teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,595 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Rohit Agrawal (rohit.agrawal@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.8
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class NERExtractor:
31
-
32
- def __init__(self,
33
- data = None,
34
- rules = None,
35
- dict = None,
36
- text_column = None,
37
- models = None,
38
- language = "en",
39
- show_entity_context = 0,
40
- accumulate = None,
41
- data_sequence_column = None,
42
- rules_sequence_column = None,
43
- dict_sequence_column = None,
44
- data_partition_column = "ANY",
45
- data_order_column = None,
46
- rules_order_column = None,
47
- dict_order_column = None):
48
- """
49
- DESCRIPTION:
50
- The NERExtractor function takes input documents and extracts
51
- specified entities, using one or more CRF models (output of the
52
- function NERTrainer) and, if appropriate, rules (regular expressions)
53
- or a dictionary.
54
- The function uses models to extract the names of persons, locations,
55
- and organizations; rules to extract entities that conform to rules
56
- (such as phone numbers, times, and dates); and a dictionary to
57
- extract known entities.
58
- Note:
59
- NERExtractor uses below files that are preinstalled on the ML Engine:
60
- * ner_model_1.0_reuters_en_all_141011.bin
61
- * template_1.txt
62
-
63
- PARAMETERS:
64
- data:
65
- Required Argument.
66
- Specifies an input teradataml DataFrame containing test data.
67
-
68
- data_partition_column:
69
- Optional Argument.
70
- Specifies Partition By columns for data.
71
- Values to this argument can be provided as a list, if multiple
72
- columns are used for partition.
73
- Default Value: ANY
74
- Types: str OR list of Strings (str)
75
-
76
- data_order_column:
77
- Optional Argument.
78
- Specifies Order By columns for data.
79
- Values to this argument can be provided as a list, if multiple
80
- columns are used for ordering.
81
- Types: str OR list of Strings (str)
82
-
83
- rules:
84
- Optional Argument.
85
- Specifies a teradataml DataFrame that contains the regular expressions
86
- used to parse input data.
87
-
88
- rules_order_column:
89
- Optional Argument.
90
- Specifies Order By columns for rules.
91
- Values to this argument can be provided as a list, if multiple
92
- columns are used for ordering.
93
- Types: str OR list of Strings (str)
94
-
95
- dict:
96
- Optional Argument.
97
- Specifies a teradataml DataFrame that contains the dictionary
98
- for named entities.
99
-
100
- dict_order_column:
101
- Optional Argument.
102
- Specifies Order By columns for dict.
103
- Values to this argument can be provided as a list, if multiple
104
- columns are used for ordering.
105
- Types: str OR list of Strings (str)
106
-
107
- text_column:
108
- Required Argument.
109
- Specifies the name of the input teradataml DataFrame column that
110
- contains the text to analyze.
111
- Types: str
112
-
113
- models:
114
- Optional Argument.
115
- Specifies the CRF models (binary files) to use, generated by
116
- "NERTrainer" function. If you specified the ExtractorJAR argument in the
117
- NERTrainer call that generated model_file, then you must specify
118
- the same jar_file in this argument. You must install model_file and
119
- jar_file in ML Engine under the user search path before calling
120
- the NERExtractor function.
121
- Note:
122
- 1. The names model_file and jar_file are case-sensitive.
123
- 2. For JAR files installation instructions, see Teradata Vantage User Guide.
124
- Types: str OR list of strs
125
-
126
- language:
127
- Optional Argument.
128
- Specifies the language of the input text:
129
- * en - English
130
- * zh_CN - Simplified Chinese
131
- * zh_TW - Traditional Chinese
132
- Default Value: "en"
133
- Permitted Values: en, zh_CN, zh_TW
134
- Types: str
135
-
136
- show_entity_context:
137
- Optional Argument.
138
- Specifies the number of context words to output. If the number of context words is
139
- n (which must be a positive integer), the function outputs the n
140
- words that precede the entity, the entity, and the n words that
141
- follow the entity.
142
- Default Value: 0
143
- Types: int
144
-
145
- accumulate:
146
- Optional Argument.
147
- Specifies the names of the input teradataml DataFrame columns to copy
148
- to the output teradataml dataframe.
149
- Types: str OR list of Strings (str)
150
-
151
- data_sequence_column:
152
- Optional Argument.
