teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,529 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.6
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class NamedEntityFinder:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
newdata = None,
|
|
34
|
-
configure_table_data = None,
|
|
35
|
-
text_column = None,
|
|
36
|
-
model = None,
|
|
37
|
-
show_entity_context = 0,
|
|
38
|
-
entity_column = "entity",
|
|
39
|
-
accumulate = None,
|
|
40
|
-
newdata_sequence_column = None,
|
|
41
|
-
configure_table_data_sequence_column = None,
|
|
42
|
-
newdata_order_column = None,
|
|
43
|
-
configure_table_data_order_column = None):
|
|
44
|
-
"""
|
|
45
|
-
DESCRIPTION:
|
|
46
|
-
The NamedEntityFinder function evaluates the input text, identifies
|
|
47
|
-
tokens based on the specified model, and outputs the tokens with
|
|
48
|
-
detailed information. The function does not identify sentences; it
|
|
49
|
-
simply tokenizes. Token identification is not case-sensitive.
|
|
50
|
-
|
|
51
|
-
PARAMETERS:
|
|
52
|
-
newdata:
|
|
53
|
-
Required Argument.
|
|
54
|
-
Specifies the input teradataml DataFrame containing the column
|
|
55
|
-
with the text to find Named Entities.
|
|
56
|
-
|
|
57
|
-
newdata_order_column:
|
|
58
|
-
Optional Argument.
|
|
59
|
-
Specifies Order By columns for newdata.
|
|
60
|
-
Values to this argument can be provided as a list, if multiple
|
|
61
|
-
columns are used for ordering.
|
|
62
|
-
Types: str OR list of Strings (str)
|
|
63
|
-
|
|
64
|
-
configure_table_data:
|
|
65
|
-
Optional Argument.
|
|
66
|
-
Specifies the teradataml DataFrame containing the configuration
|
|
67
|
-
data.
|
|
68
|
-
|
|
69
|
-
configure_table_data_order_column:
|
|
70
|
-
Optional Argument.
|
|
71
|
-
Specifies Order By columns for configure_table_data.
|
|
72
|
-
Values to this argument can be provided as a list, if multiple
|
|
73
|
-
columns are used for ordering.
|
|
74
|
-
Types: str OR list of Strings (str)
|
|
75
|
-
|
|
76
|
-
text_column:
|
|
77
|
-
Required Argument.
|
|
78
|
-
Specifies the name of the input teradataml DataFrame column
|
|
79
|
-
that contains the text to analyze.
|
|
80
|
-
Types: str
|
|
81
|
-
|
|
82
|
-
model:
|
|
83
|
-
Optional Argument.
|
|
84
|
-
Specifies the model items to load.
|
|
85
|
-
Optional if you specify configure_table_data; required otherwise
|
|
86
|
-
(and you cannot specify "all").
|
|
87
|
-
If you specify both configure_table_data and this argument,
|
|
88
|
-
then the function loads the specified model items from
|
|
89
|
-
configure_table_data.
|
|
90
|
-
If you specify configure_table_data but omit this argument,
|
|
91
|
-
the default value of this argument is "all" (every model item
|
|
92
|
-
from configure_table_data).
|
|
93
|
-
The entity_type is the name of an entity type (for example, PERSON,
|
|
94
|
-
LOCATION, or EMAIL), which appears in the output table.
|
|
95
|
-
The model_type is one of these model types:
|
|
96
|
-
• max entropy: Maximum entropy language model generated by
|
|
97
|
-
training;
|
|
98
|
-
• rule: Rule-based model, a plain text file with one regular
|
|
99
|
-
expression on each line;
|
|
100
|
-
• dictionary: Dictionary-based model, a plain text file with
|
|
101
|
-
one word on each line;
|
|
102
|
-
• reg exp: Regular expression that describes entity_type.
|
|
103
|
-
If model_type is "reg exp", specify regular_expression (a regular
|
|
104
|
-
expression that describes entity_type); otherwise, specify
|
|
105
|
-
model_file (the name of the model file).
