partition_column = "ANY",
|
|
43
|
-
data_order_column = None,
|
|
44
|
-
summary_data_order_column = None):
|
|
45
|
-
"""
|
|
46
|
-
DESCRIPTION:
|
|
47
|
-
The Sample function draws rows randomly from the teradataml DataFrame.
|
|
48
|
-
The function offers two sampling schemes:
|
|
49
|
-
• A simple Bernoulli (Binomial) sampling on a row-by-row basis
|
|
50
|
-
with given sample rates
|
|
51
|
-
• Sampling without replacement that selects a given number of
|
|
52
|
-
rows.
|
|
53
|
-
Sampling can be either unconditional or conditional. Unconditional
|
|
54
|
-
sampling applies to all input data and always uses the same random
|
|
55
|
-
number generator. Conditional sampling applies only to input data
|
|
56
|
-
that meets specified conditions and uses a dierent random number
|
|
57
|
-
generator for each condition.
|
|
58
|
-
|
|
59
|
-
Note: The Sampling function does not guarantee the exact sizes of
|
|
60
|
-
samples. If each sample must have an exact number of rows, use the
|
|
61
|
-
RandomSample function.
|
|
62
|
-
|
|
63
|
-
PARAMETERS:
|
|
64
|
-
data:
|
|
65
|
-
Required Argument.
|
|
66
|
-
Specifies the teradataml DataFrame containing the data to be
|
|
67
|
-
sampled.
|
|
68
|
-
|
|
69
|
-
data_partition_column:
|
|
70
|
-
Optional Argument.
|
|
71
|
-
Specifies Partition By columns for data.
|
|
72
|
-
Values to this argument can be provided as list, if multiple
|
|
73
|
-
columns are used for partition.
|
|
74
|
-
Default Value: ANY
|
|
75
|
-
Types: str OR list of Strings (str)
|
|
76
|
-
|
|
77
|
-
data_order_column:
|
|
78
|
-
Optional Argument.
|
|
79
|
-
Specifies Order By columns for data.
|
|
80
|
-
Values to this argument can be provided as list, if multiple columns
|
|
81
|
-
are used for ordering.
|
|
82
|
-
Types: str OR list of Strings (str)
|
|
83
|
-
|
|
84
|
-
summary_data:
|
|
85
|
-
Optional Argument.
|
|
86
|
-
Specifies the teradataml DataFrame containing the stratum count
|
|
87
|
-
information.
|
|
88
|
-
Note: summary_data argument is only available when teradataml is
|
|
89
|
-
connected to Vantage 1.1 or later versions.
|
|
90
|
-
|
|
91
|
-
summary_data_order_column:
|
|
92
|
-
Optional Argument.
|
|
93
|
-
Specifies Order By columns for summary_data.
|
|
94
|
-
Values to this argument can be provided as list, if multiple columns
|
|
95
|
-
are used for ordering.
|
|
96
|
-
Types: str OR list of Strings (str)
|
|
97
|
-
|
|
98
|
-
stratum_column:
|
|
99
|
-
Optional Argument.
|
|
100
|
-
Specifies the name of the column that contains the sample conditions.
|
|
101
|
-
If the function has only one input teradataml DataFrame (data),
|
|
102
|
-
then condition column is in the data teradataml DataFrame. If the function
|
|
103
|
-
has two input teradataml DataFrames, data and summary_data, then
|
|
104
|
-
condition column is in the summary_data teradataml DataFrame.
|
|
105
|
-
Types: str
|
|
106
|
-
|
|
107
|
-
strata:
|
|
108
|
-
Optional Argument.
|
|
109
|
-
Specifies the sample conditions that appear in the stratum_column.
|
|
110
|
-
If strata specifies a condition that does not appear in
|
|
111
|
-
stratum_column, then the function issues an error message.
|
|
112
|
-
Types: str or list of Strings (str)
|
|
113
|
-
|
|
114
|
-
sample_fraction:
|
|
115
|
-
Optional Argument.
|
|
116
|
-
Specifies one or more fractions to use in sampling the data .
|
|
117
|
-
(Syntax options that do not use sample_fraction require
|
|
118
|
-
approx_sample_size.)
