teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,637 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Mounika Kotha (mounika.kotha@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.5
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class RandomSample:
31
-
32
- def __init__(self,
33
- data = None,
34
- num_sample = None,
35
- weight_column = None,
36
- sampling_mode = "Basic",
37
- distance = "EUCLIDEAN",
38
- input_columns = None,
39
- as_categories = None,
40
- category_weights = None,
41
- categorical_distance = "OVERLAP",
42
- seed = None,
43
- seed_column = None,
44
- over_sampling_rate = 1.0,
45
- iteration_num = 5,
46
- setid_as_first_column = True,
47
- data_sequence_column = None):
48
- """
49
- DESCRIPTION:
50
- The RandomSample function takes a data set and uses a specified
51
- sampling method to output one or more random samples. Each sample has
52
- exactly the number of rows specified.
53
-
54
-
55
- PARAMETERS:
56
- data:
57
- Required Argument.
58
- Specifies the name of the teradataml DataFrame that contains the data
59
- set from which to take samples.
60
-
61
- num_sample:
62
- Required Argument.
63
- Specifies both the number of samples and their sizes. For each
64
- sample_size (an int value), the function selects a sample that has
65
- sample_size rows.
66
- Types: int OR list of Integers (int)
67
-
68
- weight_column:
69
- Optional Argument.
70
- Specifies the name of the teradataml DataFrame column that
71
- contains weights for weighted sampling. The weight_column must
72
- have a numeric SQL data type. By default, rows have equal weight.
73
- Types: str
74
-
75
- sampling_mode:
76
- Optional Argument.
77
- Specifies the sampling mode and can be one of the following:
78
- • "Basic": Each input_table row has a probability of being
79
- selected that is proportional to its weight. The weight
80
- of each row is in weight_column.
81
- • "KMeans++": One row is selected in each of k iterations,
82
- where k is the number of desired output rows. The first
83
- row is selected randomly. In subsequent iterations, the
84
- probability of a row being selected is proportional to the
85
- value in the weight_column multiplied by the distance from
86
- the nearest row in the set of selected rows. The distance
87
- is calculated using the methods specified by the distance
88
- and categorical_distance arguments.
89
- • "KMeans||": Enhanced version of KMeans++ that exploits
90
- parallel architecture to accelerate the sampling process.
91
- The algorithm is described in the paper Scalable KMeans++
92
- by Bahmani et al (http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf).
93
- Briefly, at each iteration, the probability that a row is
94
- selected is proportional to the value in the weight_column
95
- multiplied by the distance from the nearest row in the set of
96
- selected rows (as in KMeans++). However, the KMeans|| algorithm
97
- oversamples at each iteration, significantly reducing the
98
- required number of iterations; therefore, the resulting set of
99
- rows might have more than k data points. Each row in the
100
- resulting set is then weighted by the number of rows in the
101
- teradataml DataFrame that are closer to that row than to any
102
- other selected row, and the rows are clustered to produce
103
- exactly k rows.
104
- Tip: For optimal performance, use "KMeans++" when the
105
- desired sample size is less than 15 and "KMeans||" otherwise.
106
- Default Value: "Basic"
107
- Permitted Values: Basic, KMeans++, KMeans||
108
- Types: str
109
-
110
- distance:
111
- Optional Argument.
112
- For KMeans++ and KMeans|| sampling, specifies the function for
113
- computing the distance between numerical variables:
114
- • 'EUCLIDEAN' : The distance between two variables is defined
115
- using Euclidean Distance.
116
- • 'MANHATTAN': The distance between two variables is defined
117
- using Manhattan Distance.
118
- Default Value: "EUCLIDEAN"
119
- Permitted Values: MANHATTAN, EUCLIDEAN
120
- Types: str
121
-
122
- input_columns:
123
- Optional Argument.
124
- For KMeans++ and KMeans|| sampling, specifies the names of the
125
- teradataml DataFrame columns to calculate the distance between
126
- numerical variables.
127
- Types: str OR list of Strings (str)
128
-
129
- as_categories:
130
- Optional Argument.
