teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,716 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 2.30
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.common.formula import Formula
|
|
30
|
-
|
|
31
|
-
class DecisionForest:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
formula = None,
|
|
35
|
-
data = None,
|
|
36
|
-
maxnum_categorical = 1000,
|
|
37
|
-
tree_type = None,
|
|
38
|
-
ntree = None,
|
|
39
|
-
tree_size = None,
|
|
40
|
-
nodesize = 1,
|
|
41
|
-
variance = 0.0,
|
|
42
|
-
max_depth = 12,
|
|
43
|
-
mtry = None,
|
|
44
|
-
mtry_seed = None,
|
|
45
|
-
seed = None,
|
|
46
|
-
outofbag = False,
|
|
47
|
-
display_num_processed_rows = False,
|
|
48
|
-
categorical_encoding = "graycode",
|
|
49
|
-
data_sequence_column = None,
|
|
50
|
-
id_column = None):
|
|
51
|
-
"""
|
|
52
|
-
DESCRIPTION:
|
|
53
|
-
The DecisionForest function uses a training data set to generate a
|
|
54
|
-
predictive model. You can input the model to the DecisionForestPredict
|
|
55
|
-
function, which uses it to make predictions.
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
PARAMETERS:
|
|
59
|
-
formula:
|
|
60
|
-
Required Argument.
|
|
61
|
-
A string consisting of "formula". Specifies the model to be fitted. Only
|
|
62
|
-
basic formula of the "col1 ~ col2 + col3 +..." form is supported and
|
|
63
|
-
all variables must be from the same virtual data frame object. The
|
|
64
|
-
response should be column of type real, numeric, integer or boolean.
|
|
65
|
-
Types: str
|
|
66
|
-
|
|
67
|
-
data:
|
|
68
|
-
Required Argument.
|
|
69
|
-
Specifies the teradataml DataFrame containing the input data set.
|
|
70
|
-
|
|
71
|
-
maxnum_categorical:
|
|
72
|
-
Optional Argument.
|
|
73
|
-
Specifies the maximum number of distinct values for a single
|
|
74
|
-
categorical variable. The maxnum_categorical must be a positive int.
|
|
75
|
-
Default Value: 1000
|
|
76
|
-
Types: int
|
|
77
|
-
|
|
78
|
-
tree_type:
|
|
79
|
-
Optional Argument.
|
|
80
|
-
Specifies whether the analysis is a regression (continuous response
|
|
81
|
-
variable) or a multiclass classification (predicting result from the
|
|
82
|
-
number of classes). The default value is "regression", if the response
|
|
83
|
-
variable is numeric and "classification", if the response variable is
|
|
84
|
-
non-numeric.
|
|
85
|
-
Types: str
|
|
86
|
-
|
|
87
|
-
ntree:
|
|
88
|
-
Optional Argument.
|
|
89
|
-
Specifies the number of trees to grow in the forest model. When
|
|
90
|
-
specified, number of trees must be greater than or equal to the
|
|
91
|
-
number of vworkers. When not specified, the function builds the
|
|
92
|
-
minimum number of trees that provides the input dataset with full
|
|
93
|
-
coverage.
|
|
94
|
-
Types: int
|
|
95
|
-
|
|
96
|
-
tree_size:
|
|
97
|
-
Optional Argument.
|
|
98
|
-
Specifies the number of rows that each tree uses as its input data
|
|
99
|
-
set. If not specified, the function builds a tree using either the
|
|
100
|
-
number of rows on a vworker or the number of rows that fits into the
|
|
101
|
-
vworker's memory, whichever is less.
|
|
102
|
-
Types: int
|
|
103
|
-
|
|
104
|
-
nodesize:
|
|
105
|
-
Optional Argument.
|
|
106
|
-
Specifies a decision tree stopping criterion, the minimum size of any
|
|
107
|
-
node within each decision tree.
|
|
108
|
-
Default Value: 1
|
|
109
|
-
Types: int
|
|
110
|
-
|
|
111
|
-
variance:
|
|
112
|
-
Optional Argument.
|
|
113
|
-
Specifies a decision tree stopping criterion. If the variance within
|
|
114
|
-
any node dips below this value, the algorithm stops looking for splits
|
|
115
|
-
in the branch.
|
|
116
|
-
Default Value: 0.0
|
|
117
|
-
Types: float
|
|
118
|
-
|
|
119
|
-
max_depth:
|
|
120
|
-
Optional Argument.