|
|
119
|
-
If you specify only one fraction, then the function uses fraction
|
|
120
|
-
for all strata defined by the sample conditions. If you specify
|
|
121
|
-
more than one fraction, then the function uses each fraction for
|
|
122
|
-
sampling a particular stratum defined by the condition arguments.
|
|
123
|
-
Note: For conditional sampling with variable sample sizes,
|
|
124
|
-
specify one fraction for each condition that you specify with
|
|
125
|
-
the strata argument.
|
|
126
|
-
Types: float or list of Floats (float)
|
|
127
|
-
|
|
128
|
-
approx_sample_size:
|
|
129
|
-
Optional Argument.
|
|
130
|
-
Specifies one or more approximate sample sizes to use in sampling the
|
|
131
|
-
data (syntax options that do not use approx_sample_size require
|
|
132
|
-
sample_fraction). Each sample size is approximate because the
|
|
133
|
-
function maps the size to the sample fractions and then generates the
|
|
134
|
-
sample data. If you specify only one size, then it represents the
|
|
135
|
-
total sample size for the entire population. If you also specify the
|
|
136
|
-
strata argument, then the function proportionally generates sample
|
|
137
|
-
units for each stratum. If you specify more than one size, then each
|
|
138
|
-
size corresponds to a stratum, and the function uses each size to
|
|
139
|
-
generate sample units for the corresponding stratum.
|
|
140
|
-
Note: For conditional sampling with variable approximate sample
|
|
141
|
-
sizes, specify one size for each condition that you specify with
|
|
142
|
-
the strata argument.
|
|
143
|
-
Types: int or list of Integers (int)
|
|
144
|
-
|
|
145
|
-
seed:
|
|
146
|
-
Optional Argument.
|
|
147
|
-
Specifies the random seed used to initialize the algorithm.
|
|
148
|
-
Default Value: 0
|
|
149
|
-
Types: int
|
|
150
|
-
|
|
151
|
-
data_sequence_column:
|
|
152
|
-
Optional Argument.
|
|
153
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
154
|
-
the input argument "data". The argument is used to ensure
|
|
155
|
-
deterministic results for functions which produce results that vary
|
|
156
|
-
from run to run.
|
|
157
|
-
Types: str OR list of Strings (str)
|
|
158
|
-
|
|
159
|
-
summary_data_sequence_column:
|
|
160
|
-
Optional Argument.
|
|
161
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
162
|
-
the input argument "summary_data". The argument is used to ensure
|
|
163
|
-
deterministic results for functions which produce results that vary
|
|
164
|
-
from run to run.
|
|
165
|
-
Types: str OR list of Strings (str)
|
|
166
|
-
|
|
167
|
-
RETURNS:
|
|
168
|
-
Instance of Sampling.
|
|
169
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
170
|
-
references, such as SamplingObj.<attribute_name>.
|
|
171
|
-
Output teradataml DataFrame attribute name is:
|
|
172
|
-
result
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
RAISES:
|
|
176
|
-
TeradataMlException
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
EXAMPLES:
|
|
180
|
-
# Load example data.
|
|
181
|
-
load_example_data("Sampling", ["students","score_category","score_summary"])
|
|
182
|
-
|
|
183
|
-
# Create teradataml DataFrame objects.
|
|
184
|
-
# The input table "score_category" is obtained by categorizing the
|
|
185
|
-
# students in the "students" table based on their score in a given
|
|
186
|
-
# subject. There are 100 students grouped into three categories -
|
|
187
|
-
# excellent (score > 90), very good (80 < score < 90) and fair
|
|
188
|
-
# (score < 80). The table "score_summary" groups the score_category
|
|
189
|
-
# table based on the stratum column and also has their corresponding
|
|
190
|
-
# count.
|
|
191
|
-
|
|
192
|
-
students = DataFrame.from_table("students")
|
|
193
|
-
score_category = DataFrame.from_table("score_category")
|
|
194
|
-
score_summary = DataFrame.from_table("score_summary")