131
- For KMeans++ and KMeans|| sampling, specifies the names of the
132
- teradataml DataFrame columns that contain numerical variables
133
- to treat as categorical variables.
134
- Types: str OR list of Strings (str)
135
-
136
- category_weights:
137
- Optional Argument.
138
- For KMeans++ and KMeans|| sampling, specifies the weights
139
- (float values) of the categorical variables, including those
140
- that 'as_categories' argument specifies. Specify the weights in
141
- the order (from left to right) that the variables appear in the
142
- input teradataml Dataframe. When calculating the distance between
143
- two rows, distances between categorical values are scaled by
144
- these weights.
145
- Types: float or list of Floats (float).
146
-
147
- categorical_distance:
148
- Optional Argument.
149
- For KMeans++ and KMeans|| sampling, specifies the function for
150
- computing the distance between categorical variables:
151
- • "OVERLAP" : The distance between two variables is 0 if
152
- they are the same and 1 if they are different.
153
- • "HAMMING": The distance beween two variables is the Hamming
154
- distance between the strings that represent them. The
155
- strings must have equal length.
156
- Default Value: "OVERLAP"
157
- Permitted Values: OVERLAP, HAMMING
158
- Types: str
159
-
160
- seed:
161
- Optional Argument.
162
- Specifies the random seed used to initialize the algorithm.
163
- Types: int
164
-
165
- seed_column:
166
- Optional Argument.
167
- Specifies the names of the teradataml DataFrame columns by
168
- which to partition the input. Function calls that use the same
169
- input data, seed, and seed_column output the same result. If
170
- you specify seed_column, you must also specify seed.
171
- Note: Ideally, the number of distinct values in the seed_column
172
- is the same as the number of workers in the cluster. A very
173
- large number of distinct values in the seed_column degrades
174
- function performance.
175
- Types: str OR list of Strings (str)
176
-
177
- over_sampling_rate:
178
- Optional Argument.
179
- For KMeans|| sampling, specifies the oversampling rate (a float
180
- value greater than 0.0). The function multiplies rate by
181
- sample size (for each sample size).
182
- Default Value: 1.0
183
- Types: float
184
-
185
- iteration_num:
186
- Optional Argument.
187
- For KMeans|| sampling, specifies the number of iterations (an
188
- int value greater than 0).
189
- Default Value: 5
190
- Types: int
191
-
192
- setid_as_first_column:
193
- Optional Argument.
194
- Specifies whether the generated set_id values to be included as first
195
- column in output.
196
- Note: "setid_as_first_column" argument support is only available
197
- when teradataml is connected to Vantage 1.1 or later.
198
- Default Value: True
199
- Types: bool
200
-
201
- data_sequence_column:
202
- Optional Argument.
203
- Specifies the list of column(s) that uniquely identifies each
204
- row of the input argument "data". The argument is used to ensure
205
- deterministic results for functions which produce results that
206
- vary from run to run.
207
- Types: str OR list of Strings (str)
208
-
209
- RETURNS:
210
- Instance of RandomSample.
211
- Output teradataml DataFrames can be accessed using attribute
212
- references, such as RandomSampleObj.<attribute_name>.
213
- Output teradataml DataFrame attribute name is:
214
- result
215
-
216
-
217
- RAISES:
218
- TeradataMlException
219
-
220
-
221
- EXAMPLES:
222
- # Load example data.
223
- load_example_data("randomsample", ["fs_input", "fs_input1"])
224
-
225
- # Create teradataml DataFrame objects. The input tables have
226
- # observations of 11 variables for different models of cars.
227
- fs_input = DataFrame.from_table("fs_input")
228
- fs_input1 = DataFrame.from_table("fs_input1")
229
-
230
- # Example 1 - Basic Sampling (Weighted).
231
- # This example uses basic sampling to select one sample of 10 rows,
232
- # which are weighted by car weight.
