teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,536 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.8
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
- from teradataml.analytics.mle.SVMDense import SVMDense
30
-
31
- class SVMDensePredict:
32
-
33
- def __init__(self,
34
- object = None,
35
- newdata = None,
36
- attribute_columns = None,
37
- sample_id_column = None,
38
- accumulate_label = None,
39
- output_class_num = None,
40
- output_response_probdist = True,
41
- output_responses = None,
42
- newdata_sequence_column = None,
43
- object_sequence_column = None,
44
- newdata_order_column = None,
45
- object_order_column = None):
46
- """
47
- DESCRIPTION:
48
- The SVMDensePredict function takes the model generated by the
49
- function SVMDense and a set of test samples in dense format
50
- and outputs a prediction for each sample.
51
-
52
- PARAMETERS:
53
- object:
54
- Required Argument.
55
- Specifies the teradataml DataFrame containing the model
56
- data generated by SVMDense or instance of SVMDense,
57
- which contains the model.
58
-
59
- object_order_column:
60
- Optional Argument.
61
- Specifies Order By columns for object.
62
- Values to this argument can be provided as a list, if multiple
63
- columns are used for ordering.
64
- Types: str OR list of Strings (str)
65
-
66
- newdata:
67
- Required Argument.
68
- Specifies the teradataml DataFrame containing the input test data.
69
-
70
- newdata_order_column:
71
- Optional Argument.
72
- Specifies Order By columns for newdata.
73
- Values to this argument can be provided as a list, if multiple
74
- columns are used for ordering.
75
- Types: str OR list of Strings (str)
76
-
77
- attribute_columns:
78
- Required Argument.
79
- Specifies the input teradataml DataFrame columns that contain the
80
- attributes of the test samples. Attribute columns must be
81
- numeric (int, real, bigint,smallint, or float).
82
- Python teradataml DataFrame column types accepted: (int, float, long).
83
- Types: str OR list of Strings (str)
84
-
85
- sample_id_column:
86
- Required Argument.
87
- Specifies the name of the input teradataml DataFrame column that contains the
88
- identifiers of the test samples.
89
- Types: str
90
-
91
- accumulate_label:
92
- Optional Argument.
93
- Columns to be copied from the input teradataml DataFrame to the
94
- output table.
95
- Types: str OR list of Strings (str)
96
-
97
- output_class_num:
98
- Optional Argument.
99
- Only valid for multiple class models. If the value of this argument
100
- is k, the output teradataml DataFrame will include k class labels
101
- with corresponding predict_confidence instead of a single predicted
102
- result. The input value must be no less than 1.
103
- Note:
104
- 1. With Vantage version prior to 1.1.1, the argument defaults to
105
- the value 1.
106
- 2. "output_class_num" cannot be specified along with "output_responses".
107
- Types: int
108
-
109
- output_response_probdist:
110
- Optional Argument.
111
- Specifies whether to display output probability for the predicted
112
- category.
113
- Note: "output_response_probdist" argument support is only available when teradataml
114
- is connected to Vantage 1.1.1 or later.
115
- Default Value: True
116
- Types: bool
117
-
118
- output_responses:
119
- Optional Argument.
120
- Specifies responses in the input table.
121
- Note:
122
- 1. "output_responses" argument support is only available when teradataml
123
- is connected to Vantage 1.1.1 or later versions.
124
- 2. "output_responses" cannot be specified along with "output_class_num".
125
- 3. This argument requires the "output_response_probdist" argument to be set to True.
126
- Types: str OR list of Strings (str)
127
-
128
- newdata_sequence_column:
129
- Optional Argument.
130
- Specifies the list of column(s) that uniquely identifies each row of
131
- the input argument "newdata". The argument is used to ensure
132
- deterministic results for functions which produce results that vary
133
- from run to run.
134
- Types: str OR list of Strings (str)
135
-
136
- object_sequence_column:
137
- Optional Argument.
138
- Specifies the list of column(s) that uniquely identifies each row of
139
- the input argument "object". The argument is used to ensure
140
- deterministic results for functions which produce results that vary
141
- from run to run.
