teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,595 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Rohit Agrawal (rohit.agrawal@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.8
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class NERExtractor:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
rules = None,
|
|
35
|
-
dict = None,
|
|
36
|
-
text_column = None,
|
|
37
|
-
models = None,
|
|
38
|
-
language = "en",
|
|
39
|
-
show_entity_context = 0,
|
|
40
|
-
accumulate = None,
|
|
41
|
-
data_sequence_column = None,
|
|
42
|
-
rules_sequence_column = None,
|
|
43
|
-
dict_sequence_column = None,
|
|
44
|
-
data_partition_column = "ANY",
|
|
45
|
-
data_order_column = None,
|
|
46
|
-
rules_order_column = None,
|
|
47
|
-
dict_order_column = None):
|
|
48
|
-
"""
|
|
49
|
-
DESCRIPTION:
|
|
50
|
-
The NERExtractor function takes input documents and extracts
|
|
51
|
-
specified entities, using one or more CRF models (output of the
|
|
52
|
-
function NERTrainer) and, if appropriate, rules (regular expressions)
|
|
53
|
-
or a dictionary.
|
|
54
|
-
The function uses models to extract the names of persons, locations,
|
|
55
|
-
and organizations; rules to extract entities that conform to rules
|
|
56
|
-
(such as phone numbers, times, and dates); and a dictionary to
|
|
57
|
-
extract known entities.
|
|
58
|
-
Note:
|
|
59
|
-
NERExtractor uses below files that are preinstalled on the ML Engine:
|
|
60
|
-
* ner_model_1.0_reuters_en_all_141011.bin
|
|
61
|
-
* template_1.txt
|
|
62
|
-
|
|
63
|
-
PARAMETERS:
|
|
64
|
-
data:
|
|
65
|
-
Required Argument.
|
|
66
|
-
Specifies an input teradataml DataFrame containing test data.
|
|
67
|
-
|
|
68
|
-
data_partition_column:
|
|
69
|
-
Optional Argument.
|
|
70
|
-
Specifies Partition By columns for data.
|
|
71
|
-
Values to this argument can be provided as a list, if multiple
|
|
72
|
-
columns are used for partition.
|
|
73
|
-
Default Value: ANY
|
|
74
|
-
Types: str OR list of Strings (str)
|
|
75
|
-
|
|
76
|
-
data_order_column:
|
|
77
|
-
Optional Argument.
|
|
78
|
-
Specifies Order By columns for data.
|
|
79
|
-
Values to this argument can be provided as a list, if multiple
|
|
80
|
-
columns are used for ordering.
|
|
81
|
-
Types: str OR list of Strings (str)
|
|
82
|
-
|
|
83
|
-
rules:
|
|
84
|
-
Optional Argument.
|
|
85
|
-
Specifies a teradataml DataFrame that contains the regular expressions
|
|
86
|
-
used to parse input data.
|
|
87
|
-
|
|
88
|
-
rules_order_column:
|
|
89
|
-
Optional Argument.
|
|
90
|
-
Specifies Order By columns for rules.
|
|
91
|
-
Values to this argument can be provided as a list, if multiple
|
|
92
|
-
columns are used for ordering.
|
|
93
|
-
Types: str OR list of Strings (str)
|
|
94
|
-
|
|
95
|
-
dict:
|
|
96
|
-
Optional Argument.
|
|
97
|
-
Specifies a teradataml DataFrame that contains the dictionary
|
|
98
|
-
for named entities.
|
|
99
|
-
|
|
100
|
-
dict_order_column:
|
|
101
|
-
Optional Argument.
|
|
102
|
-
Specifies Order By columns for dict.
|
|
103
|
-
Values to this argument can be provided as a list, if multiple
|
|
104
|
-
columns are used for ordering.
|
|
105
|
-
Types: str OR list of Strings (str)
|
|
106
|
-
|
|
107
|
-
text_column:
|
|
108
|
-
Required Argument.