233
- RandomSample_out1 = RandomSample(data = fs_input,
234
- num_sample = 10,
235
- weight_column = "wt",
236
- sampling_mode = "basic",
237
- seed = 1,
238
- seed_column = ["model"])
239
-
240
- # Print the result DataFrame
241
- print(RandomSample_out1)
242
-
243
- # Example 2 - KMeans++ Sampling.
244
- # This example uses KMeans++ sampling with the Manhattan
245
- # distance metric, and treats the numeric variables cyl,
246
- # gear, and carb as categorical variables.
247
- RandomSample_out2 = RandomSample(data = fs_input,
248
- num_sample = 10,
249
- sampling_mode = "KMeans++",
250
- distance = "manhattan",
251
- input_columns = ['mpg','cyl','disp','hp','drat','wt','qsec','vs','am','gear','carb'],
252
- as_categories = ["cyl","gear","carb"],
253
- category_weights = [1000.0,10.0,100.0,100.0,100.0],
254
- seed = 1,
255
- seed_column = ["model"]
256
- )
257
-
258
- # Print the result DataFrame
259
- print(RandomSample_out2.result)
260
-
261
- # Example 3 - KMeans|| Sampling.
262
- # This example uses KMeans|| sampling with the Manhattan
263
- # distance metric for the numerical variables and the Hamming
264
- # distance metric for the categorical variables.
265
- RandomSample_out3 = RandomSample(data = fs_input1,
266
- num_sample = 20,
267
- sampling_mode = "KMeans||",
268
- distance = "MANHATTAN",
269
- input_columns = ['mpg','cyl','disp','hp','drat','wt','qsec','vs','am','gear','carb'],
270
- as_categories = ["cyl","gear","carb"],
271
- category_weights = [1000.0,10.0,100.0,100.0,100.0],
272
- categorical_distance = "HAMMING",
273
- seed = 1,
274
- seed_column = ["model"],
275
- iteration_num = 2
276
- )
277
-
278
- # Print the result DataFrame
279
- print(RandomSample_out3.result)
280
-
281
- # Example 4 - This example uses basic sampling to select 3 sample
282
- # sets of sizes 2, 3 and 1 rows, weighted by car weight.
283
- RandomSample_out4 = RandomSample(data = fs_input,
284
- num_sample = [2,3,1],
285
- weight_column = "wt"
286
- )
287
-
288
- # Print the result DataFrame
289
- print(RandomSample_out4)
290
-
291
- """
292
-
293
- # Start the timer to get the build time
294
- _start_time = time.time()
295
-
296
- self.data = data
297
- self.num_sample = num_sample
298
- self.weight_column = weight_column
299
- self.sampling_mode = sampling_mode
300
- self.distance = distance
301
- self.input_columns = input_columns
302
- self.as_categories = as_categories
303
- self.category_weights = category_weights
304
- self.categorical_distance = categorical_distance
305
- self.seed = seed
306
- self.seed_column = seed_column
307
- self.over_sampling_rate = over_sampling_rate
308
- self.iteration_num = iteration_num
309
- self.setid_as_first_column = setid_as_first_column
310
- self.data_sequence_column = data_sequence_column
311
-
312
- # Create TeradataPyWrapperUtils instance which contains validation functions.