|
|
195
|
-
|
|
196
|
-
# Example 1 - This example selects a sample of approximately 20%
|
|
197
|
-
# of the rows in the student table.
|
|
198
|
-
sampling_out1 = Sampling(data = students,
|
|
199
|
-
sample_fraction = 0.2,
|
|
200
|
-
seed = 2
|
|
201
|
-
)
|
|
202
|
-
|
|
203
|
-
# Print the result teradataml DataFrame
|
|
204
|
-
print(sampling_out1)
|
|
205
|
-
|
|
206
|
-
# Example 2 - This example applies sampling rates 20%, 30%, and 40%
|
|
207
|
-
# to categories fair, very good, and excellent, respectively, and
|
|
208
|
-
# rounds the number sampled to the nearest integer.
|
|
209
|
-
sampling_out2 = Sampling(data = score_category,
|
|
210
|
-
data_partition_column = "stratum",
|
|
211
|
-
stratum_column = "stratum",
|
|
212
|
-
strata = ["fair", "very good", "excellent"],
|
|
213
|
-
sample_fraction = [0.2, 0.3, 0.4],
|
|
214
|
-
seed = 2
|
|
215
|
-
)
|
|
216
|
-
|
|
217
|
-
# Print the result teradataml DataFrame
|
|
218
|
-
print(sampling_out2.result)
|
|
219
|
-
|
|
220
|
-
# Example 3 - This examples demonstrates conditional sampling with
|
|
221
|
-
# Approximate Sample Size.
|
|
222
|
-
sampling_out3 = Sampling(data=score_category,
|
|
223
|
-
summary_data=score_summary,
|
|
224
|
-
stratum_column='stratum',
|
|
225
|
-
strata=['excellent','fair','very good'],
|
|
226
|
-
approx_sample_size=[5,10,5],
|
|
227
|
-
seed=2
|
|
228
|
-
)
|
|
229
|
-
# Print the result teradataml DataFrame
|
|
230
|
-
print(sampling_out3.result)
|
|
231
|
-
|
|
232
|
-
"""
|
|
233
|
-
|
|
234
|
-
# Start the timer to get the build time
|
|
235
|
-
_start_time = time.time()
|
|
236
|
-
|
|
237
|
-
self.data = data
|
|
238
|
-
self.summary_data = summary_data
|
|
239
|
-
self.stratum_column = stratum_column
|
|
240
|
-
self.strata = strata
|
|
241
|
-
self.sample_fraction = sample_fraction
|
|
242
|
-
self.approx_sample_size = approx_sample_size
|
|
243
|
-
self.seed = seed
|
|
244
|
-
self.data_sequence_column = data_sequence_column
|
|
245
|
-
self.summary_data_sequence_column = summary_data_sequence_column
|
|
246
|
-
self.data_partition_column = data_partition_column
|
|
247
|
-
self.data_order_column = data_order_column
|
|
248
|
-
self.summary_data_order_column = summary_data_order_column
|
|
249
|
-
|
|
250
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
251
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
252
|
-
self.__aed_utils = AedUtils()
|
|
253
|
-
|
|
254
|
-
# Create argument information matrix to do parameter checking
|
|
255
|
-
self.__arg_info_matrix = []
|
|
256
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
257
|
-
self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, True, (str,list)])
|
|
258
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
|
|
259
|
-
self.__arg_info_matrix.append(["summary_data", self.summary_data, True, (DataFrame)])
|
|
260
|
-
self.__arg_info_matrix.append(["summary_data_order_column", self.summary_data_order_column, True, (str,list)])
|
|
261
|
-
self.__arg_info_matrix.append(["stratum_column", self.stratum_column, True, (str)])
|
|
262
|
-
self.__arg_info_matrix.append(["strata", self.strata, True, (str,list)])
|
|
263
|
-
self.__arg_info_matrix.append(["sample_fraction", self.sample_fraction, True, (float,list)])
|
|
264
|
-
self.__arg_info_matrix.append(["approx_sample_size", self.approx_sample_size, True, (int,list)])
|
|
265
|
-
self.__arg_info_matrix.append(["seed", self.seed, True, (int)])
|
|
266
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
267
|
-
self.__arg_info_matrix.append(["summary_data_sequence_column", self.summary_data_sequence_column, True, (str,list)])
|
|
268
|
-
|
|
269
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
270
|
-
# Perform the function validations
|
|
271
|
-
self.__validate()
|
|
272
|
-
# Generate the ML query
|
|
273
|
-
self.__form_tdml_query()
|
|
274
|
-
# Execute ML query
|
|
275
|
-
self.__execute()
|
|
276
|
-
# Get the prediction type
|
|
277
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
278
|
-
|
|
279
|
-
# End the timer to get the build time
|
|
280
|
-
_end_time = time.time()
|
|
281
|
-
|
|
282
|
-
# Calculate the build time
|
|
283
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
284
|
-
|
|
285
|
-
def __validate(self):
|
|
286
|
-
"""
|
|
287
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
288
|
-
arguments, input argument and table types. Also processes the
|
|
289
|
-
argument values.