|
|
109
|
-
Specifies the name of the input teradataml DataFrame column that
|
|
110
|
-
contains the text to analyze.
|
|
111
|
-
Types: str
|
|
112
|
-
|
|
113
|
-
models:
|
|
114
|
-
Optional Argument.
|
|
115
|
-
Specifies the CRF models (binary files) to use, generated by
|
|
116
|
-
"NERTrainer" function. If you specified the ExtractorJAR argument in the
|
|
117
|
-
NERTrainer call that generated model_file, then you must specify
|
|
118
|
-
the same jar_file in this argument. You must install model_file and
|
|
119
|
-
jar_file in ML Engine under the user search path before calling
|
|
120
|
-
the NERExtractor function.
|
|
121
|
-
Note:
|
|
122
|
-
1. The names model_file and jar_file are case-sensitive.
|
|
123
|
-
2. For JAR files installation instructions, see Teradata Vantage User Guide.
|
|
124
|
-
Types: str OR list of strs
|
|
125
|
-
|
|
126
|
-
language:
|
|
127
|
-
Optional Argument.
|
|
128
|
-
Specifies the language of the input text:
|
|
129
|
-
* en - English
|
|
130
|
-
* zh_CN - Simplified Chinese
|
|
131
|
-
* zh_TW - Traditional Chinese
|
|
132
|
-
Default Value: "en"
|
|
133
|
-
Permitted Values: en, zh_CN, zh_TW
|
|
134
|
-
Types: str
|
|
135
|
-
|
|
136
|
-
show_entity_context:
|
|
137
|
-
Optional Argument.
|
|
138
|
-
Specifies the number of context words to output. If the number of context words is
|
|
139
|
-
n (which must be a positive integer), the function outputs the n
|
|
140
|
-
words that precede the entity, the entity, and the n words that
|
|
141
|
-
follow the entity.
|
|
142
|
-
Default Value: 0
|
|
143
|
-
Types: int
|
|
144
|
-
|
|
145
|
-
accumulate:
|
|
146
|
-
Optional Argument.
|
|
147
|
-
Specifies the names of the input teradataml DataFrame columns to copy
|
|
148
|
-
to the output teradataml dataframe.
|
|
149
|
-
Types: str OR list of Strings (str)
|
|
150
|
-
|
|
151
|
-
data_sequence_column:
|
|
152
|
-
Optional Argument.
|
|
153
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
154
|
-
the input argument "data". The argument is used to ensure
|
|
155
|
-
deterministic results for functions which produce results that vary
|
|
156
|
-
from run to run.
|
|
157
|
-
Types: str OR list of Strings (str)
|
|
158
|
-
|
|
159
|
-
rules_sequence_column:
|
|
160
|
-
Optional Argument.
|
|
161
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
162
|
-
the input argument "rules". The argument is used to ensure
|
|
163
|
-
deterministic results for functions which produce results that vary
|
|
164
|
-
from run to run.
|
|
165
|
-
Types: str OR list of Strings (str)
|
|
166
|
-
|
|
167
|
-
dict_sequence_column:
|
|
168
|
-
Optional Argument.
|
|
169
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
170
|
-
the input argument "dict". The argument is used to ensure
|
|
171
|
-
deterministic results for functions which produce results that vary
|
|
172
|
-
from run to run.
|
|
173
|
-
Types: str OR list of Strings (str)
|
|
174
|
-
|
|
175
|
-
RETURNS:
|
|
176
|
-
Instance of NERExtractor.
|
|
177
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
178
|
-
references, such as NERExtractorObj.<attribute_name>.