142
- Types: str OR list of Strings (str)
143
-
144
- RETURNS:
145
- Instance of SVMDensePredict.
146
- Output teradataml DataFrames can be accessed using attribute
147
- references, such as SVMDensePredictObj.<attribute_name>.
148
- Output teradataml DataFrame attribute name is:
149
- result
150
-
151
-
152
- RAISES:
153
- TeradataMlException
154
-
155
-
156
- EXAMPLES:
157
- # Load the data to run the example.
158
- load_example_data("svmdensepredict", ["nb_iris_input_train","nb_iris_input_test"])
159
-
160
- # Create teradataml DataFrame
161
- nb_iris_input_train = DataFrame.from_table("nb_iris_input_train")
162
- nb_iris_input_test = DataFrame.from_table("nb_iris_input_test")
163
-
164
- # Example 1 - Linear Model
165
- # Create SVMDense object
166
- svm_dense_out_linear = SVMDense(data = nb_iris_input_train,
167
- sample_id_column = "id",
168
- attribute_columns = ['sepal_length', 'sepal_width' , 'petal_length' , 'petal_width'],
169
- kernel_function = "linear",
170
- label_column = "species",
171
- cost = 1.0,
172
- bias = 0.0,
173
- max_step = 100,
174
- seed = 1
175
- )
176
- svm_dense_predict_out = SVMDensePredict(object = svm_dense_out_linear,
177
- newdata = nb_iris_input_test,
178
- attribute_columns = ['sepal_length', 'sepal_width' , 'petal_length' , 'petal_width'],
179
- sample_id_column = "id",
180
- accumulate_label = ["id","species"]
181
- )
182
- # Print the result DataFrame
183
- print(svm_dense_predict_out)
184
- # Example 2 - polynomial model
185
- svm_dense_out_polynomial = SVMDense(data = nb_iris_input_train,
186
- sample_id_column = "id",
187
- attribute_columns = ['sepal_length', 'sepal_width' , 'petal_length' , 'petal_width'],
188
- kernel_function = "polynomial",
189
- gamma = 0.1,
190
- degree = 2,
191
- subspace_dimension = 120,
192
- hash_bits = 512,
193
- label_column = "species",
194
- cost = 1.0,
195
- bias = 0.0,
196
- max_step = 100,
197
- seed = 1
198
- )
199
- svm_dense_predict_out = SVMDensePredict(object = svm_dense_out_polynomial,
200
- newdata = nb_iris_input_test,
201
- attribute_columns = ['sepal_length', 'sepal_width' , 'petal_length' , 'petal_width'],
202
- sample_id_column = "id",
203
- accumulate_label = ["id","species"]
204
- )
205
- # Print the result DataFrame
206
- print(svm_dense_predict_out)
207
-
208
- """
209
-
210
- # Start the timer to get the build time
211
- _start_time = time.time()
212
-
213
- self.object = object
214
- self.newdata = newdata
215
- self.attribute_columns = attribute_columns
216
- self.sample_id_column = sample_id_column
217
- self.accumulate_label = accumulate_label
218
- self.output_class_num = output_class_num
219
- self.output_response_probdist = output_response_probdist
220
- self.output_responses = output_responses
221
- self.newdata_sequence_column = newdata_sequence_column
222
- self.object_sequence_column = object_sequence_column
223
- self.newdata_order_column = newdata_order_column
224
- self.object_order_column = object_order_column
225
-
226
- # Create TeradataPyWrapperUtils instance which contains validation functions.