|
|
290
|
-
"""
|
|
291
|
-
# Make sure that either sample.fraction or approx.sample.size is provided
|
|
292
|
-
if ((self.sample_fraction is None and self.approx_sample_size is None) or
|
|
293
|
-
(self.sample_fraction is not None and self.approx_sample_size is not None)):
|
|
294
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT,
|
|
295
|
-
"sample_fraction", "approx_sample_size"),
|
|
296
|
-
MessageCodes.MISSING_ARGS)
|
|
297
|
-
|
|
298
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
299
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
300
|
-
|
|
301
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
302
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
303
|
-
|
|
304
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
305
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
306
|
-
self.__awu._validate_input_table_datatype(self.summary_data, "summary_data", None)
|
|
307
|
-
|
|
308
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
309
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
310
|
-
self.__awu._validate_input_columns_not_empty(self.stratum_column, "stratum_column")
|
|
311
|
-
self.__awu._validate_dataframe_has_argument_columns(self.stratum_column, "stratum_column", self.data, "data", False)
|
|
312
|
-
|
|
313
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
314
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
315
|
-
|
|
316
|
-
self.__awu._validate_input_columns_not_empty(self.summary_data_sequence_column, "summary_data_sequence_column")
|
|
317
|
-
self.__awu._validate_dataframe_has_argument_columns(self.summary_data_sequence_column, "summary_data_sequence_column", self.summary_data, "summary_data", False)
|
|
318
|
-
|
|
319
|
-
self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
|
|
320
|
-
if self.__awu._is_default_or_not(self.data_partition_column, "ANY"):
|
|
321
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
|
|
322
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
323
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
324
|
-
|
|
325
|
-
self.__awu._validate_input_columns_not_empty(self.summary_data_order_column, "summary_data_order_column")
|
|
326
|
-
self.__awu._validate_dataframe_has_argument_columns(self.summary_data_order_column, "summary_data_order_column", self.summary_data, "summary_data", False)
|
|
327
|
-
|
|
328
|
-
|
|
329
|
-
def __form_tdml_query(self):
|
|
330
|
-
"""
|
|
331
|
-
Function to generate the analytical function queries. The function defines
|
|
332
|
-
variables and list of arguments required to form the query.
|
|
333
|
-
"""
|
|
334
|
-
|
|
335
|
-
# Output table arguments list
|
|
336
|
-
self.__func_output_args_sql_names = []
|
|
337
|
-
self.__func_output_args = []