|
|
106
|
-
If you specify configure_table_data, you can use entity_type as a
|
|
107
|
-
shortcut. For example, if the configure_table_data has the row
|
|
108
|
-
"organization, max entropy, en-ner-organization.bin", you can specify
|
|
109
|
-
Model("organization") as a shortcut for Model("organization:max
|
|
110
|
-
entropy:en-nerorganization.bin").
|
|
111
|
-
Note:
|
|
112
|
-
For model_type "max entropy", if you specify configuration_file
|
|
113
|
-
and omit this argument, then the Java virtual machine (JVM)
|
|
114
|
-
of the worker node needs more than 2GB of memory.
|
|
115
|
-
Types: str
|
|
116
|
-
|
|
117
|
-
show_entity_context:
|
|
118
|
-
Optional Argument.
|
|
119
|
-
Specifies the number of context words to output. If the number
|
|
120
|
-
of context words is n (which must be a positive integer), the
|
|
121
|
-
function outputs n words that precede the entity, the entity
|
|
122
|
-
itself, and n words that follow the entity.
|
|
123
|
-
Default Value: 0
|
|
124
|
-
Types: int
|
|
125
|
-
|
|
126
|
-
entity_column:
|
|
127
|
-
Optional Argument.
|
|
128
|
-
Specifies the name of the output teradataml DataFrame column that
|
|
129
|
-
contains the entity names.
|
|
130
|
-
Default Value: "entity"
|
|
131
|
-
Types: str
|
|
132
|
-
|
|
133
|
-
accumulate:
|
|
134
|
-
Optional Argument.
|
|
135
|
-
Specifies the names of input teradataml DataFrame columns to
|
|
136
|
-
copy to the output teradataml DataFrame. No accumulate_column
|
|
137
|
-
can be an entity_column. By default, the function copies all
|
|
138
|
-
input teradataml DataFrame columns to the output teradataml
|
|
139
|
-
DataFrame.
|
|
140
|
-
Types: str OR list of Strings (str)
|
|
141
|
-
|
|
142
|
-
newdata_sequence_column:
|
|
143
|
-
Optional Argument.
|
|
144
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
145
|
-
the input argument "newdata". The argument is used to ensure
|
|
146
|
-
deterministic results for functions which produce results that vary
|
|
147
|
-
from run to run.
|
|
148
|
-
Types: str OR list of Strings (str)
|
|
149
|
-
|
|
150
|
-
configure_table_data_sequence_column:
|
|
151
|
-
Optional Argument.
|
|
152
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
153
|
-
the input argument "configure_table_data". The argument is used to
|
|
154
|
-
ensure deterministic results for functions which produce results that
|
|
155
|
-
vary from run to run.
|
|
156
|
-
Types: str OR list of Strings (str)
|
|
157
|
-
|
|
158
|
-
RETURNS:
|
|
159
|
-
Instance of NamedEntityFinder.
|
|
160
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
161
|
-
references, such as NamedEntityFinderObj.<attribute_name>.
|
|
162
|
-
Output teradataml DataFrame attribute name is:
|
|
163
|
-
result
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
RAISES:
|
|
167
|
-
TeradataMlException
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
EXAMPLES:
|
|
171
|
-
# Load example data.
|
|
172
|
-
load_example_data("namedentityfinder", ['assortedtext_input', 'name_Find_configure'])
|
|
173
|
-
|
|
174
|
-
# Provided example tables are 'assortedtext_input' and 'nameFind_configure'.
|
|
175
|
-
# 'assortedtext_input' table contains the text 'content' which is analysed to get
|
|
176
|
-
# Named Entities. 'nameFind_configure' is the configuration table which contain
|
|
177
|
-
# the columns 'model_name', 'model_type' and 'model_file'.
|
|
178
|
-
|
|
179
|
-
# Create teradataml DataFrame objects.
|
|
180
|
-
nameFind_configure = DataFrame.from_table("name_Find_configure")
|
|
181
|
-
assortedtext_input = DataFrame.from_table("assortedtext_input")