153
- Specifies the list of column(s) that uniquely identifies each row of
154
- the input argument "data". The argument is used to ensure
155
- deterministic results for functions which produce results that vary
156
- from run to run.
157
- Types: str OR list of Strings (str)
158
-
159
- rules_sequence_column:
160
- Optional Argument.
161
- Specifies the list of column(s) that uniquely identifies each row of
162
- the input argument "rules". The argument is used to ensure
163
- deterministic results for functions which produce results that vary
164
- from run to run.
165
- Types: str OR list of Strings (str)
166
-
167
- dict_sequence_column:
168
- Optional Argument.
169
- Specifies the list of column(s) that uniquely identifies each row of
170
- the input argument "dict". The argument is used to ensure
171
- deterministic results for functions which produce results that vary
172
- from run to run.
173
- Types: str OR list of Strings (str)
174
-
175
- RETURNS:
176
- Instance of NERExtractor.
177
- Output teradataml DataFrames can be accessed using attribute
178
- references, such as NERExtractorObj.<attribute_name>.
179
- Output teradataml DataFrame attribute name is:
180
- result
181
-
182
-
183
- RAISES:
184
- TeradataMlException
185
-
186
-
187
- EXAMPLES:
188
- # Before running NERExtractor, run NERTrainer to generate model file.
189
- # Load the data to run the NERTrainer example.
190
- load_example_data("nertrainer","ner_sports_train")
191
-
192
- # Create teradataml DataFrame object.
193
- ner_sports_train = DataFrame.from_table("ner_sports_train")
194
-
195
- # Run the train function to generate model file for NERExtractor function.
196
- nertrainer_train = NERTrainer(data=ner_sports_train,
197
- text_coloumn='content',
198
- model_file='ner_model.bin',
199
- feature_template='template_1.txt'
200
- )
201
- # Print the result DataFrame.
202
- print(nertrainer_train.result)
203
-
204
- # Run NERExtractor
205
- # Example 1 - Pass rule teradataml dataframe as a set of rules.
206
- # Load the data to run the example.
207
- load_example_data("nerextractor", ["ner_sports_test2", "rule_table"])
208
-
209
- # Create teradataml DataFrame object.
210
- ner_sports_test2 = DataFrame.from_table("ner_sports_test2")
211
- rule_table = DataFrame.from_table("rule_table")
212
-
213
- # Run the extractor function using rules entity.
214
- nerextractor_out = NERExtractor(data=ner_sports_test2,
215
- data_partition_column='ANY',
216
- rules=rule_table,
217
- text_column='content',
218
- accumulate='id',
219
- language='en',
220
- models='ner_model.bin',
221
- show_entity_context=0,
222
- data_sequence_column='id'
223
- )
224
-
225
- # Print the result DataFrame.
226
- print(nerextractor_out.result)
227
-
228
- # Example 2 - Pass dict teradataml dataframe as a set of dictionary.
229
- # Load the data to run the example.
230
- load_example_data("nerextractor", ["ner_extractor_text", "dict_table"])
231
-
232
- # Create teradataml DataFrame object.
233
- ner_extractor_text = DataFrame.from_table("ner_extractor_text")
234
- dict_table = DataFrame.from_table("dict_table")
235
-
236
- # Run the extractor function using rules entity.
237
- nerextractor_out = NERExtractor(data=ner_extractor_text,
238
- data_partition_column='ANY',
239
- dict=dict_table,
240
- text_column='content',
241
- accumulate='id',
242
- language='en',
243
- models='ner_model.bin',
244
- show_entity_context=0,
245
- data_sequence_column='id',
246
- dict_sequence_column='type1'
247
- )
248
-
249
- # Print the result DataFrame.
250
- print(nerextractor_out.result)
251
-
252
- """
253
-
254
- # Start the timer to get the build time
255
- _start_time = time.time()
256
-
257
- self.data = data
258
- self.rules = rules
259
- self.dict = dict
260
- self.text_column = text_column
261
- self.models = models
262
- self.language = language
263
- self.show_entity_context = show_entity_context
264
- self.accumulate = accumulate
265
- self.data_sequence_column = data_sequence_column
266
- self.rules_sequence_column = rules_sequence_column
267
- self.dict_sequence_column = dict_sequence_column
268
- self.data_partition_column = data_partition_column
269
- self.data_order_column = data_order_column
270
- self.rules_order_column = rules_order_column
271
- self.dict_order_column = dict_order_column
272
-
273
- # Create TeradataPyWrapperUtils instance which contains validation functions.