|
|
179
|
-
Output teradataml DataFrame attribute name is:
|
|
180
|
-
result
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
RAISES:
|
|
184
|
-
TeradataMlException
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
EXAMPLES:
|
|
188
|
-
# Before running NERExtractor, run NERTrainer to generate model file.
|
|
189
|
-
# Load the data to run the NERTrainer example.
|
|
190
|
-
load_example_data("nertrainer","ner_sports_train")
|
|
191
|
-
|
|
192
|
-
# Create teradataml DataFrame object.
|
|
193
|
-
ner_sports_train = DataFrame.from_table("ner_sports_train")
|
|
194
|
-
|
|
195
|
-
# Run the train function to generate model file for NERExtractor function.
|
|
196
|
-
nertrainer_train = NERTrainer(data=ner_sports_train,
|
|
197
|
-
text_coloumn='content',
|
|
198
|
-
model_file='ner_model.bin',
|
|
199
|
-
feature_template='template_1.txt'
|
|
200
|
-
)
|
|
201
|
-
# Print the result DataFrame.
|
|
202
|
-
print(nertrainer_train.result)
|
|
203
|
-
|
|
204
|
-
# Run NERExtractor
|
|
205
|
-
# Example 1 - Pass rule teradataml dataframe as a set of rules.
|
|
206
|
-
# Load the data to run the example.
|
|
207
|
-
load_example_data("nerextractor", ["ner_sports_test2", "rule_table"])
|
|
208
|
-
|
|
209
|
-
# Create teradataml DataFrame object.
|
|
210
|
-
ner_sports_test2 = DataFrame.from_table("ner_sports_test2")
|
|
211
|
-
rule_table = DataFrame.from_table("rule_table")
|
|
212
|
-
|
|
213
|
-
# Run the extractor function using rules entity.
|
|
214
|
-
nerextractor_out = NERExtractor(data=ner_sports_test2,
|
|
215
|
-
data_partition_column='ANY',
|
|
216
|
-
rules=rule_table,
|
|
217
|
-
text_column='content',
|
|
218
|
-
accumulate='id',
|
|
219
|
-
language='en',
|
|
220
|
-
models='ner_model.bin',
|
|
221
|
-
show_entity_context=0,
|
|
222
|
-
data_sequence_column='id'
|
|
223
|
-
)
|
|
224
|
-
|
|
225
|
-
# Print the result DataFrame.
|
|
226
|
-
print(nerextractor_out.result)
|
|
227
|
-
|
|
228
|
-
# Example 2 - Pass dict teradataml dataframe as a set of dictionary.
|
|
229
|
-
# Load the data to run the example.
|
|
230
|
-
load_example_data("nerextractor", ["ner_extractor_text", "dict_table"])
|
|
231
|
-
|
|
232
|
-
# Create teradataml DataFrame object.
|
|
233
|
-
ner_extractor_text = DataFrame.from_table("ner_extractor_text")
|
|
234
|
-
dict_table = DataFrame.from_table("dict_table")
|
|
235
|
-
|
|
236
|
-
# Run the extractor function using rules entity.
|
|
237
|
-
nerextractor_out = NERExtractor(data=ner_extractor_text,
|
|
238
|
-
data_partition_column='ANY',
|
|
239
|
-
dict=dict_table,
|
|
240
|
-
text_column='content',
|
|
241
|
-
accumulate='id',
|
|
242
|
-
language='en',
|
|
243
|
-
models='ner_model.bin',
|
|
244
|
-
show_entity_context=0,
|
|
245
|
-
data_sequence_column='id',
|
|
246
|
-
dict_sequence_column='type1'
|
|
247
|
-
)