|
|
121
|
-
Specifies a decision tree stopping criterion. If the tree reaches a
|
|
122
|
-
depth past this value, the algorithm stops looking for splits.
|
|
123
|
-
Decision trees can grow to (2(max_depth+1) - 1) nodes. This stopping
|
|
124
|
-
criteria has the greatest effect on the performance of the function.
|
|
125
|
-
Default Value: 12
|
|
126
|
-
Types: int
|
|
127
|
-
|
|
128
|
-
mtry:
|
|
129
|
-
Optional Argument.
|
|
130
|
-
Specifies the number of variables to randomly sample from each
|
|
131
|
-
input value. For example, if mtry is 3, then the function randomly
|
|
132
|
-
samples 3 variables from each input at each split. The mtry must be an
|
|
133
|
-
int.
|
|
134
|
-
Types: int
|
|
135
|
-
|
|
136
|
-
mtry_seed:
|
|
137
|
-
Optional Argument.
|
|
138
|
-
Specifies a int value to use in determining the random seed for mtry.
|
|
139
|
-
Types: int
|
|
140
|
-
|
|
141
|
-
seed:
|
|
142
|
-
Optional Argument.
|
|
143
|
-
Specifies a int value to use in determining the seed for the random
|
|
144
|
-
number generator. If you specify this value, you can specify the same
|
|
145
|
-
value in future calls to this function and the function will build
|
|
146
|
-
the same tree.
|
|
147
|
-
Types: int
|
|
148
|
-
|
|
149
|
-
outofbag:
|
|
150
|
-
Optional Argument.
|
|
151
|
-
Specifies whether to output the out-of-bag estimate of error rate.
|
|
152
|
-
Default Value: False
|
|
153
|
-
Types: bool
|
|
154
|
-
|
|
155
|
-
display_num_processed_rows:
|
|
156
|
-
Optional Argument.
|
|
157
|
-
Specifies whether to display the number of processed rows of "data".
|
|
158
|
-
Default Value: False
|
|
159
|
-
Types: bool
|
|
160
|
-
|
|
161
|
-
categorical_encoding:
|
|
162
|
-
Optional Argument.
|
|
163
|
-
Specifies which encoding method is used for categorical variables.
|
|
164
|
-
Note: "categorical_encoding" argument support is only available
|
|
165
|
-
when teradataml is connected to Vantage 1.1 or later.
|
|
166
|
-
Default Value: "graycode"
|
|
167
|
-
Permitted Values: graycode, hashing
|
|
168
|
-
Types: str
|
|
169
|
-
|
|
170
|
-
data_sequence_column:
|
|
171
|
-
Optional Argument.
|
|
172
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
173
|
-
the input argument "data". The argument is used to ensure
|
|
174
|
-
deterministic results for functions which produce results that vary
|
|
175
|
-
from run to run.
|
|
176
|
-
Types: str OR list of Strings (str)
|
|
177
|
-
|
|
178
|
-
id_column:
|
|
179
|
-
Optional Argument. Required when "outofbag" is set to 'True'.
|
|
180
|
-
Specifies the name of the column in "data" that contains the row
|
|
181
|
-
identifier.
|
|
182
|
-
Note:
|
|
183
|
-
"id_column" argument support is only available when teradataml
|
|
184
|
-
is connected to Vantage 1.3 or later.
|
|
185
|
-
Types: str
|
|
186
|
-
|
|
187
|
-
RETURNS:
|
|
188
|
-
Instance of DecisionForest.
|
|
189
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
190
|
-
references, such as DecisionForestObj.<attribute_name>.
|
|
191
|
-
Output teradataml DataFrame attribute names are:
|
|
192
|
-
1. predictive_model
|
|
193
|
-
2. monitor_table
|
|
194
|
-
3. output
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
RAISES:
|
|
198
|
-
TeradataMlException
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
EXAMPLES:
|
|
202
|
-
# Load the data to run the example
|
|
203
|
-
load_example_data("decisionforest", ["housing_train", "boston"])