|
|
338
|
-
|
|
339
|
-
# Model Cataloging related attributes.
|
|
340
|
-
self._sql_specific_attributes = {}
|
|
341
|
-
self._sql_formula_attribute_mapper = {}
|
|
342
|
-
self._target_column = None
|
|
343
|
-
self._algorithm_name = None
|
|
344
|
-
|
|
345
|
-
# Generate lists for rest of the function arguments
|
|
346
|
-
self.__func_other_arg_sql_names = []
|
|
347
|
-
self.__func_other_args = []
|
|
348
|
-
self.__func_other_arg_json_datatypes = []
|
|
349
|
-
|
|
350
|
-
if self.stratum_column is not None:
|
|
351
|
-
self.__func_other_arg_sql_names.append("StratumColumn")
|
|
352
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.stratum_column, "\""), "'"))
|
|
353
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
354
|
-
|
|
355
|
-
if self.sample_fraction is not None:
|
|
356
|
-
self.__func_other_arg_sql_names.append("SampleFraction")
|
|
357
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.sample_fraction, "'"))
|
|
358
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
359
|
-
|
|
360
|
-
if self.approx_sample_size is not None:
|
|
361
|
-
self.__func_other_arg_sql_names.append("ApproxSampleSize")
|
|
362
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.approx_sample_size, "'"))
|
|
363
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
364
|
-
|
|
365
|
-
if self.strata is not None:
|
|
366
|
-
self.__func_other_arg_sql_names.append("Strata")
|
|
367
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.strata, "'"))
|
|
368
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
369
|
-
|
|
370
|
-
if self.seed is not None and self.seed != 0:
|
|
371
|
-
self.__func_other_arg_sql_names.append("Seed")
|
|
372
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seed, "'"))
|
|
373
|
-
self.__func_other_arg_json_datatypes.append("LONG")
|
|
374
|
-
|
|
375
|
-
# Generate lists for rest of the function arguments
|
|
376
|
-
sequence_input_by_list = []
|
|
377
|
-
if self.data_sequence_column is not None:
|
|
378
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
379
|
-
|
|
380
|
-
if self.summary_data_sequence_column is not None:
|
|
381
|
-
sequence_input_by_list.append("SummaryTable :" + UtilFuncs._teradata_collapse_arglist(self.summary_data_sequence_column, ""))
|
|
382
|
-
|
|
383
|
-
if len(sequence_input_by_list) > 0:
|
|
384
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
385
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
386
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
387
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
388
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
# Declare empty lists to hold input table information.
|
|
392
|
-
self.__func_input_arg_sql_names = []
|
|
393
|
-
self.__func_input_table_view_query = []
|
|
394
|
-
self.__func_input_dataframe_type = []
|
|
395
|
-
self.__func_input_distribution = []
|
|
396
|
-
self.__func_input_partition_by_cols = []
|
|
397
|
-
self.__func_input_order_by_cols = []
|
|
398
|
-
|
|
399
|
-
# Process data
|
|
400
|
-
if self.__awu._is_default_or_not(self.data_partition_column, "ANY"):
|
|
401
|
-
self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
|
|
402
|
-
|
|
403
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
404
|
-
self.__func_input_distribution.append("FACT")
|
|
405
|
-
self.__func_input_arg_sql_names.append("input")
|
|
406
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
407
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
408
|
-
self.__func_input_partition_by_cols.append(self.data_partition_column)
|
|
409
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
410
|
-
|
|
411
|
-
# Process summary_data
|
|
412
|
-
if self.summary_data is not None:
|
|
413
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.summary_data, False)
|
|
414
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
415
|
-
self.__func_input_arg_sql_names.append("SummaryTable ")
|
|
416
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
417
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
418
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
419
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.summary_data_order_column, "\""))
|
|
420
|
-
|
|
421
|
-
function_name = "Sampling"
|
|
422
|
-
# Create instance to generate SQLMR.
|
|
423
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
424
|
-
self.__func_input_arg_sql_names,
|
|
425
|
-
self.__func_input_table_view_query,
|
|
426
|
-
self.__func_input_dataframe_type,
|
|
427
|
-
self.__func_input_distribution,
|
|
428
|
-
self.__func_input_partition_by_cols,
|
|
429
|
-
self.__func_input_order_by_cols,
|
|
430
|
-
self.__func_other_arg_sql_names,
|
|
431
|
-
self.__func_other_args,
|
|
432
|
-
self.__func_other_arg_json_datatypes,
|
|
433
|
-
self.__func_output_args_sql_names,
|
|
434
|
-
self.__func_output_args,
|
|
435
|
-
engine="ENGINE_ML")
|
|
436
|
-
# Invoke call to SQL-MR generation.
|
|
437
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
438
|
-
|
|
439
|
-
# Print SQL-MR query if requested to do so.
|
|
440
|
-
if display.print_sqlmr_query:
|
|
441
|
-
print(self.sqlmr_query)
|
|
442
|
-
|
|
443
|
-
# Set the algorithm name for Model Cataloging.
|
|
444
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
445
|
-
|
|
446
|
-
def __execute(self):
|
|
447
|
-
"""
|
|
448
|
-
Function to execute SQL-MR queries.