|
|
248
|
-
|
|
249
|
-
# Print the result DataFrame.
|
|
250
|
-
print(nerextractor_out.result)
|
|
251
|
-
|
|
252
|
-
"""
|
|
253
|
-
|
|
254
|
-
# Start the timer to get the build time
|
|
255
|
-
_start_time = time.time()
|
|
256
|
-
|
|
257
|
-
self.data = data
|
|
258
|
-
self.rules = rules
|
|
259
|
-
self.dict = dict
|
|
260
|
-
self.text_column = text_column
|
|
261
|
-
self.models = models
|
|
262
|
-
self.language = language
|
|
263
|
-
self.show_entity_context = show_entity_context
|
|
264
|
-
self.accumulate = accumulate
|
|
265
|
-
self.data_sequence_column = data_sequence_column
|
|
266
|
-
self.rules_sequence_column = rules_sequence_column
|
|
267
|
-
self.dict_sequence_column = dict_sequence_column
|
|
268
|
-
self.data_partition_column = data_partition_column
|
|
269
|
-
self.data_order_column = data_order_column
|
|
270
|
-
self.rules_order_column = rules_order_column
|
|
271
|
-
self.dict_order_column = dict_order_column
|
|
272
|
-
|
|
273
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
274
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
275
|
-
self.__aed_utils = AedUtils()
|
|
276
|
-
|
|
277
|
-
# Create argument information matrix to do parameter checking
|
|
278
|
-
self.__arg_info_matrix = []
|
|
279
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
280
|
-
self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, True, (str,list)])
|
|
281
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
|
|
282
|
-
self.__arg_info_matrix.append(["rules", self.rules, True, (DataFrame)])
|
|
283
|
-
self.__arg_info_matrix.append(["rules_order_column", self.rules_order_column, True, (str,list)])
|
|
284
|
-
self.__arg_info_matrix.append(["dict", self.dict, True, (DataFrame)])
|
|
285
|
-
self.__arg_info_matrix.append(["dict_order_column", self.dict_order_column, True, (str,list)])
|
|
286
|
-
self.__arg_info_matrix.append(["text_column", self.text_column, False, (str)])
|
|
287
|
-
self.__arg_info_matrix.append(["models", self.models, True, (str,list)])
|
|
288
|
-
self.__arg_info_matrix.append(["language", self.language, True, (str)])
|
|
289
|
-
self.__arg_info_matrix.append(["show_entity_context", self.show_entity_context, True, (int)])
|
|
290
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
|
|
291
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
292
|
-
self.__arg_info_matrix.append(["rules_sequence_column", self.rules_sequence_column, True, (str,list)])
|
|
293
|
-
self.__arg_info_matrix.append(["dict_sequence_column", self.dict_sequence_column, True, (str,list)])
|
|
294
|
-
|
|
295
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
296
|
-
# Perform the function validations
|
|
297
|
-
self.__validate()
|
|
298
|
-
# Generate the ML query
|
|
299
|
-
self.__form_tdml_query()
|
|
300
|
-
# Execute ML query
|
|
301
|
-
self.__execute()
|
|
302
|
-
# Get the prediction type
|
|
303
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
304
|
-
|
|
305
|
-
# End the timer to get the build time
|
|
306
|
-
_end_time = time.time()
|
|
307
|
-
|
|
308
|
-
# Calculate the build time
|
|
309
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
310
|
-
|
|
311
|
-
def __validate(self):
|
|
312
|
-
"""
|
|
313
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
314
|
-
arguments, input argument and table types. Also processes the
|
|
315
|
-
argument values.