|
|
204
|
-
|
|
205
|
-
# Create teradataml DataFrame.
|
|
206
|
-
housing_train = DataFrame.from_table("housing_train")
|
|
207
|
-
boston = DataFrame.from_table("boston")
|
|
208
|
-
|
|
209
|
-
# Example 1 -
|
|
210
|
-
decision_forest_out1 = DecisionForest(formula = "homestyle ~ bedrooms + lotsize + gashw + driveway + stories + recroom + price + garagepl + bathrms + fullbase + airco + prefarea",
|
|
211
|
-
data = housing_train,
|
|
212
|
-
tree_type = "classification",
|
|
213
|
-
ntree = 50,
|
|
214
|
-
nodesize = 1,
|
|
215
|
-
variance = 0.0,
|
|
216
|
-
max_depth = 12,
|
|
217
|
-
mtry = 3,
|
|
218
|
-
mtry_seed = 100,
|
|
219
|
-
seed = 100)
|
|
220
|
-
|
|
221
|
-
# Print output dataframes
|
|
222
|
-
print(decision_forest_out1.output)
|
|
223
|
-
print(decision_forest_out1.predictive_model)
|
|
224
|
-
print(decision_forest_out1.monitor_table)
|
|
225
|
-
|
|
226
|
-
# Example 2 -
|
|
227
|
-
decision_forest_out2 = DecisionForest(formula = "homestyle ~ bedrooms + lotsize + gashw + driveway + stories + recroom + price + garagepl + bathrms + fullbase + airco + prefarea",
|
|
228
|
-
data = housing_train,
|
|
229
|
-
tree_type = "classification",
|
|
230
|
-
ntree = 50,
|
|
231
|
-
nodesize = 2,
|
|
232
|
-
max_depth = 12,
|
|
233
|
-
mtry = 3,
|
|
234
|
-
outofbag = True)
|
|
235
|
-
|
|
236
|
-
# Print all output dataframes.
|
|
237
|
-
print(decision_forest_out2.output)
|
|
238
|
-
print(decision_forest_out2.predictive_model)
|
|
239
|
-
print(decision_forest_out2.monitor_table)
|
|
240
|
-
|
|
241
|
-
# Example 3 -
|
|
242
|
-
decision_forest_out3 = DecisionForest(formula = "medv ~ indus + ptratio + lstat + black + tax + dis + zn + rad + nox + chas + rm + crim + age",
|
|
243
|
-
data = boston,
|
|
244
|
-
tree_type = "regression",
|
|
245
|
-
ntree = 50,
|
|
246
|
-
nodesize = 2,
|
|
247
|
-
max_depth = 6,
|
|
248
|
-
outofbag = True)
|
|
249
|
-
|
|
250
|
-
# Print all output dataframes.
|
|
251
|
-
print(decision_forest_out3.output)
|
|
252
|
-
print(decision_forest_out3.predictive_model)
|
|
253
|
-
print(decision_forest_out3.monitor_table)
|
|
254
|
-
|
|
255
|
-
"""
|
|
256
|
-
|
|
257
|
-
# Start the timer to get the build time
|
|
258
|
-
_start_time = time.time()
|
|
259
|
-
|
|
260
|
-
self.formula = formula
|
|
261
|
-
self.data = data
|
|
262
|
-
self.maxnum_categorical = maxnum_categorical
|
|
263
|
-
self.tree_type = tree_type
|
|
264
|
-
self.ntree = ntree
|
|
265
|
-
self.tree_size = tree_size
|
|
266
|
-
self.nodesize = nodesize
|
|
267
|
-
self.variance = variance
|
|
268
|
-
self.max_depth = max_depth
|
|
269
|
-
self.mtry = mtry
|
|
270
|
-
self.mtry_seed = mtry_seed
|
|
271
|
-
self.seed = seed
|
|
272
|
-
self.outofbag = outofbag
|
|
273
|
-
self.display_num_processed_rows = display_num_processed_rows
|
|
274
|
-
self.categorical_encoding = categorical_encoding
|
|
275
|
-
self.id_column = id_column
|
|
276
|
-
self.data_sequence_column = data_sequence_column
|
|
277
|
-
|
|
278
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
279
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
280
|
-
self.__aed_utils = AedUtils()
|
|
281
|
-
|
|
282
|
-
# Create argument information matrix to do parameter checking
|
|
283
|
-
self.__arg_info_matrix = []
|
|
284
|
-
self.__arg_info_matrix.append(["formula", self.formula, False, "formula"])
|
|
285
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
286
|
-
self.__arg_info_matrix.append(["maxnum_categorical", self.maxnum_categorical, True, (int)])
|
|
287
|
-
self.__arg_info_matrix.append(["tree_type", self.tree_type, True, (str)])
|
|
288
|
-
self.__arg_info_matrix.append(["ntree", self.ntree, True, (int)])
|
|
289
|
-
self.__arg_info_matrix.append(["tree_size", self.tree_size, True, (int)])
|
|
290
|
-
self.__arg_info_matrix.append(["nodesize", self.nodesize, True, (int)])