|
|
182
|
-
|
|
183
|
-
# Example 1: Find entities using a configuration table containing model items.
|
|
184
|
-
NamedEntityFinder_out = NamedEntityFinder(newdata = assortedtext_input,
|
|
185
|
-
configure_table_data = nameFind_configure,
|
|
186
|
-
text_column = 'content',
|
|
187
|
-
accumulate = ['id', 'source'],
|
|
188
|
-
entity_column = 'entity',
|
|
189
|
-
model = 'all',
|
|
190
|
-
show_entity_context = 0,
|
|
191
|
-
newdata_sequence_column = 'id',
|
|
192
|
-
configure_table_data_sequence_column=
|
|
193
|
-
'model_file')
|
|
194
|
-
# Print the results
|
|
195
|
-
print(NamedEntityFinder_out.result)
|
|
196
|
-
|
|
197
|
-
# Example 2: Use a custom trained model to find the entities.
|
|
198
|
-
|
|
199
|
-
# Load example data.
|
|
200
|
-
load_example_data('namedentityfindertrainer', 'nermem_sports_train')
|
|
201
|
-
|
|
202
|
-
# Create teradataml DataFrame object
|
|
203
|
-
nermem_sports_train = DataFrame.from_table('nermem_sports_train')
|
|
204
|
-
|
|
205
|
-
# Training NamedEntityFinder model on entity type "LOCATION"
|
|
206
|
-
NamedEntityFinderTrainer_out = NamedEntityFinderTrainer(data = nermem_sports_train,
|
|
207
|
-
text_column = 'content',
|
|
208
|
-
entity_type = 'LOCATION',
|
|
209
|
-
model = 'location.sports')
|
|
210
|
-
# The trained model is stored in 'location.sports'
|
|
211
|
-
|
|
212
|
-
# Select a subset of the train dataset to use as "newdata" in NamedEntityFinder.
|
|
213
|
-
nermem_sports_test = nermem_sports_train[nermem_sports_train.id < 20]
|
|
214
|
-
|
|
215
|
-
# Finding entities using custom trained model
|
|
216
|
-
NamedEntityFinder_out1 = NamedEntityFinder(newdata = nermem_sports_test,
|
|
217
|
-
text_column = 'content',
|
|
218
|
-
model = "LOCATION:max entropy:location.sports")
|
|
219
|
-
# Print the results
|
|
220
|
-
print(NamedEntityFinder_out1.result)
|
|
221
|
-
|
|
222
|
-
"""
|
|
223
|
-
|
|
224
|
-
# Start the timer to get the build time
|
|
225
|
-
_start_time = time.time()
|
|
226
|
-
|
|
227
|
-
self.newdata = newdata
|
|
228
|
-
self.configure_table_data = configure_table_data
|
|
229
|
-
self.text_column = text_column
|
|
230
|
-
self.model = model
|
|
231
|
-
self.show_entity_context = show_entity_context
|
|
232
|
-
self.entity_column = entity_column
|
|
233
|
-
self.accumulate = accumulate
|
|
234
|
-
self.newdata_sequence_column = newdata_sequence_column
|
|
235
|
-
self.configure_table_data_sequence_column = configure_table_data_sequence_column
|
|
236
|
-
self.newdata_order_column = newdata_order_column
|
|
237
|
-
self.configure_table_data_order_column = configure_table_data_order_column
|
|
238
|
-
|
|
239
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
240
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
241
|
-
self.__aed_utils = AedUtils()
|
|
242
|
-
|
|
243
|
-
# Create argument information matrix to do parameter checking
|
|
244
|
-
self.__arg_info_matrix = []
|
|
245
|
-
self.__arg_info_matrix.append(["newdata", self.newdata, False, (DataFrame)])
|
|
246
|
-
self.__arg_info_matrix.append(["newdata_order_column", self.newdata_order_column, True, (str,list)])
|
|
247
|
-
self.__arg_info_matrix.append(["configure_table_data", self.configure_table_data, True, (DataFrame)])
|
|
248
|
-
self.__arg_info_matrix.append(["configure_table_data_order_column", self.configure_table_data_order_column, True, (str,list)])
|
|
249
|
-
self.__arg_info_matrix.append(["text_column", self.text_column, False, (str)])
|
|
250
|
-
self.__arg_info_matrix.append(["model", self.model, self.configure_table_data is not None, (str,list)])
|
|
251
|
-
self.__arg_info_matrix.append(["show_entity_context", self.show_entity_context, True, (int)])
|
|
252
|
-
self.__arg_info_matrix.append(["entity_column", self.entity_column, True, (str)])
|
|
253
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
|
|
254
|
-
self.__arg_info_matrix.append(["newdata_sequence_column", self.newdata_sequence_column, True, (str,list)])
|
|
255
|
-
self.__arg_info_matrix.append(["configure_table_data_sequence_column", self.configure_table_data_sequence_column, True, (str,list)])
|
|
256
|
-
|
|
257
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
258
|
-
# Perform the function validations
|
|
259
|
-
self.__validate()
|
|
260
|
-
# Generate the ML query
|
|
261
|
-
self.__form_tdml_query()
|
|
262
|
-
# Execute ML query
|
|
263
|
-
self.__execute()
|
|
264
|
-
# Get the prediction type
|
|
265
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
266
|
-
|
|
267
|
-
# End the timer to get the build time
|
|
268
|
-
_end_time = time.time()
|
|
269
|
-
|
|
270
|
-
# Calculate the build time
|
|
271
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
272
|
-
|
|
273
|
-
def __validate(self):
|
|
274
|
-
"""
|
|
275
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
276
|
-
arguments, input argument and table types. Also processes the
|
|
277
|
-
argument values.