|
|
316
|
-
"""
|
|
317
|
-
|
|
318
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
319
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
320
|
-
|
|
321
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
322
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
323
|
-
|
|
324
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
325
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
326
|
-
self.__awu._validate_input_table_datatype(self.rules, "rules", None)
|
|
327
|
-
self.__awu._validate_input_table_datatype(self.dict, "dict", None)
|
|
328
|
-
|
|
329
|
-
# Check for permitted values
|
|
330
|
-
language_permitted_values = ["EN", "ZH_CN", "ZH_TW"]
|
|
331
|
-
self.__awu._validate_permitted_values(self.language, language_permitted_values, "language")
|
|
332
|
-
|
|
333
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
334
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
335
|
-
self.__awu._validate_input_columns_not_empty(self.text_column, "text_column")
|
|
336
|
-
self.__awu._validate_dataframe_has_argument_columns(self.text_column, "text_column", self.data, "data", False)
|
|
337
|
-
|
|
338
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
339
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.data, "data", False)
|
|
340
|
-
|
|
341
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
342
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
343
|
-
|
|
344
|
-
self.__awu._validate_input_columns_not_empty(self.rules_sequence_column, "rules_sequence_column")
|
|
345
|
-
self.__awu._validate_dataframe_has_argument_columns(self.rules_sequence_column, "rules_sequence_column", self.rules, "rules", False)
|
|
346
|
-
|
|
347
|
-
self.__awu._validate_input_columns_not_empty(self.dict_sequence_column, "dict_sequence_column")
|
|
348
|
-
self.__awu._validate_dataframe_has_argument_columns(self.dict_sequence_column, "dict_sequence_column", self.dict, "dict", False)
|
|
349
|
-
|
|
350
|
-
self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
|
|
351
|
-
if self.__awu._is_default_or_not(self.data_partition_column, "ANY"):
|
|
352
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
|
|
353
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
354
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
355
|
-
|
|
356
|
-
self.__awu._validate_input_columns_not_empty(self.rules_order_column, "rules_order_column")
|
|
357
|
-
self.__awu._validate_dataframe_has_argument_columns(self.rules_order_column, "rules_order_column", self.rules, "rules", False)
|
|
358
|
-
|
|
359
|
-
self.__awu._validate_input_columns_not_empty(self.dict_order_column, "dict_order_column")
|
|
360
|
-
self.__awu._validate_dataframe_has_argument_columns(self.dict_order_column, "dict_order_column", self.dict, "dict", False)
|
|
361
|
-
|
|
362
|
-
|
|
363
|
-
def __form_tdml_query(self):
|
|
364
|
-
"""
|
|
365
|
-
Function to generate the analytical function queries. The function defines
|
|
366
|
-
variables and list of arguments required to form the query.
|
|
367
|
-
"""
|
|
368
|
-
|
|
369
|
-
# Output table arguments list
|
|
370
|
-
self.__func_output_args_sql_names = []
|
|
371
|
-
self.__func_output_args = []
|
|
372
|
-
|
|
373
|
-
# Model Cataloging related attributes.
|
|
374
|
-
self._sql_specific_attributes = {}
|
|
375
|
-
self._sql_formula_attribute_mapper = {}
|
|
376
|
-
self._target_column = None
|
|
377
|
-
self._algorithm_name = None
|
|
378
|
-
|
|
379
|
-
# Generate lists for rest of the function arguments
|
|
380
|
-
self.__func_other_arg_sql_names = []
|
|
381
|
-
self.__func_other_args = []
|
|
382
|
-
self.__func_other_arg_json_datatypes = []
|
|
383
|
-
|
|
384
|
-
self.__func_other_arg_sql_names.append("TextColumn")
|
|
385
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.text_column, "\""), "'"))
|
|
386
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
387
|
-
|
|
388
|
-
if self.accumulate is not None:
|
|
389
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
390
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
391
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
392
|
-
|
|
393
|
-
if self.language is not None and self.language != "en":
|
|
394
|
-
self.__func_other_arg_sql_names.append("InputLanguage")
|
|
395
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.language, "'"))
|
|
396
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
397
|
-
|
|
398
|
-
if self.models is not None:
|
|
399
|
-
self.__func_other_arg_sql_names.append("Models")
|
|
400
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.models, "'"))
|
|
401
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
402
|
-
|
|
403
|
-
if self.show_entity_context is not None and self.show_entity_context != 0:
|
|
404
|
-
self.__func_other_arg_sql_names.append("ShowContext")
|
|
405
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.show_entity_context, "'"))
|
|
406
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
407
|
-
|
|
408
|
-
# Generate lists for rest of the function arguments
|
|
409
|
-
sequence_input_by_list = []
|
|
410
|
-
if self.data_sequence_column is not None:
|
|
411
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
412
|
-
|
|
413
|
-
if self.rules_sequence_column is not None:
|
|
414
|
-
sequence_input_by_list.append("rules:" + UtilFuncs._teradata_collapse_arglist(self.rules_sequence_column, ""))
|
|
415
|
-
|
|
416
|
-
if self.dict_sequence_column is not None:
|
|
417
|
-
sequence_input_by_list.append("dict:" + UtilFuncs._teradata_collapse_arglist(self.dict_sequence_column, ""))
|
|
418
|
-
|
|
419
|
-
if len(sequence_input_by_list) > 0:
|
|
420
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
421
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
422
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
423
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
424
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
425
|
-
|
|
426
|
-
|
|
427
|
-
# Declare empty lists to hold input table information.
|
|
428
|
-
self.__func_input_arg_sql_names = []
|
|
429
|
-
self.__func_input_table_view_query = []
|
|
430
|
-
self.__func_input_dataframe_type = []
|
|
431
|
-
self.__func_input_distribution = []
|
|
432
|
-
self.__func_input_partition_by_cols = []
|
|
433
|
-
self.__func_input_order_by_cols = []
|
|
434
|
-
|
|
435
|
-
# Process data
|
|
436
|
-
if self.__awu._is_default_or_not(self.data_partition_column, "ANY"):
|
|
437
|
-
self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
|
|
438
|
-
|
|
439
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
440
|
-
self.__func_input_distribution.append("FACT")
|
|
441
|
-
self.__func_input_arg_sql_names.append("input")
|
|
442
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
443
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
444
|
-
self.__func_input_partition_by_cols.append(self.data_partition_column)
|
|
445
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
446
|
-
|
|
447
|
-
# Process rules
|
|
448
|
-
if self.rules is not None:
|
|
449
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.rules, False)
|
|
450
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
451
|
-
self.__func_input_arg_sql_names.append("rules")
|
|
452
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
453
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
454
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
455
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.rules_order_column, "\""))
|
|
456
|
-
|
|
457
|
-
# Process dict
|
|
458
|
-
if self.dict is not None:
|
|
459
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.dict, False)
|
|
460
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
461
|
-
self.__func_input_arg_sql_names.append("dict")
|
|
462
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
463
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
464
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
465
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.dict_order_column, "\""))
|
|
466
|
-
|
|
467
|
-
function_name = "NERExtractor"
|
|
468
|
-
# Create instance to generate SQLMR.
|
|
469
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
470
|
-
self.__func_input_arg_sql_names,
|
|
471
|
-
self.__func_input_table_view_query,
|
|
472
|
-
self.__func_input_dataframe_type,
|
|
473
|
-
self.__func_input_distribution,
|
|
474
|
-
self.__func_input_partition_by_cols,
|
|
475
|
-
self.__func_input_order_by_cols,
|
|
476
|
-
self.__func_other_arg_sql_names,
|
|
477
|
-
self.__func_other_args,
|
|
478
|
-
self.__func_other_arg_json_datatypes,
|
|
479
|
-
self.__func_output_args_sql_names,
|
|
480
|
-
self.__func_output_args,
|
|
481
|
-
engine="ENGINE_ML")
|
|
482
|
-
# Invoke call to SQL-MR generation.
|
|
483
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
484
|
-
|
|
485
|
-
# Print SQL-MR query if requested to do so.
|
|
486
|
-
if display.print_sqlmr_query:
|
|
487
|
-
print(self.sqlmr_query)
|
|
488
|
-
|
|
489
|
-
# Set the algorithm name for Model Cataloging.
|
|
490
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
491
|
-
|
|
492
|
-
def __execute(self):
|
|
493
|
-
"""
|
|
494
|
-
Function to execute SQL-MR queries.