|
|
291
|
-
self.__arg_info_matrix.append(["variance", self.variance, True, (float)])
|
|
292
|
-
self.__arg_info_matrix.append(["max_depth", self.max_depth, True, (int)])
|
|
293
|
-
self.__arg_info_matrix.append(["mtry", self.mtry, True, (int)])
|
|
294
|
-
self.__arg_info_matrix.append(["mtry_seed", self.mtry_seed, True, (int)])
|
|
295
|
-
self.__arg_info_matrix.append(["seed", self.seed, True, (int)])
|
|
296
|
-
self.__arg_info_matrix.append(["outofbag", self.outofbag, True, (bool)])
|
|
297
|
-
self.__arg_info_matrix.append(["display_num_processed_rows", self.display_num_processed_rows, True, (bool)])
|
|
298
|
-
self.__arg_info_matrix.append(["categorical_encoding", self.categorical_encoding, True, (str)])
|
|
299
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
300
|
-
self.__arg_info_matrix.append(["id_column", self.id_column, True, (str)])
|
|
301
|
-
|
|
302
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
303
|
-
# Perform the function validations
|
|
304
|
-
self.__validate()
|
|
305
|
-
# Generate the ML query
|
|
306
|
-
self.__form_tdml_query()
|
|
307
|
-
# Process output table schema
|
|
308
|
-
self.__process_output_column_info()
|
|
309
|
-
# Execute ML query
|
|
310
|
-
self.__execute()
|
|
311
|
-
# Get the prediction type
|
|
312
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self, self.data)
|
|
313
|
-
|
|
314
|
-
# End the timer to get the build time
|
|
315
|
-
_end_time = time.time()
|
|
316
|
-
|
|
317
|
-
# Calculate the build time
|
|
318
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
319
|
-
|
|
320
|
-
def __validate(self):
|
|
321
|
-
"""
|
|
322
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
323
|
-
arguments, input argument and table types. Also processes the
|
|
324
|
-
argument values.
|
|
325
|
-
"""
|
|
326
|
-
|
|
327
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
328
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
329
|
-
|
|
330
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
331
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
332
|
-
|
|
333
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
334
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
335
|
-
|
|
336
|
-
# Check for permitted values
|
|
337
|
-
categorical_encoding_permitted_values = ["GRAYCODE", "HASHING"]
|
|
338
|
-
self.__awu._validate_permitted_values(self.categorical_encoding, categorical_encoding_permitted_values, "categorical_encoding")
|
|
339
|
-
|
|
340
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
341
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
342
|
-
self.__awu._validate_input_columns_not_empty(self.id_column, "id_column")
|
|
343
|
-
self.__awu._validate_dataframe_has_argument_columns(self.id_column, "id_column", self.data, "data", False)
|
|
344
|
-
|
|
345
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
346
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
def __form_tdml_query(self):
|
|
350
|
-
"""
|
|
351
|
-
Function to generate the analytical function queries. The function defines
|
|
352
|
-
variables and list of arguments required to form the query.
|
|
353
|
-
"""
|
|
354
|
-
# Generate temp table names for output table parameters if any.
|
|
355
|
-
self.__predictive_model_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_decisionforest0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
356
|
-
self.__monitor_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_decisionforest1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
357
|
-
|
|
358
|
-
# Output table arguments list
|
|
359
|
-
self.__func_output_args_sql_names = ["OutputTable", "MonitorTable"]
|
|
360
|
-
self.__func_output_args = [self.__predictive_model_temp_tablename, self.__monitor_table_temp_tablename]