|
|
278
|
-
"""
|
|
279
|
-
|
|
280
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
281
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
282
|
-
|
|
283
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
284
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
285
|
-
|
|
286
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
287
|
-
self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
|
|
288
|
-
self.__awu._validate_input_table_datatype(self.configure_table_data, "configure_table_data", None)
|
|
289
|
-
|
|
290
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
291
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
292
|
-
self.__awu._validate_input_columns_not_empty(self.text_column, "text_column")
|
|
293
|
-
self.__awu._validate_dataframe_has_argument_columns(self.text_column, "text_column", self.newdata, "newdata", False)
|
|
294
|
-
|
|
295
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
296
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.newdata, "newdata", False)
|
|
297
|
-
|
|
298
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_sequence_column, "newdata_sequence_column")
|
|
299
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_sequence_column, "newdata_sequence_column", self.newdata, "newdata", False)
|
|
300
|
-
|
|
301
|
-
self.__awu._validate_input_columns_not_empty(self.configure_table_data_sequence_column, "configure_table_data_sequence_column")
|
|
302
|
-
self.__awu._validate_dataframe_has_argument_columns(self.configure_table_data_sequence_column, "configure_table_data_sequence_column", self.configure_table_data, "configure_table_data", False)
|
|
303
|
-
|
|
304
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_order_column, "newdata_order_column")
|
|
305
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_order_column, "newdata_order_column", self.newdata, "newdata", False)
|
|
306
|
-
|
|
307
|
-
self.__awu._validate_input_columns_not_empty(self.configure_table_data_order_column, "configure_table_data_order_column")
|
|
308
|
-
self.__awu._validate_dataframe_has_argument_columns(self.configure_table_data_order_column, "configure_table_data_order_column", self.configure_table_data, "configure_table_data", False)
|
|
309
|
-
|
|
310
|
-
# Validate that value passed to the output column argument is not empty.
|
|
311
|
-
self.__awu._validate_input_columns_not_empty(self.entity_column, "entity_column")
|
|
312
|
-
|
|
313
|
-
def __form_tdml_query(self):
|
|
314
|
-
"""
|
|
315
|
-
Function to generate the analytical function queries. The function defines
|
|
316
|
-
variables and list of arguments required to form the query.
|
|
317
|
-
"""
|
|
318
|
-
|
|
319
|
-
# Output table arguments list
|
|
320
|
-
self.__func_output_args_sql_names = []
|
|
321
|
-
self.__func_output_args = []