|
|
495
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
496
|
-
"""
|
|
497
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
498
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
499
|
-
try:
|
|
500
|
-
# Generate the output.
|
|
501
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
502
|
-
except Exception as emsg:
|
|
503
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
504
|
-
|
|
505
|
-
# Update output table data frames.
|
|
506
|
-
self._mlresults = []
|
|
507
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
508
|
-
self._mlresults.append(self.result)
|
|
509
|
-
|
|
510
|
-
def show_query(self):
|
|
511
|
-
"""
|
|
512
|
-
Function to return the underlying SQL query.
|
|
513
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
514
|
-
"""
|
|
515
|
-
return self.sqlmr_query
|
|
516
|
-
|
|
517
|
-
def get_prediction_type(self):
|
|
518
|
-
"""
|
|
519
|
-
Function to return the Prediction type of the algorithm.
|
|
520
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
521
|
-
as saved in the Model Catalog.
|
|
522
|
-
"""
|
|
523
|
-
return self._prediction_type
|
|
524
|
-
|
|
525
|
-
def get_target_column(self):
|
|
526
|
-
"""
|
|
527
|
-
Function to return the Target Column of the algorithm.
|
|
528
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
529
|
-
as saved in the Model Catalog.
|
|
530
|
-
"""
|
|
531
|
-
return self._target_column
|
|
532
|
-
|
|
533
|
-
def get_build_time(self):
|
|
534
|
-
"""
|
|
535
|
-
Function to return the build time of the algorithm in seconds.
|
|
536
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
537
|
-
as saved in the Model Catalog.
|
|
538
|
-
"""
|
|
539
|
-
return self._build_time
|
|
540
|
-
|
|
541
|
-
def _get_algorithm_name(self):
|
|
542
|
-
"""
|
|
543
|
-
Function to return the name of the algorithm.
|
|
544
|
-
"""
|
|
545
|
-
return self._algorithm_name
|
|
546
|
-
|
|
547
|
-
def _get_sql_specific_attributes(self):
|
|
548
|
-
"""
|
|
549
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
550
|
-
"""
|
|
551
|
-
return self._sql_specific_attributes
|
|
552
|
-
|
|
553
|
-
@classmethod
|
|
554
|
-
def _from_model_catalog(cls,
|
|
555
|
-
result = None,
|
|
556
|
-
**kwargs):
|
|
557
|
-
"""
|
|
558
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
559
|
-
"""
|
|
560
|
-
kwargs.pop("result", None)
|
|
561
|
-
|
|
562
|
-
# Model Cataloging related attributes.
|
|
563
|
-
target_column = kwargs.pop("__target_column", None)
|
|
564
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
565
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
566
|
-
build_time = kwargs.pop("__build_time", None)
|
|
567
|
-
|
|
568
|
-
# Let's create an object of this class.
|
|
569
|
-
obj = cls(**kwargs)
|
|
570
|
-
obj.result = result
|
|
571
|
-
|
|
572
|
-
# Initialize the sqlmr_query class attribute.
|
|
573
|
-
obj.sqlmr_query = None
|
|
574
|
-
|
|
575
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
576
|
-
obj._sql_specific_attributes = None
|
|
577
|
-
obj._target_column = target_column
|
|
578
|
-
obj._prediction_type = prediction_type
|
|
579
|
-
obj._algorithm_name = algorithm_name
|
|
580
|
-
obj._build_time = build_time
|
|
581
|
-
|
|
582
|
-
# Update output table data frames.
|
|
583
|
-
obj._mlresults = []
|
|
584
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
585
|
-
obj._mlresults.append(obj.result)
|
|
586
|
-
return obj
|
|
587
|
-
|
|
588
|
-
def __repr__(self):
|
|
589
|
-
"""
|
|
590
|
-
Returns the string representation for a NERExtractor class instance.
|
|
591
|
-
"""
|
|
592
|
-
repr_string="############ STDOUT Output ############"
|
|
593
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
594
|
-
return repr_string
|
|
595
|
-
|