|
|
361
|
-
|
|
362
|
-
# Model Cataloging related attributes.
|
|
363
|
-
self._sql_specific_attributes = {}
|
|
364
|
-
self._sql_formula_attribute_mapper = {}
|
|
365
|
-
self._target_column = None
|
|
366
|
-
self._algorithm_name = None
|
|
367
|
-
|
|
368
|
-
# Generate lists for rest of the function arguments
|
|
369
|
-
self.__func_other_arg_sql_names = []
|
|
370
|
-
self.__func_other_args = []
|
|
371
|
-
self.__func_other_arg_json_datatypes = []
|
|
372
|
-
|
|
373
|
-
if self.id_column is not None:
|
|
374
|
-
self.__func_other_arg_sql_names.append("IdColumn")
|
|
375
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.id_column, "\""), "'"))
|
|
376
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
377
|
-
|
|
378
|
-
if self.tree_type is not None:
|
|
379
|
-
self.__func_other_arg_sql_names.append("TreeType")
|
|
380
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.tree_type, "'"))
|
|
381
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
382
|
-
|
|
383
|
-
if self.ntree is not None:
|
|
384
|
-
self.__func_other_arg_sql_names.append("NumTrees")
|
|
385
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.ntree, "'"))
|
|
386
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
387
|
-
|
|
388
|
-
if self.tree_size is not None:
|
|
389
|
-
self.__func_other_arg_sql_names.append("TreeSize")
|
|
390
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.tree_size, "'"))
|
|
391
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
392
|
-
|
|
393
|
-
if self.nodesize is not None and self.nodesize != 1:
|
|
394
|
-
self.__func_other_arg_sql_names.append("MinNodeSize")
|
|
395
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.nodesize, "'"))
|
|
396
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
397
|
-
|
|
398
|
-
if self.variance is not None and self.variance != 0:
|
|
399
|
-
self.__func_other_arg_sql_names.append("Variance")
|
|
400
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.variance, "'"))
|
|
401
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
402
|
-
|
|
403
|
-
if self.max_depth is not None and self.max_depth != 12:
|
|
404
|
-
self.__func_other_arg_sql_names.append("MaxDepth")
|
|
405
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_depth, "'"))
|
|
406
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
407
|
-
|
|
408
|
-
if self.maxnum_categorical is not None:
|
|
409
|
-
self.__func_other_arg_sql_names.append("MaxNumCategoricalValues")
|
|
410
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.maxnum_categorical, "'"))
|
|
411
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
412
|
-
|
|
413
|
-
if self.display_num_processed_rows is not None and self.display_num_processed_rows != False:
|
|
414
|
-
self.__func_other_arg_sql_names.append("DisplayNumProcessedRows")
|
|
415
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.display_num_processed_rows, "'"))
|
|
416
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
417
|
-
|
|
418
|
-
if self.mtry is not None:
|
|
419
|
-
self.__func_other_arg_sql_names.append("Mtry")
|
|
420
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.mtry, "'"))
|
|
421
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
422
|
-
|
|
423
|
-
if self.mtry_seed is not None:
|
|
424
|
-
self.__func_other_arg_sql_names.append("MtrySeed")
|
|
425
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.mtry_seed, "'"))
|
|
426
|
-
self.__func_other_arg_json_datatypes.append("LONG")
|
|
427
|
-
|
|
428
|
-
if self.seed is not None:
|
|
429
|
-
self.__func_other_arg_sql_names.append("Seed")
|
|
430
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seed, "'"))
|
|
431
|
-
self.__func_other_arg_json_datatypes.append("LONG")
|
|
432
|
-
|
|
433
|
-
if self.outofbag is not None and self.outofbag != False:
|
|
434
|
-
self.__func_other_arg_sql_names.append("OutOfBag")
|
|
435
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.outofbag, "'"))
|
|
436
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
437
|
-
|
|
438
|
-
if self.categorical_encoding is not None and self.categorical_encoding != "graycode":
|
|
439
|
-
self.__func_other_arg_sql_names.append("CategoricalEncoding")
|
|
440
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.categorical_encoding, "'"))
|
|
441
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
442
|
-
|
|
443
|
-
# Generate lists for rest of the function arguments
|
|
444
|
-
sequence_input_by_list = []
|
|
445
|
-
if self.data_sequence_column is not None:
|
|
446
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
447
|
-
|
|
448
|
-
if len(sequence_input_by_list) > 0:
|
|
449
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
450
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
451
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
452
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
453
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
454
|
-
|
|
455
|
-
# Let's process formula argument
|
|
456
|
-
self.formula = self.__awu._validate_formula_notation(self.formula, self.data, "formula")
|
|
457
|
-
# response variable
|
|
458
|
-
__response_column = self.formula._get_dependent_vars()
|
|
459
|
-
self._target_column = __response_column
|
|
460
|
-
self.__func_other_arg_sql_names.append("ResponseColumn")
|
|
461
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(__response_column, "\""), "'"))
|
|
462
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
463
|
-
self._sql_specific_attributes["ResponseColumn"] = __response_column
|
|
464
|
-
self._sql_formula_attribute_mapper["ResponseColumn"] = "__response_column"
|
|
465
|
-
|
|
466
|
-
# numerical input columns
|
|
467
|
-
__numeric_columns = self.__awu._get_columns_by_type(self.formula, self.data, "numerical")
|
|
468
|
-
if len(__numeric_columns) > 0:
|
|
469
|
-
self.__func_other_arg_sql_names.append("NumericInputs")
|
|
470
|
-
numerical_columns_list = UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(__numeric_columns, "\""), "'")
|
|
471
|
-
self.__func_other_args.append(numerical_columns_list)
|
|
472
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
473
|
-
self._sql_specific_attributes["NumericInputs"] = numerical_columns_list
|
|
474
|
-
self._sql_formula_attribute_mapper["NumericInputs"] = "__numeric_columns"
|
|
475
|
-
|
|
476
|
-
# categorical input columns
|
|
477
|
-
__categorical_columns = self.__awu._get_columns_by_type(self.formula, self.data, "categorical")
|
|
478
|
-
if len(__categorical_columns) > 0:
|
|
479
|
-
self.__func_other_arg_sql_names.append("CategoricalInputs")
|
|
480
|
-
categorical_columns_list = UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(__categorical_columns, "\""), "'")
|
|
481
|
-
self.__func_other_args.append(categorical_columns_list)
|
|
482
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
483
|
-
self._sql_specific_attributes["CategoricalInputs"] = categorical_columns_list
|
|
484
|
-
self._sql_formula_attribute_mapper["CategoricalInputs"] = "__categorical_columns"