227
- self.__awu = AnalyticsWrapperUtils()
228
- self.__aed_utils = AedUtils()
229
-
230
- # Create argument information matrix to do parameter checking
231
- self.__arg_info_matrix = []
232
- self.__arg_info_matrix.append(["object", self.object, False, (DataFrame)])
233
- self.__arg_info_matrix.append(["object_order_column", self.object_order_column, True, (str,list)])
234
- self.__arg_info_matrix.append(["newdata", self.newdata, False, (DataFrame)])
235
- self.__arg_info_matrix.append(["newdata_order_column", self.newdata_order_column, True, (str,list)])
236
- self.__arg_info_matrix.append(["attribute_columns", self.attribute_columns, False, (str,list)])
237
- self.__arg_info_matrix.append(["sample_id_column", self.sample_id_column, False, (str)])
238
- self.__arg_info_matrix.append(["accumulate_label", self.accumulate_label, True, (str,list)])
239
- self.__arg_info_matrix.append(["output_class_num", self.output_class_num, True, (int)])
240
- self.__arg_info_matrix.append(["output_response_probdist", self.output_response_probdist, True, (bool)])
241
- self.__arg_info_matrix.append(["output_responses", self.output_responses, True, (str,list)])
242
- self.__arg_info_matrix.append(["newdata_sequence_column", self.newdata_sequence_column, True, (str,list)])
243
- self.__arg_info_matrix.append(["object_sequence_column", self.object_sequence_column, True, (str,list)])
244
-
245
- if inspect.stack()[1][3] != '_from_model_catalog':
246
- # Perform the function validations
247
- self.__validate()
248
- # Generate the ML query
249
- self.__form_tdml_query()
250
- # Execute ML query
251
- self.__execute()
252
- # Get the prediction type
253
- self._prediction_type = self.__awu._get_function_prediction_type(self)
254
-
255
- # End the timer to get the build time
256
- _end_time = time.time()
257
-
258
- # Calculate the build time
259
- self._build_time = (int)(_end_time - _start_time)
260
-
261
- def __validate(self):
262
- """
263
- Function to validate sqlmr function arguments, which verifies missing
264
- arguments, input argument and table types. Also processes the
265
- argument values.
266
- """
267
- if isinstance(self.object, SVMDense):
268
- self.object = self.object._mlresults[0]
269
-
270
- # To use output_responses, output_response_probdist must be set to True
271
- if self.output_response_probdist is False and self.output_responses is not None:
272
- raise TeradataMlException(Messages.get_message(MessageCodes.DEPENDENT_ARG_MISSING,
273
- 'output_response_probdist=True',
274
- 'output_responses'),
275
- MessageCodes.DEPENDENT_ARG_MISSING)
276
-
277
- # Cannot use output_class_num with output_responses
278
- if self.output_class_num is not None and self.output_responses is not None:
279
- raise TeradataMlException(Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT,
280
- "output_class_num", "output_responses"),
281
- MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
282
-
283
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
284
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
285
-
286
- # Make sure that a non-NULL value has been supplied correct type of argument
287
- self.__awu._validate_argument_types(self.__arg_info_matrix)
288
-
289
- # Check to make sure input table types are strings or data frame objects or of valid type.
290
- self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
291
- self.__awu._validate_input_table_datatype(self.object, "object", SVMDense)
292
-
293
- # Check whether the input columns passed to the argument are not empty.
294
- # Also check whether the input columns passed to the argument valid or not.
295
- self.__awu._validate_input_columns_not_empty(self.attribute_columns, "attribute_columns")
296
- self.__awu._validate_dataframe_has_argument_columns(self.attribute_columns, "attribute_columns", self.newdata, "newdata", False)
297
-
298
- self.__awu._validate_input_columns_not_empty(self.sample_id_column, "sample_id_column")
299
- self.__awu._validate_dataframe_has_argument_columns(self.sample_id_column, "sample_id_column", self.newdata, "newdata", False)
300
-
301
- self.__awu._validate_input_columns_not_empty(self.accumulate_label, "accumulate_label")
302
- self.__awu._validate_dataframe_has_argument_columns(self.accumulate_label, "accumulate_label", self.newdata, "newdata", False)
303
-
304
- self.__awu._validate_input_columns_not_empty(self.newdata_sequence_column, "newdata_sequence_column")
305
- self.__awu._validate_dataframe_has_argument_columns(self.newdata_sequence_column, "newdata_sequence_column", self.newdata, "newdata", False)
306
-
307
- self.__awu._validate_input_columns_not_empty(self.object_sequence_column, "object_sequence_column")
308
- self.__awu._validate_dataframe_has_argument_columns(self.object_sequence_column, "object_sequence_column", self.object, "object", False)
309
-
310
- self.__awu._validate_input_columns_not_empty(self.newdata_order_column, "newdata_order_column")
311
- self.__awu._validate_dataframe_has_argument_columns(self.newdata_order_column, "newdata_order_column", self.newdata, "newdata", False)
312
-
313
- self.__awu._validate_input_columns_not_empty(self.object_order_column, "object_order_column")
314
- self.__awu._validate_dataframe_has_argument_columns(self.object_order_column, "object_order_column", self.object, "object", False)
315
-
316
-
317
- def __form_tdml_query(self):
318
- """
319
- Function to generate the analytical function queries. The function defines
320
- variables and list of arguments required to form the query.