|
|
322
|
-
|
|
323
|
-
# Model Cataloging related attributes.
|
|
324
|
-
self._sql_specific_attributes = {}
|
|
325
|
-
self._sql_formula_attribute_mapper = {}
|
|
326
|
-
self._target_column = None
|
|
327
|
-
self._algorithm_name = None
|
|
328
|
-
|
|
329
|
-
# Generate lists for rest of the function arguments
|
|
330
|
-
self.__func_other_arg_sql_names = []
|
|
331
|
-
self.__func_other_args = []
|
|
332
|
-
self.__func_other_arg_json_datatypes = []
|
|
333
|
-
|
|
334
|
-
self.__func_other_arg_sql_names.append("TextColumn")
|
|
335
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.text_column, "'"))
|
|
336
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
337
|
-
|
|
338
|
-
if self.accumulate is not None:
|
|
339
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
340
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
341
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
342
|
-
|
|
343
|
-
if self.model is not None:
|
|
344
|
-
self.__func_other_arg_sql_names.append("Model")
|
|
345
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.model, "'"))
|
|
346
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
347
|
-
|
|
348
|
-
if self.show_entity_context is not None and self.show_entity_context != 0:
|
|
349
|
-
self.__func_other_arg_sql_names.append("ShowEntityContext")
|
|
350
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.show_entity_context, "'"))
|
|
351
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
352
|
-
|
|
353
|
-
if self.entity_column is not None and self.entity_column != "entity":
|
|
354
|
-
self.__func_other_arg_sql_names.append("EntityColumn")
|
|
355
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.entity_column, "'"))
|
|
356
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
357
|
-
|
|
358
|
-
# Generate lists for rest of the function arguments
|
|
359
|
-
sequence_input_by_list = []
|
|
360
|
-
if self.newdata_sequence_column is not None:
|
|
361
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.newdata_sequence_column, ""))
|
|
362
|
-
|
|
363
|
-
if self.configure_table_data_sequence_column is not None:
|
|
364
|
-
sequence_input_by_list.append("ConfigureTable:" + UtilFuncs._teradata_collapse_arglist(self.configure_table_data_sequence_column, ""))
|
|
365
|
-
|
|
366
|
-
if len(sequence_input_by_list) > 0:
|
|
367
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
368
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
369
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
370
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
371
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
# Declare empty lists to hold input table information.
|
|
375
|
-
self.__func_input_arg_sql_names = []
|
|
376
|
-
self.__func_input_table_view_query = []
|
|
377
|
-
self.__func_input_dataframe_type = []
|
|
378
|
-
self.__func_input_distribution = []
|
|
379
|
-
self.__func_input_partition_by_cols = []
|
|
380
|
-
self.__func_input_order_by_cols = []
|
|
381
|
-
|
|
382
|
-
# Process newdata
|
|
383
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.newdata, False)
|
|
384
|
-
self.__func_input_distribution.append("FACT")
|
|
385
|
-
self.__func_input_arg_sql_names.append("input")
|
|
386
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
387
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
388
|
-
self.__func_input_partition_by_cols.append("ANY")
|
|
389
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.newdata_order_column, "\""))
|
|
390
|
-
|
|
391
|
-
# Process configure_table_data
|
|
392
|
-
if self.configure_table_data is not None:
|
|
393
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.configure_table_data, False)
|
|
394
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
395
|
-
self.__func_input_arg_sql_names.append("ConfigureTable")
|
|
396
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
397
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
398
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
399
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.configure_table_data_order_column, "\""))
|
|
400
|
-
|
|
401
|
-
function_name = "NamedEntityFinder"
|
|
402
|
-
# Create instance to generate SQLMR.
|
|
403
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
404
|
-
self.__func_input_arg_sql_names,
|
|
405
|
-
self.__func_input_table_view_query,
|
|
406
|
-
self.__func_input_dataframe_type,
|
|
407
|
-
self.__func_input_distribution,
|
|
408
|
-
self.__func_input_partition_by_cols,
|
|
409
|
-
self.__func_input_order_by_cols,
|
|
410
|
-
self.__func_other_arg_sql_names,
|
|
411
|
-
self.__func_other_args,
|
|
412
|
-
self.__func_other_arg_json_datatypes,
|
|
413
|
-
self.__func_output_args_sql_names,
|
|
414
|
-
self.__func_output_args,
|
|
415
|
-
engine="ENGINE_ML")
|
|
416
|
-
# Invoke call to SQL-MR generation.
|
|
417
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
418
|
-
|
|
419
|
-
# Print SQL-MR query if requested to do so.
|
|
420
|
-
if display.print_sqlmr_query:
|
|
421
|
-
print(self.sqlmr_query)
|
|
422
|
-
|
|
423
|
-
# Set the algorithm name for Model Cataloging.
|
|
424
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
425
|
-
|
|
426
|
-
def __execute(self):
|
|
427
|
-
"""
|
|
428
|
-
Function to execute SQL-MR queries.