|
|
485
|
-
|
|
486
|
-
|
|
487
|
-
# Declare empty lists to hold input table information.
|
|
488
|
-
self.__func_input_arg_sql_names = []
|
|
489
|
-
self.__func_input_table_view_query = []
|
|
490
|
-
self.__func_input_dataframe_type = []
|
|
491
|
-
self.__func_input_distribution = []
|
|
492
|
-
self.__func_input_partition_by_cols = []
|
|
493
|
-
self.__func_input_order_by_cols = []
|
|
494
|
-
|
|
495
|
-
# Process data
|
|
496
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data)
|
|
497
|
-
self.__func_input_distribution.append("NONE")
|
|
498
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
499
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
500
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
501
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
502
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
503
|
-
|
|
504
|
-
function_name = "DecisionForest"
|
|
505
|
-
# Create instance to generate SQLMR.
|
|
506
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
507
|
-
self.__func_input_arg_sql_names,
|
|
508
|
-
self.__func_input_table_view_query,
|
|
509
|
-
self.__func_input_dataframe_type,
|
|
510
|
-
self.__func_input_distribution,
|
|
511
|
-
self.__func_input_partition_by_cols,
|
|
512
|
-
self.__func_input_order_by_cols,
|
|
513
|
-
self.__func_other_arg_sql_names,
|
|
514
|
-
self.__func_other_args,
|
|
515
|
-
self.__func_other_arg_json_datatypes,
|
|
516
|
-
self.__func_output_args_sql_names,
|
|
517
|
-
self.__func_output_args,
|
|
518
|
-
engine="ENGINE_ML")
|
|
519
|
-
# Invoke call to SQL-MR generation.
|
|
520
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
521
|
-
|
|
522
|
-
# Print SQL-MR query if requested to do so.
|
|
523
|
-
if display.print_sqlmr_query:
|
|
524
|
-
print(self.sqlmr_query)
|
|
525
|
-
|
|
526
|
-
# Set the algorithm name for Model Cataloging.
|
|
527
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
528
|
-
|
|
529
|
-
def __execute(self):
|
|
530
|
-
"""
|
|
531
|
-
Function to generate AED nodes for output tables.
|
|
532
|
-
This makes a call aed_ml_query() and then output table dataframes are created.
|
|
533
|
-
"""
|
|
534
|
-
# Create a list of input node ids contributing to a query.
|
|
535
|
-
self.__input_nodeids = []
|
|
536
|
-
self.__input_nodeids.append(self.data._nodeid)
|
|
537
|
-
|
|
538
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
539
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
540
|
-
self.__func_output_args.insert(0, sqlmr_stdout_temp_tablename)
|
|
541
|
-
try:
|
|
542
|
-
# Call aed_ml_query and generate AED nodes.
|
|
543
|
-
node_id_list = self.__aed_utils._aed_ml_query(self.__input_nodeids, self.sqlmr_query, self.__func_output_args, "DecisionForest", self.__aqg_obj._multi_query_input_nodes)
|
|
544
|
-
except Exception as emsg:
|
|
545
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.AED_EXEC_FAILED, str(emsg)), MessageCodes.AED_EXEC_FAILED)