321
- """
322
-
323
- # Output table arguments list
324
- self.__func_output_args_sql_names = []
325
- self.__func_output_args = []
326
-
327
- # Model Cataloging related attributes.
328
- self._sql_specific_attributes = {}
329
- self._sql_formula_attribute_mapper = {}
330
- self._target_column = None
331
- self._algorithm_name = None
332
-
333
- # Generate lists for rest of the function arguments
334
- self.__func_other_arg_sql_names = []
335
- self.__func_other_args = []
336
- self.__func_other_arg_json_datatypes = []
337
-
338
- self.__func_other_arg_sql_names.append("InputColumns")
339
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attribute_columns, "\""), "'"))
340
- self.__func_other_arg_json_datatypes.append("COLUMNS")
341
-
342
- self.__func_other_arg_sql_names.append("IdColumn")
343
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.sample_id_column, "\""), "'"))
344
- self.__func_other_arg_json_datatypes.append("COLUMNS")
345
-
346
- if self.accumulate_label is not None:
347
- self.__func_other_arg_sql_names.append("Accumulate")
348
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate_label, "\""), "'"))
349
- self.__func_other_arg_json_datatypes.append("COLUMNS")
350
-
351
- if self.output_class_num is not None:
352
- self.__func_other_arg_sql_names.append("OutputClassNum")
353
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_class_num, "'"))
354
- self.__func_other_arg_json_datatypes.append("INTEGER")
355
-
356
- if self.output_response_probdist is not None and self.output_response_probdist != True:
357
- self.__func_other_arg_sql_names.append("OutputProb")
358
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_response_probdist, "'"))
359
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
360
-
361
- if self.output_responses is not None:
362
- self.__func_other_arg_sql_names.append("Responses")
363
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_responses, "'"))
364
- self.__func_other_arg_json_datatypes.append("STRING")
365
-
366
- # Generate lists for rest of the function arguments
367
- sequence_input_by_list = []
368
- if self.newdata_sequence_column is not None:
369
- sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.newdata_sequence_column, ""))
370
-
371
- if self.object_sequence_column is not None:
372
- sequence_input_by_list.append("model:" + UtilFuncs._teradata_collapse_arglist(self.object_sequence_column, ""))
373
-
374
- if len(sequence_input_by_list) > 0:
375
- self.__func_other_arg_sql_names.append("SequenceInputBy")
376
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
377
- self.__func_other_args.append(sequence_input_by_arg_value)
378
- self.__func_other_arg_json_datatypes.append("STRING")
379
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
380
-
381
-
382
- # Declare empty lists to hold input table information.
383
- self.__func_input_arg_sql_names = []
384
- self.__func_input_table_view_query = []
385
- self.__func_input_dataframe_type = []
386
- self.__func_input_distribution = []
387
- self.__func_input_partition_by_cols = []
388
- self.__func_input_order_by_cols = []
389
-
390
- # Process newdata
391
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.newdata, False)
392
- self.__func_input_distribution.append("FACT")
393
- self.__func_input_arg_sql_names.append("input")
394
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
395
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
396
- self.__func_input_partition_by_cols.append("ANY")
397
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.newdata_order_column, "\""))
398
-
399
- # Process object
400
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.object, False)
401
- self.__func_input_distribution.append("DIMENSION")
402
- self.__func_input_arg_sql_names.append("model")
403
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
404
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
405
- self.__func_input_partition_by_cols.append("NA_character_")
406
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.object_order_column, "\""))
407
-
408
- function_name = "SVMDensePredict"
409
- # Create instance to generate SQLMR.