274
- self.__awu = AnalyticsWrapperUtils()
275
- self.__aed_utils = AedUtils()
276
-
277
- # Create argument information matrix to do parameter checking
278
- self.__arg_info_matrix = []
279
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
280
- self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, True, (str,list)])
281
- self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
282
- self.__arg_info_matrix.append(["rules", self.rules, True, (DataFrame)])
283
- self.__arg_info_matrix.append(["rules_order_column", self.rules_order_column, True, (str,list)])
284
- self.__arg_info_matrix.append(["dict", self.dict, True, (DataFrame)])
285
- self.__arg_info_matrix.append(["dict_order_column", self.dict_order_column, True, (str,list)])
286
- self.__arg_info_matrix.append(["text_column", self.text_column, False, (str)])
287
- self.__arg_info_matrix.append(["models", self.models, True, (str,list)])
288
- self.__arg_info_matrix.append(["language", self.language, True, (str)])
289
- self.__arg_info_matrix.append(["show_entity_context", self.show_entity_context, True, (int)])
290
- self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
291
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
292
- self.__arg_info_matrix.append(["rules_sequence_column", self.rules_sequence_column, True, (str,list)])
293
- self.__arg_info_matrix.append(["dict_sequence_column", self.dict_sequence_column, True, (str,list)])
294
-
295
- if inspect.stack()[1][3] != '_from_model_catalog':
296
- # Perform the function validations
297
- self.__validate()
298
- # Generate the ML query
299
- self.__form_tdml_query()
300
- # Execute ML query
301
- self.__execute()
302
- # Get the prediction type
303
- self._prediction_type = self.__awu._get_function_prediction_type(self)
304
-
305
- # End the timer to get the build time
306
- _end_time = time.time()
307
-
308
- # Calculate the build time
309
- self._build_time = (int)(_end_time - _start_time)
310
-
311
- def __validate(self):
312
- """
313
- Function to validate sqlmr function arguments, which verifies missing
314
- arguments, input argument and table types. Also processes the
315
- argument values.
316
- """
317
-
318
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
319
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
320
-
321
- # Make sure that a non-NULL value has been supplied correct type of argument
322
- self.__awu._validate_argument_types(self.__arg_info_matrix)
323
-
324
- # Check to make sure input table types are strings or data frame objects or of valid type.
325
- self.__awu._validate_input_table_datatype(self.data, "data", None)
326
- self.__awu._validate_input_table_datatype(self.rules, "rules", None)
327
- self.__awu._validate_input_table_datatype(self.dict, "dict", None)
328
-
329
- # Check for permitted values
330
- language_permitted_values = ["EN", "ZH_CN", "ZH_TW"]
331
- self.__awu._validate_permitted_values(self.language, language_permitted_values, "language")
332
-
333
- # Check whether the input columns passed to the argument are not empty.
334
- # Also check whether the input columns passed to the argument valid or not.
335
- self.__awu._validate_input_columns_not_empty(self.text_column, "text_column")
336
- self.__awu._validate_dataframe_has_argument_columns(self.text_column, "text_column", self.data, "data", False)
337
-
338
- self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
339
- self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.data, "data", False)
340
-
341
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
342
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
343
-
344
- self.__awu._validate_input_columns_not_empty(self.rules_sequence_column, "rules_sequence_column")
345
- self.__awu._validate_dataframe_has_argument_columns(self.rules_sequence_column, "rules_sequence_column", self.rules, "rules", False)
346
-
347
- self.__awu._validate_input_columns_not_empty(self.dict_sequence_column, "dict_sequence_column")
348
- self.__awu._validate_dataframe_has_argument_columns(self.dict_sequence_column, "dict_sequence_column", self.dict, "dict", False)
349
-
350
- self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
351
- if self.__awu._is_default_or_not(self.data_partition_column, "ANY"):
352
- self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
353
- self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
354
- self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
355
-
356
- self.__awu._validate_input_columns_not_empty(self.rules_order_column, "rules_order_column")
357
- self.__awu._validate_dataframe_has_argument_columns(self.rules_order_column, "rules_order_column", self.rules, "rules", False)
358
-
359
- self.__awu._validate_input_columns_not_empty(self.dict_order_column, "dict_order_column")
360
- self.__awu._validate_dataframe_has_argument_columns(self.dict_order_column, "dict_order_column", self.dict, "dict", False)
361
-
362
-
363
- def __form_tdml_query(self):
364
- """
365
- Function to generate the analytical function queries. The function defines
366
- variables and list of arguments required to form the query.