313
- self.__awu = AnalyticsWrapperUtils()
314
- self.__aed_utils = AedUtils()
315
-
316
- # Create argument information matrix to do parameter checking
317
- self.__arg_info_matrix = []
318
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
319
- self.__arg_info_matrix.append(["num_sample", self.num_sample, False, (int,list)])
320
- self.__arg_info_matrix.append(["weight_column", self.weight_column, True, (str)])
321
- self.__arg_info_matrix.append(["sampling_mode", self.sampling_mode, True, (str)])
322
- self.__arg_info_matrix.append(["distance", self.distance, True, (str)])
323
- self.__arg_info_matrix.append(["input_columns", self.input_columns, True, (str,list)])
324
- self.__arg_info_matrix.append(["as_categories", self.as_categories, True, (str,list)])
325
- self.__arg_info_matrix.append(["category_weights", self.category_weights, True, (float,list)])
326
- self.__arg_info_matrix.append(["categorical_distance", self.categorical_distance, True, (str)])
327
- self.__arg_info_matrix.append(["seed", self.seed, True, (int)])
328
- self.__arg_info_matrix.append(["seed_column", self.seed_column, True, (str,list)])
329
- self.__arg_info_matrix.append(["over_sampling_rate", self.over_sampling_rate, True, (float)])
330
- self.__arg_info_matrix.append(["iteration_num", self.iteration_num, True, (int)])
331
- self.__arg_info_matrix.append(["setid_as_first_column", self.setid_as_first_column, True, (bool)])
332
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
333
-
334
- if inspect.stack()[1][3] != '_from_model_catalog':
335
- # Perform the function validations
336
- self.__validate()
337
- # Generate the ML query
338
- self.__form_tdml_query()
339
- # Execute ML query
340
- self.__execute()
341
- # Get the prediction type
342
- self._prediction_type = self.__awu._get_function_prediction_type(self)
343
-
344
- # End the timer to get the build time
345
- _end_time = time.time()
346
-
347
- # Calculate the build time
348
- self._build_time = (int)(_end_time - _start_time)
349
-
350
- def __validate(self):
351
- """
352
- Function to validate sqlmr function arguments, which verifies missing
353
- arguments, input argument and table types. Also processes the
354
- argument values.
355
- """
356
-
357
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
358
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
359
-
360
- # Make sure that a non-NULL value has been supplied correct type of argument
361
- self.__awu._validate_argument_types(self.__arg_info_matrix)
362
-
363
- # Check to make sure input table types are strings or data frame objects or of valid type.
364
- self.__awu._validate_input_table_datatype(self.data, "data", None)
365
-
366
- # Check for permitted values
367
- sampling_mode_permitted_values = ["BASIC", "KMEANS++", "KMEANS||"]
368
- self.__awu._validate_permitted_values(self.sampling_mode, sampling_mode_permitted_values, "sampling_mode")
369
-
370
- distance_permitted_values = ["MANHATTAN", "EUCLIDEAN"]
371
- self.__awu._validate_permitted_values(self.distance, distance_permitted_values, "distance")
372
-
373
- categorical_distance_permitted_values = ["OVERLAP", "HAMMING"]
374
- self.__awu._validate_permitted_values(self.categorical_distance, categorical_distance_permitted_values, "categorical_distance")
375
-
376
- # Check whether the input columns passed to the argument are not empty.
377
- # Also check whether the input columns passed to the argument valid or not.
378
- self.__awu._validate_input_columns_not_empty(self.weight_column, "weight_column")
379
- self.__awu._validate_dataframe_has_argument_columns(self.weight_column, "weight_column", self.data, "data", False)
380
-
381
- self.__awu._validate_input_columns_not_empty(self.input_columns, "input_columns")
382
- self.__awu._validate_dataframe_has_argument_columns(self.input_columns, "input_columns", self.data, "data", False)
383
-
384
- self.__awu._validate_input_columns_not_empty(self.as_categories, "as_categories")
385
- self.__awu._validate_dataframe_has_argument_columns(self.as_categories, "as_categories", self.data, "data", False)
386
-
387
- self.__awu._validate_input_columns_not_empty(self.seed_column, "seed_column")
388
- self.__awu._validate_dataframe_has_argument_columns(self.seed_column, "seed_column", self.data, "data", False)
389
-
390
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
391
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
392
-
393
-
394
- def __form_tdml_query(self):
395
- """
396
- Function to generate the analytical function queries. The function defines
397
- variables and list of arguments required to form the query.
398
- """
399
-
400
- # Output table arguments list
401
- self.__func_output_args_sql_names = []
402
- self.__func_output_args = []
403
-
404
- # Model Cataloging related attributes.