|
|
449
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
450
|
-
"""
|
|
451
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
452
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
453
|
-
try:
|
|
454
|
-
# Generate the output.
|
|
455
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
456
|
-
except Exception as emsg:
|
|
457
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
458
|
-
|
|
459
|
-
# Update output table data frames.
|
|
460
|
-
self._mlresults = []
|
|
461
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
462
|
-
self._mlresults.append(self.result)
|
|
463
|
-
|
|
464
|
-
def show_query(self):
|
|
465
|
-
"""
|
|
466
|
-
Function to return the underlying SQL query.
|
|
467
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
468
|
-
"""
|
|
469
|
-
return self.sqlmr_query
|
|
470
|
-
|
|
471
|
-
def get_prediction_type(self):
|
|
472
|
-
"""
|
|
473
|
-
Function to return the Prediction type of the algorithm.
|
|
474
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
475
|
-
as saved in the Model Catalog.
|
|
476
|
-
"""
|
|
477
|
-
return self._prediction_type
|
|
478
|
-
|
|
479
|
-
def get_target_column(self):
|
|
480
|
-
"""
|
|
481
|
-
Function to return the Target Column of the algorithm.
|
|
482
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
483
|
-
as saved in the Model Catalog.
|
|
484
|
-
"""
|
|
485
|
-
return self._target_column
|
|
486
|
-
|
|
487
|
-
def get_build_time(self):
|
|
488
|
-
"""
|
|
489
|
-
Function to return the build time of the algorithm in seconds.
|
|
490
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
491
|
-
as saved in the Model Catalog.
|
|
492
|
-
"""
|
|
493
|
-
return self._build_time
|
|
494
|
-
|
|
495
|
-
def _get_algorithm_name(self):
|
|
496
|
-
"""
|
|
497
|
-
Function to return the name of the algorithm.
|
|
498
|
-
"""
|
|
499
|
-
return self._algorithm_name
|
|
500
|
-
|
|
501
|
-
def _get_sql_specific_attributes(self):
|
|
502
|
-
"""
|
|
503
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
504
|
-
"""
|
|
505
|
-
return self._sql_specific_attributes
|
|
506
|
-
|
|
507
|
-
@classmethod
|
|
508
|
-
def _from_model_catalog(cls,
|
|
509
|
-
result = None,
|
|
510
|
-
**kwargs):
|
|
511
|
-
"""
|
|
512
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
513
|
-
"""
|
|
514
|
-
kwargs.pop("result", None)
|
|
515
|
-
|
|
516
|
-
# Model Cataloging related attributes.
|
|
517
|
-
target_column = kwargs.pop("__target_column", None)
|
|
518
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
519
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
520
|
-
build_time = kwargs.pop("__build_time", None)
|
|
521
|
-
|
|
522
|
-
# Let's create an object of this class.
|
|
523
|
-
obj = cls(**kwargs)
|
|
524
|
-
obj.result = result
|
|
525
|
-
|
|
526
|
-
# Initialize the sqlmr_query class attribute.
|
|
527
|
-
obj.sqlmr_query = None
|
|
528
|
-
|
|
529
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
530
|
-
obj._sql_specific_attributes = None
|
|
531
|
-
obj._target_column = target_column
|
|
532
|
-
obj._prediction_type = prediction_type
|
|
533
|
-
obj._algorithm_name = algorithm_name
|
|
534
|
-
obj._build_time = build_time
|
|
535
|
-
|
|
536
|
-
# Update output table data frames.
|
|
537
|
-
obj._mlresults = []
|
|
538
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
539
|
-
obj._mlresults.append(obj.result)
|
|
540
|
-
return obj
|
|
541
|
-
|
|
542
|
-
def __repr__(self):
|
|
543
|
-
"""
|
|
544
|
-
Returns the string representation for a Sampling class instance.
|
|
545
|
-
"""
|
|
546
|
-
repr_string="############ STDOUT Output ############"
|
|
547
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
548
|
-
return repr_string
|
|
549
|
-
|