367
- """
368
-
369
- # Output table arguments list
370
- self.__func_output_args_sql_names = []
371
- self.__func_output_args = []
372
-
373
- # Model Cataloging related attributes.
374
- self._sql_specific_attributes = {}
375
- self._sql_formula_attribute_mapper = {}
376
- self._target_column = None
377
- self._algorithm_name = None
378
-
379
- # Generate lists for rest of the function arguments
380
- self.__func_other_arg_sql_names = []
381
- self.__func_other_args = []
382
- self.__func_other_arg_json_datatypes = []
383
-
384
- self.__func_other_arg_sql_names.append("TextColumn")
385
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.text_column, "\""), "'"))
386
- self.__func_other_arg_json_datatypes.append("COLUMNS")
387
-
388
- if self.accumulate is not None:
389
- self.__func_other_arg_sql_names.append("Accumulate")
390
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
391
- self.__func_other_arg_json_datatypes.append("COLUMNS")
392
-
393
- if self.language is not None and self.language != "en":
394
- self.__func_other_arg_sql_names.append("InputLanguage")
395
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.language, "'"))
396
- self.__func_other_arg_json_datatypes.append("STRING")
397
-
398
- if self.models is not None:
399
- self.__func_other_arg_sql_names.append("Models")
400
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.models, "'"))
401
- self.__func_other_arg_json_datatypes.append("STRING")
402
-
403
- if self.show_entity_context is not None and self.show_entity_context != 0:
404
- self.__func_other_arg_sql_names.append("ShowContext")
405
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.show_entity_context, "'"))
406
- self.__func_other_arg_json_datatypes.append("INTEGER")
407
-
408
- # Generate lists for rest of the function arguments
409
- sequence_input_by_list = []
410
- if self.data_sequence_column is not None:
411
- sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
412
-
413
- if self.rules_sequence_column is not None:
414
- sequence_input_by_list.append("rules:" + UtilFuncs._teradata_collapse_arglist(self.rules_sequence_column, ""))
415
-
416
- if self.dict_sequence_column is not None:
417
- sequence_input_by_list.append("dict:" + UtilFuncs._teradata_collapse_arglist(self.dict_sequence_column, ""))
418
-
419
- if len(sequence_input_by_list) > 0:
420
- self.__func_other_arg_sql_names.append("SequenceInputBy")
421
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
422
- self.__func_other_args.append(sequence_input_by_arg_value)
423
- self.__func_other_arg_json_datatypes.append("STRING")
424
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
425
-
426
-
427
- # Declare empty lists to hold input table information.
428
- self.__func_input_arg_sql_names = []
429
- self.__func_input_table_view_query = []
430
- self.__func_input_dataframe_type = []
431
- self.__func_input_distribution = []
432
- self.__func_input_partition_by_cols = []
433
- self.__func_input_order_by_cols = []
434
-
435
- # Process data
436
- if self.__awu._is_default_or_not(self.data_partition_column, "ANY"):
437
- self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
438
-
439
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
440
- self.__func_input_distribution.append("FACT")
441
- self.__func_input_arg_sql_names.append("input")
442
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
443
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
444
- self.__func_input_partition_by_cols.append(self.data_partition_column)
445
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
446
-
447
- # Process rules
448
- if self.rules is not None:
449
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.rules, False)
450
- self.__func_input_distribution.append("DIMENSION")
451
- self.__func_input_arg_sql_names.append("rules")
452
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
453
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
454
- self.__func_input_partition_by_cols.append("NA_character_")
455
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.rules_order_column, "\""))
456
-
457
- # Process dict
458
- if self.dict is not None:
459
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.dict, False)
460
- self.__func_input_distribution.append("DIMENSION")
461
- self.__func_input_arg_sql_names.append("dict")
462
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
463
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
464
- self.__func_input_partition_by_cols.append("NA_character_")
465
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.dict_order_column, "\""))
466
-
467
- function_name = "NERExtractor"
468
- # Create instance to generate SQLMR.