|
|
546
|
-
|
|
547
|
-
|
|
548
|
-
# Update output table data frames.
|
|
549
|
-
self._mlresults = []
|
|
550
|
-
self.predictive_model = self.__awu._create_data_set_object(df_input=node_id_list[1], metaexpr=UtilFuncs._get_metaexpr_using_columns(node_id_list[1], self.__predictive_model_column_info))
|
|
551
|
-
self.monitor_table = self.__awu._create_data_set_object(df_input=node_id_list[2], metaexpr=UtilFuncs._get_metaexpr_using_columns(node_id_list[2], self.__monitor_table_column_info))
|
|
552
|
-
self.output = self.__awu._create_data_set_object(df_input=node_id_list[0], metaexpr=UtilFuncs._get_metaexpr_using_columns(node_id_list[0], self.__stdout_column_info))
|
|
553
|
-
self._mlresults.append(self.predictive_model)
|
|
554
|
-
self._mlresults.append(self.monitor_table)
|
|
555
|
-
self._mlresults.append(self.output)
|
|
556
|
-
|
|
557
|
-
def __process_output_column_info(self):
|
|
558
|
-
"""
|
|
559
|
-
Function to process the output schema for all the ouptut tables.
|
|
560
|
-
This function generates list of column names and column types
|
|
561
|
-
for each generated output tables, which can be used to create metaexpr.
|
|
562
|
-
"""
|
|
563
|
-
# Collecting STDOUT output column information.
|
|
564
|
-
stdout_column_info_name = []
|
|
565
|
-
stdout_column_info_type = []
|
|
566
|
-
stdout_column_info_name.append("message")
|
|
567
|
-
stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("varchar"))
|
|
568
|
-
|
|
569
|
-
self.__stdout_column_info = zip(stdout_column_info_name, stdout_column_info_type)
|
|
570
|
-
|
|
571
|
-
# Collecting predictive_model output column information.
|
|
572
|
-
predictive_model_column_info_name = []
|
|
573
|
-
predictive_model_column_info_type = []
|
|
574
|
-
predictive_model_column_info_name.append("worker_ip")
|
|
575
|
-
predictive_model_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("varchar"))
|
|
576
|
-
|
|
577
|
-
predictive_model_column_info_name.append("task_index")
|
|
578
|
-
predictive_model_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("integer"))
|
|
579
|
-
|
|
580
|
-
predictive_model_column_info_name.append("tree_num")
|
|
581
|
-
predictive_model_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("integer"))
|
|
582
|
-
|
|
583
|
-
predictive_model_column_info_name.append("tree")
|
|
584
|
-
predictive_model_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("clob"))
|
|
585
|
-
|
|
586
|
-
if self.display_num_processed_rows:
|
|
587
|
-
predictive_model_column_info_name.append("num_processed_rows")
|
|
588
|
-
predictive_model_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("integer"))
|
|
589
|
-
predictive_model_column_info_name.append("num_total_rows")
|
|
590
|
-
predictive_model_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("integer"))
|
|
591
|
-
|
|
592
|
-
|
|
593
|
-
self.__predictive_model_column_info = zip(predictive_model_column_info_name, predictive_model_column_info_type)
|
|
594
|
-
|
|
595
|
-
# Collecting monitor_table output column information.
|
|
596
|
-
monitor_table_column_info_name = []
|
|
597
|
-
monitor_table_column_info_type = []
|
|
598
|
-
monitor_table_column_info_name.append("message")
|
|
599
|
-
monitor_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("varchar"))
|
|
600
|
-
|
|
601
|
-
self.__monitor_table_column_info = zip(monitor_table_column_info_name, monitor_table_column_info_type)
|
|
602
|
-
|
|
603
|
-
def show_query(self):
|
|
604
|
-
"""
|
|
605
|
-
Function to return the underlying SQL query.
|
|
606
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
607
|
-
"""
|
|
608
|
-
return self.sqlmr_query
|
|
609
|
-
|
|
610
|
-
def get_prediction_type(self):
|
|
611
|
-
"""
|
|
612
|
-
Function to return the Prediction type of the algorithm.
|
|
613
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
614
|
-
as saved in the Model Catalog.
|
|
615
|
-
"""
|
|
616
|
-
return self._prediction_type
|
|
617
|
-
|
|
618
|
-
def get_target_column(self):
|
|
619
|
-
"""
|
|
620
|
-
Function to return the Target Column of the algorithm.
|
|
621
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
622
|
-
as saved in the Model Catalog.
|
|
623
|
-
"""
|
|
624
|
-
return self._target_column
|
|
625
|
-
|
|
626
|
-
def get_build_time(self):
|
|
627
|
-
"""
|
|
628
|
-
Function to return the build time of the algorithm in seconds.