405
- self._sql_specific_attributes = {}
406
- self._sql_formula_attribute_mapper = {}
407
- self._target_column = None
408
- self._algorithm_name = None
409
-
410
- # Generate lists for rest of the function arguments
411
- self.__func_other_arg_sql_names = []
412
- self.__func_other_args = []
413
- self.__func_other_arg_json_datatypes = []
414
-
415
- if self.weight_column is not None:
416
- self.__func_other_arg_sql_names.append("WeightColumn")
417
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.weight_column, "\""), "'"))
418
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
419
-
420
- if self.input_columns is not None:
421
- self.__func_other_arg_sql_names.append("InputColumns")
422
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.input_columns, "\""), "'"))
423
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
424
-
425
- if self.as_categories is not None:
426
- self.__func_other_arg_sql_names.append("AsCategories")
427
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.as_categories, "\""), "'"))
428
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
429
-
430
- if self.seed_column is not None:
431
- self.__func_other_arg_sql_names.append("SeedColumn")
432
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.seed_column, "\""), "'"))
433
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
434
-
435
- self.__func_other_arg_sql_names.append("NumSample")
436
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.num_sample, "'"))
437
- self.__func_other_arg_json_datatypes.append("INTEGER")
438
-
439
- if self.sampling_mode is not None and self.sampling_mode != "Basic":
440
- self.__func_other_arg_sql_names.append("SamplingMode")
441
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.sampling_mode, "'"))
442
- self.__func_other_arg_json_datatypes.append("STRING")
443
-
444
- if self.distance is not None and self.distance != "EUCLIDEAN":
445
- self.__func_other_arg_sql_names.append("Distance")
446
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.distance, "'"))
447
- self.__func_other_arg_json_datatypes.append("STRING")
448
-
449
- if self.categorical_distance is not None and self.categorical_distance != "OVERLAP":
450
- self.__func_other_arg_sql_names.append("CategoricalDistance")
451
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.categorical_distance, "'"))
452
- self.__func_other_arg_json_datatypes.append("STRING")
453
-
454
- if self.category_weights is not None:
455
- self.__func_other_arg_sql_names.append("CategoryWeights")
456
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.category_weights, "'"))
457
- self.__func_other_arg_json_datatypes.append("DOUBLE")
458
-
459
- if self.seed is not None:
460
- self.__func_other_arg_sql_names.append("Seed")
461
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seed, "'"))
462
- self.__func_other_arg_json_datatypes.append("LONG")
463
-
464
- if self.over_sampling_rate is not None and self.over_sampling_rate != 1.0:
465
- self.__func_other_arg_sql_names.append("OverSamplingRate")
466
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.over_sampling_rate, "'"))
467
- self.__func_other_arg_json_datatypes.append("DOUBLE")
468
-
469
- if self.iteration_num is not None and self.iteration_num != 5:
470
- self.__func_other_arg_sql_names.append("IterationNum")
471
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.iteration_num, "'"))
472
- self.__func_other_arg_json_datatypes.append("INTEGER")
473
-
474
- if self.setid_as_first_column is not None and self.setid_as_first_column != True:
475
- self.__func_other_arg_sql_names.append("SetIdAsFirstColumn")
476
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.setid_as_first_column, "'"))
477
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
478
-
479
- # Generate lists for rest of the function arguments
480
- sequence_input_by_list = []
481
- if self.data_sequence_column is not None:
482
- sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
483
-
484
- if len(sequence_input_by_list) > 0:
485
- self.__func_other_arg_sql_names.append("SequenceInputBy")
486
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
487
- self.__func_other_args.append(sequence_input_by_arg_value)
488
- self.__func_other_arg_json_datatypes.append("STRING")
489
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
490
-
491
-
492
- # Declare empty lists to hold input table information.
493
- self.__func_input_arg_sql_names = []
494
- self.__func_input_table_view_query = []
495
- self.__func_input_dataframe_type = []
496
- self.__func_input_distribution = []
497
- self.__func_input_partition_by_cols = []
498
- self.__func_input_order_by_cols = []
499
-
500
- # Process data
501
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
502
- self.__func_input_distribution.append("NONE")
503
- self.__func_input_arg_sql_names.append("InputTable")
504
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
505
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
506
- self.__func_input_partition_by_cols.append("NA_character_")
507
- self.__func_input_order_by_cols.append("NA_character_")
508
-
509
- function_name = "RandomSample"
510
- # Create instance to generate SQLMR.