|
|
429
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
430
|
-
"""
|
|
431
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
432
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
433
|
-
try:
|
|
434
|
-
# Generate the output.
|
|
435
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
436
|
-
except Exception as emsg:
|
|
437
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
438
|
-
|
|
439
|
-
# Update output table data frames.
|
|
440
|
-
self._mlresults = []
|
|
441
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
442
|
-
self._mlresults.append(self.result)
|
|
443
|
-
|
|
444
|
-
def show_query(self):
|
|
445
|
-
"""
|
|
446
|
-
Function to return the underlying SQL query.
|
|
447
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
448
|
-
"""
|
|
449
|
-
return self.sqlmr_query
|
|
450
|
-
|
|
451
|
-
def get_prediction_type(self):
|
|
452
|
-
"""
|
|
453
|
-
Function to return the Prediction type of the algorithm.
|
|
454
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
455
|
-
as saved in the Model Catalog.
|
|
456
|
-
"""
|
|
457
|
-
return self._prediction_type
|
|
458
|
-
|
|
459
|
-
def get_target_column(self):
|
|
460
|
-
"""
|
|
461
|
-
Function to return the Target Column of the algorithm.
|
|
462
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
463
|
-
as saved in the Model Catalog.
|
|
464
|
-
"""
|
|
465
|
-
return self._target_column
|
|
466
|
-
|
|
467
|
-
def get_build_time(self):
|
|
468
|
-
"""
|
|
469
|
-
Function to return the build time of the algorithm in seconds.
|
|
470
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
471
|
-
as saved in the Model Catalog.
|
|
472
|
-
"""
|
|
473
|
-
return self._build_time
|
|
474
|
-
|
|
475
|
-
def _get_algorithm_name(self):
|
|
476
|
-
"""
|
|
477
|
-
Function to return the name of the algorithm.
|
|
478
|
-
"""
|
|
479
|
-
return self._algorithm_name
|
|
480
|
-
|
|
481
|
-
def _get_sql_specific_attributes(self):
|
|
482
|
-
"""
|
|
483
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
484
|
-
"""
|
|
485
|
-
return self._sql_specific_attributes
|
|
486
|
-
|
|
487
|
-
@classmethod
|
|
488
|
-
def _from_model_catalog(cls,
|
|
489
|
-
result = None,
|
|
490
|
-
**kwargs):
|
|
491
|
-
"""
|
|
492
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
493
|
-
"""
|
|
494
|
-
kwargs.pop("result", None)
|
|
495
|
-
|
|
496
|
-
# Model Cataloging related attributes.
|
|
497
|
-
target_column = kwargs.pop("__target_column", None)
|
|
498
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
499
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
500
|
-
build_time = kwargs.pop("__build_time", None)
|
|
501
|
-
|
|
502
|
-
# Let's create an object of this class.
|
|
503
|
-
obj = cls(**kwargs)
|
|
504
|
-
obj.result = result
|
|
505
|
-
|
|
506
|
-
# Initialize the sqlmr_query class attribute.
|
|
507
|
-
obj.sqlmr_query = None
|
|
508
|
-
|
|
509
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
510
|
-
obj._sql_specific_attributes = None
|
|
511
|
-
obj._target_column = target_column
|
|
512
|
-
obj._prediction_type = prediction_type
|
|
513
|
-
obj._algorithm_name = algorithm_name
|
|
514
|
-
obj._build_time = build_time
|
|
515
|
-
|
|
516
|
-
# Update output table data frames.
|
|
517
|
-
obj._mlresults = []
|
|
518
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
519
|
-
obj._mlresults.append(obj.result)
|
|
520
|
-
return obj
|
|
521
|
-
|
|
522
|
-
def __repr__(self):
|
|
523
|
-
"""
|
|
524
|
-
Returns the string representation for a NamedEntityFinder class instance.
|
|
525
|
-
"""
|
|
526
|
-
repr_string="############ STDOUT Output ############"
|
|
527
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
528
|
-
return repr_string
|
|
529
|
-
|