|
|
629
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
630
|
-
as saved in the Model Catalog.
|
|
631
|
-
"""
|
|
632
|
-
return self._build_time
|
|
633
|
-
|
|
634
|
-
def _get_algorithm_name(self):
|
|
635
|
-
"""
|
|
636
|
-
Function to return the name of the algorithm.
|
|
637
|
-
"""
|
|
638
|
-
return self._algorithm_name
|
|
639
|
-
|
|
640
|
-
def _get_sql_specific_attributes(self):
|
|
641
|
-
"""
|
|
642
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
643
|
-
"""
|
|
644
|
-
return self._sql_specific_attributes
|
|
645
|
-
|
|
646
|
-
@classmethod
|
|
647
|
-
def _from_model_catalog(cls,
|
|
648
|
-
predictive_model = None,
|
|
649
|
-
monitor_table = None,
|
|
650
|
-
output = None,
|
|
651
|
-
**kwargs):
|
|
652
|
-
"""
|
|
653
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
654
|
-
"""
|
|
655
|
-
kwargs.pop("predictive_model", None)
|
|
656
|
-
kwargs.pop("monitor_table", None)
|
|
657
|
-
kwargs.pop("output", None)
|
|
658
|
-
|
|
659
|
-
# Model Cataloging related attributes.
|
|
660
|
-
target_column = kwargs.pop("__target_column", None)
|
|
661
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
662
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
663
|
-
build_time = kwargs.pop("__build_time", None)
|
|
664
|
-
|
|
665
|
-
# Initialize the formula attributes.
|
|
666
|
-
__response_column = kwargs.pop("__response_column", None)
|
|
667
|
-
__all_columns = kwargs.pop("__all_columns", None)
|
|
668
|
-
__numeric_columns = kwargs.pop("__numeric_columns", None)
|
|
669
|
-
__categorical_columns = kwargs.pop("__categorical_columns", None)
|
|
670
|
-
|
|
671
|
-
# Let's create an object of this class.
|
|
672
|
-
obj = cls(**kwargs)
|
|
673
|
-
obj.predictive_model = predictive_model
|
|
674
|
-
obj.monitor_table = monitor_table
|
|
675
|
-
obj.output = output
|
|
676
|
-
|
|
677
|
-
# Initialize the sqlmr_query class attribute.
|
|
678
|
-
obj.sqlmr_query = None
|
|
679
|
-
|
|
680
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
681
|
-
obj._sql_specific_attributes = None
|
|
682
|
-
obj._target_column = target_column
|
|
683
|
-
obj._prediction_type = prediction_type
|
|
684
|
-
obj._algorithm_name = algorithm_name
|
|
685
|
-
obj._build_time = build_time
|
|
686
|
-
|
|
687
|
-
# Initialize the formula.
|
|
688
|
-
if obj.formula is not None:
|
|
689
|
-
obj.formula = Formula._from_formula_attr(obj.formula,
|
|
690
|
-
__response_column,
|
|
691
|
-
__all_columns,
|
|
692
|
-
__categorical_columns,
|
|
693
|
-
__numeric_columns)
|
|
694
|
-
|
|
695
|
-
# Update output table data frames.
|
|
696
|
-
obj._mlresults = []
|
|
697
|
-
obj.predictive_model = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.predictive_model), source_type="table", database_name=UtilFuncs._extract_db_name(obj.predictive_model))
|
|
698
|
-
obj.monitor_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.monitor_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.monitor_table))
|
|
699
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
700
|
-
obj._mlresults.append(obj.predictive_model)
|
|
701
|
-
obj._mlresults.append(obj.monitor_table)
|
|
702
|
-
obj._mlresults.append(obj.output)
|
|
703
|
-
return obj
|
|
704
|
-
|
|
705
|
-
def __repr__(self):
|
|
706
|
-
"""
|
|
707
|
-
Returns the string representation for a DecisionForest class instance.
|
|
708
|
-
"""
|
|
709
|
-
repr_string="############ STDOUT Output ############"
|
|
710
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
711
|
-
repr_string="{}\n\n\n############ predictive_model Output ############".format(repr_string)
|
|
712
|
-
repr_string = "{}\n\n{}".format(repr_string,self.predictive_model)
|
|
713
|
-
repr_string="{}\n\n\n############ monitor_table Output ############".format(repr_string)
|
|
714
|
-
repr_string = "{}\n\n{}".format(repr_string,self.monitor_table)
|
|
715
|
-
return repr_string
|
|
716
|
-
|