511
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
512
- self.__func_input_arg_sql_names,
513
- self.__func_input_table_view_query,
514
- self.__func_input_dataframe_type,
515
- self.__func_input_distribution,
516
- self.__func_input_partition_by_cols,
517
- self.__func_input_order_by_cols,
518
- self.__func_other_arg_sql_names,
519
- self.__func_other_args,
520
- self.__func_other_arg_json_datatypes,
521
- self.__func_output_args_sql_names,
522
- self.__func_output_args,
523
- engine="ENGINE_ML")
524
- # Invoke call to SQL-MR generation.
525
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
526
-
527
- # Print SQL-MR query if requested to do so.
528
- if display.print_sqlmr_query:
529
- print(self.sqlmr_query)
530
-
531
- # Set the algorithm name for Model Cataloging.
532
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
533
-
534
- def __execute(self):
535
- """
536
- Function to execute SQL-MR queries.
537
- Create DataFrames for the required SQL-MR outputs.
538
- """
539
- # Generate STDOUT table name and add it to the output table list.
540
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type = TeradataConstants.TERADATA_TABLE)
541
- try:
542
- # Generate the output.
543
- UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
544
- except Exception as emsg:
545
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
546
-
547
- # Update output table data frames.
548
- self._mlresults = []
549
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
550
- self._mlresults.append(self.result)
551
-
552
- def show_query(self):
553
- """
554
- Function to return the underlying SQL query.
555
- When model object is created using retrieve_model(), then None is returned.
556
- """
557
- return self.sqlmr_query
558
-
559
- def get_prediction_type(self):
560
- """
561
- Function to return the Prediction type of the algorithm.
562
- When model object is created using retrieve_model(), then the value returned is
563
- as saved in the Model Catalog.
564
- """
565
- return self._prediction_type
566
-
567
- def get_target_column(self):
568
- """
569
- Function to return the Target Column of the algorithm.
570
- When model object is created using retrieve_model(), then the value returned is
571
- as saved in the Model Catalog.
572
- """
573
- return self._target_column
574
-
575
- def get_build_time(self):
576
- """
577
- Function to return the build time of the algorithm in seconds.
578
- When model object is created using retrieve_model(), then the value returned is
579
- as saved in the Model Catalog.
580
- """
581
- return self._build_time
582
-
583
- def _get_algorithm_name(self):
584
- """
585
- Function to return the name of the algorithm.
586
- """
587
- return self._algorithm_name
588
-
589
- def _get_sql_specific_attributes(self):
590
- """
591
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
592
- """
593
- return self._sql_specific_attributes
594
-
595
- @classmethod
596
- def _from_model_catalog(cls,
597
- result = None,
598
- **kwargs):
599
- """
600
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
601
- """
602
- kwargs.pop("result", None)
603
-
604
- # Model Cataloging related attributes.
605
- target_column = kwargs.pop("__target_column", None)
606
- prediction_type = kwargs.pop("__prediction_type", None)
607
- algorithm_name = kwargs.pop("__algorithm_name", None)
608
- build_time = kwargs.pop("__build_time", None)
609
-
610
- # Let's create an object of this class.
611
- obj = cls(**kwargs)
612
- obj.result = result
613
-
614
- # Initialize the sqlmr_query class attribute.
615
- obj.sqlmr_query = None
616
-
617
- # Initialize the SQL specific Model Cataloging attributes.
618
- obj._sql_specific_attributes = None
619
- obj._target_column = target_column
620
- obj._prediction_type = prediction_type
621
- obj._algorithm_name = algorithm_name
622
- obj._build_time = build_time
623
-
624
- # Update output table data frames.
625
- obj._mlresults = []
626
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
627
- obj._mlresults.append(obj.result)
628
- return obj
629
-
630
- def __repr__(self):
631
- """
632
- Returns the string representation for a RandomSample class instance.
633
- """
634
- repr_string="############ STDOUT Output ############"
635
- repr_string = "{}\n\n{}".format(repr_string,self.result)
636
- return repr_string
637
-