410
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
411
- self.__func_input_arg_sql_names,
412
- self.__func_input_table_view_query,
413
- self.__func_input_dataframe_type,
414
- self.__func_input_distribution,
415
- self.__func_input_partition_by_cols,
416
- self.__func_input_order_by_cols,
417
- self.__func_other_arg_sql_names,
418
- self.__func_other_args,
419
- self.__func_other_arg_json_datatypes,
420
- self.__func_output_args_sql_names,
421
- self.__func_output_args,
422
- engine="ENGINE_ML")
423
- # Invoke call to SQL-MR generation.
424
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
425
-
426
- # Print SQL-MR query if requested to do so.
427
- if display.print_sqlmr_query:
428
- print(self.sqlmr_query)
429
-
430
- # Set the algorithm name for Model Cataloging.
431
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
432
-
433
- def __execute(self):
434
- """
435
- Function to execute SQL-MR queries.
436
- Create DataFrames for the required SQL-MR outputs.
437
- """
438
- # Generate STDOUT table name and add it to the output table list.
439
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
440
- try:
441
- # Generate the output.
442
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
443
- except Exception as emsg:
444
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
445
-
446
- # Update output table data frames.
447
- self._mlresults = []
448
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
449
- self._mlresults.append(self.result)
450
-
451
- def show_query(self):
452
- """
453
- Function to return the underlying SQL query.
454
- When model object is created using retrieve_model(), then None is returned.
455
- """
456
- return self.sqlmr_query
457
-
458
- def get_prediction_type(self):
459
- """
460
- Function to return the Prediction type of the algorithm.
461
- When model object is created using retrieve_model(), then the value returned is
462
- as saved in the Model Catalog.
463
- """
464
- return self._prediction_type
465
-
466
- def get_target_column(self):
467
- """
468
- Function to return the Target Column of the algorithm.
469
- When model object is created using retrieve_model(), then the value returned is
470
- as saved in the Model Catalog.
471
- """
472
- return self._target_column
473
-
474
- def get_build_time(self):
475
- """
476
- Function to return the build time of the algorithm in seconds.
477
- When model object is created using retrieve_model(), then the value returned is
478
- as saved in the Model Catalog.
479
- """
480
- return self._build_time
481
-
482
- def _get_algorithm_name(self):
483
- """
484
- Function to return the name of the algorithm.
485
- """
486
- return self._algorithm_name
487
-
488
- def _get_sql_specific_attributes(self):
489
- """
490
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
491
- """
492
- return self._sql_specific_attributes
493
-
494
- @classmethod
495
- def _from_model_catalog(cls,
496
- result = None,
497
- **kwargs):
498
- """
499
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
500
- """
501
- kwargs.pop("result", None)
502
-
503
- # Model Cataloging related attributes.
504
- target_column = kwargs.pop("__target_column", None)
505
- prediction_type = kwargs.pop("__prediction_type", None)
506
- algorithm_name = kwargs.pop("__algorithm_name", None)
507
- build_time = kwargs.pop("__build_time", None)
508
-
509
- # Let's create an object of this class.
510
- obj = cls(**kwargs)
511
- obj.result = result
512
-
513
- # Initialize the sqlmr_query class attribute.
514
- obj.sqlmr_query = None
515
-
516
- # Initialize the SQL specific Model Cataloging attributes.
517
- obj._sql_specific_attributes = None
518
- obj._target_column = target_column
519
- obj._prediction_type = prediction_type
520
- obj._algorithm_name = algorithm_name
521
- obj._build_time = build_time
522
-
523
- # Update output table data frames.
524
- obj._mlresults = []
525
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
526
- obj._mlresults.append(obj.result)
527
- return obj
528
-
529
- def __repr__(self):
530
- """
531
- Returns the string representation for a SVMDensePredict class instance.
532
- """
533
- repr_string="############ STDOUT Output ############"
534
- repr_string = "{}\n\n{}".format(repr_string,self.result)
535
- return repr_string
536
-