469
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
470
- self.__func_input_arg_sql_names,
471
- self.__func_input_table_view_query,
472
- self.__func_input_dataframe_type,
473
- self.__func_input_distribution,
474
- self.__func_input_partition_by_cols,
475
- self.__func_input_order_by_cols,
476
- self.__func_other_arg_sql_names,
477
- self.__func_other_args,
478
- self.__func_other_arg_json_datatypes,
479
- self.__func_output_args_sql_names,
480
- self.__func_output_args,
481
- engine="ENGINE_ML")
482
- # Invoke call to SQL-MR generation.
483
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
484
-
485
- # Print SQL-MR query if requested to do so.
486
- if display.print_sqlmr_query:
487
- print(self.sqlmr_query)
488
-
489
- # Set the algorithm name for Model Cataloging.
490
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
491
-
492
- def __execute(self):
493
- """
494
- Function to execute SQL-MR queries.
495
- Create DataFrames for the required SQL-MR outputs.
496
- """
497
- # Generate STDOUT table name and add it to the output table list.
498
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
499
- try:
500
- # Generate the output.
501
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
502
- except Exception as emsg:
503
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
504
-
505
- # Update output table data frames.
506
- self._mlresults = []
507
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
508
- self._mlresults.append(self.result)
509
-
510
- def show_query(self):
511
- """
512
- Function to return the underlying SQL query.
513
- When model object is created using retrieve_model(), then None is returned.
514
- """
515
- return self.sqlmr_query
516
-
517
- def get_prediction_type(self):
518
- """
519
- Function to return the Prediction type of the algorithm.
520
- When model object is created using retrieve_model(), then the value returned is
521
- as saved in the Model Catalog.
522
- """
523
- return self._prediction_type
524
-
525
- def get_target_column(self):
526
- """
527
- Function to return the Target Column of the algorithm.
528
- When model object is created using retrieve_model(), then the value returned is
529
- as saved in the Model Catalog.
530
- """
531
- return self._target_column
532
-
533
- def get_build_time(self):
534
- """
535
- Function to return the build time of the algorithm in seconds.
536
- When model object is created using retrieve_model(), then the value returned is
537
- as saved in the Model Catalog.
538
- """
539
- return self._build_time
540
-
541
- def _get_algorithm_name(self):
542
- """
543
- Function to return the name of the algorithm.
544
- """
545
- return self._algorithm_name
546
-
547
- def _get_sql_specific_attributes(self):
548
- """
549
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
550
- """
551
- return self._sql_specific_attributes
552
-
553
- @classmethod
554
- def _from_model_catalog(cls,
555
- result = None,
556
- **kwargs):
557
- """
558
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
559
- """
560
- kwargs.pop("result", None)
561
-
562
- # Model Cataloging related attributes.
563
- target_column = kwargs.pop("__target_column", None)
564
- prediction_type = kwargs.pop("__prediction_type", None)
565
- algorithm_name = kwargs.pop("__algorithm_name", None)
566
- build_time = kwargs.pop("__build_time", None)
567
-
568
- # Let's create an object of this class.
569
- obj = cls(**kwargs)
570
- obj.result = result
571
-
572
- # Initialize the sqlmr_query class attribute.
573
- obj.sqlmr_query = None
574
-
575
- # Initialize the SQL specific Model Cataloging attributes.
576
- obj._sql_specific_attributes = None
577
- obj._target_column = target_column
578
- obj._prediction_type = prediction_type
579
- obj._algorithm_name = algorithm_name
580
- obj._build_time = build_time
581
-
582
- # Update output table data frames.
583
- obj._mlresults = []
584
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
585
- obj._mlresults.append(obj.result)
586
- return obj
587
-
588
- def __repr__(self):
589
- """
590
- Returns the string representation for a NERExtractor class instance.
591
- """
592
- repr_string="############ STDOUT Output ############"
593
- repr_string = "{}\n\n{}".format(repr_string,self.result)
594
- return repr_string
595
-