teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,529 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.6
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class NamedEntityFinder:
31
-
32
- def __init__(self,
33
- newdata = None,
34
- configure_table_data = None,
35
- text_column = None,
36
- model = None,
37
- show_entity_context = 0,
38
- entity_column = "entity",
39
- accumulate = None,
40
- newdata_sequence_column = None,
41
- configure_table_data_sequence_column = None,
42
- newdata_order_column = None,
43
- configure_table_data_order_column = None):
44
- """
45
- DESCRIPTION:
46
- The NamedEntityFinder function evaluates the input text, identifies
47
- tokens based on the specified model, and outputs the tokens with
48
- detailed information. The function does not identify sentences; it
49
- simply tokenizes. Token identification is not case-sensitive.
50
-
51
- PARAMETERS:
52
- newdata:
53
- Required Argument.
54
- Specifies the input teradataml DataFrame containing the column
55
- with the text to find Named Entities.
56
-
57
- newdata_order_column:
58
- Optional Argument.
59
- Specifies Order By columns for newdata.
60
- Values to this argument can be provided as a list, if multiple
61
- columns are used for ordering.
62
- Types: str OR list of Strings (str)
63
-
64
- configure_table_data:
65
- Optional Argument.
66
- Specifies the teradataml DataFrame containing the configuration
67
- data.
68
-
69
- configure_table_data_order_column:
70
- Optional Argument.
71
- Specifies Order By columns for configure_table_data.
72
- Values to this argument can be provided as a list, if multiple
73
- columns are used for ordering.
74
- Types: str OR list of Strings (str)
75
-
76
- text_column:
77
- Required Argument.
78
- Specifies the name of the input teradataml DataFrame column
79
- that contains the text to analyze.
80
- Types: str
81
-
82
- model:
83
- Optional Argument.
84
- Specifies the model items to load.
85
- Optional if you specify configure_table_data; required otherwise
86
- (and you cannot specify "all").
87
- If you specify both configure_table_data and this argument,
88
- then the function loads the specified model items from
89
- configure_table_data.
90
- If you specify configure_table_data but omit this argument,
91
- the default value of this argument is "all" (every model item
92
- from configure_table_data).
93
- The entity_type is the name of an entity type (for example, PERSON,
94
- LOCATION, or EMAIL), which appears in the output table.
95
- The model_type is one of these model types:
96
- • max entropy: Maximum entropy language model generated by
97
- training;
98
- • rule: Rule-based model, a plain text file with one regular
99
- expression on each line;
100
- • dictionary: Dictionary-based model, a plain text file with
101
- one word on each line;
102
- • reg exp: Regular expression that describes entity_type.
103
- If model_type is "reg exp", specify regular_expression (a regular
104
- expression that describes entity_type); otherwise, specify
105
- model_file (the name of the model file).
106
- If you specify configure_table_data, you can use entity_type as a
107
- shortcut. For example, if the configure_table_data has the row
108
- "organization, max entropy, en-ner-organization.bin", you can specify
109
- Model("organization") as a shortcut for Model("organization:max
110
- entropy:en-nerorganization.bin").
111
- Note:
112
- For model_type "max entropy", if you specify configuration_file
113
- and omit this argument, then the Java virtual machine (JVM)
114
- of the worker node needs more than 2GB of memory.
115
- Types: str
116
-
117
- show_entity_context:
118
- Optional Argument.
119
- Specifies the number of context words to output. If the number
120
- of context words is n (which must be a positive integer), the
121
- function outputs n words that precede the entity, the entity
122
- itself, and n words that follow the entity.
123
- Default Value: 0
124
- Types: int
125
-
126
- entity_column:
127
- Optional Argument.
128
- Specifies the name of the output teradataml DataFrame column that
129
- contains the entity names.
130
- Default Value: "entity"
131
- Types: str
132
-
133
- accumulate:
134
- Optional Argument.
135
- Specifies the names of input teradataml DataFrame columns to
136
- copy to the output teradataml DataFrame. No accumulate_column
137
- can be an entity_column. By default, the function copies all
138
- input teradataml DataFrame columns to the output teradataml
139
- DataFrame.
140
- Types: str OR list of Strings (str)
141
-
142
- newdata_sequence_column:
143
- Optional Argument.
144
- Specifies the list of column(s) that uniquely identifies each row of
145
- the input argument "newdata". The argument is used to ensure
146
- deterministic results for functions which produce results that vary
147
- from run to run.
148
- Types: str OR list of Strings (str)
149
-
150
- configure_table_data_sequence_column:
151
- Optional Argument.
152
- Specifies the list of column(s) that uniquely identifies each row of
153
- the input argument "configure_table_data". The argument is used to
154
- ensure deterministic results for functions which produce results that
155
- vary from run to run.
156
- Types: str OR list of Strings (str)
157
-
158
- RETURNS:
159
- Instance of NamedEntityFinder.
160
- Output teradataml DataFrames can be accessed using attribute
161
- references, such as NamedEntityFinderObj.<attribute_name>.
162
- Output teradataml DataFrame attribute name is:
163
- result
164
-
165
-
166
- RAISES:
167
- TeradataMlException
168
-
169
-
170
- EXAMPLES:
171
- # Load example data.
172
- load_example_data("namedentityfinder", ['assortedtext_input', 'name_Find_configure'])
173
-
174
- # Provided example tables are 'assortedtext_input' and 'nameFind_configure'.
175
- # 'assortedtext_input' table contains the text 'content' which is analysed to get
176
- # Named Entities. 'nameFind_configure' is the configuration table which contain
177
- # the columns 'model_name', 'model_type' and 'model_file'.
178
-
179
- # Create teradataml DataFrame objects.
180
- nameFind_configure = DataFrame.from_table("name_Find_configure")
181
- assortedtext_input = DataFrame.from_table("assortedtext_input")
182
-
183
- # Example 1: Find entities using a configuration table containing model items.
184
- NamedEntityFinder_out = NamedEntityFinder(newdata = assortedtext_input,
185
- configure_table_data = nameFind_configure,
186
- text_column = 'content',
187
- accumulate = ['id', 'source'],
188
- entity_column = 'entity',
189
- model = 'all',
190
- show_entity_context = 0,
191
- newdata_sequence_column = 'id',
192
- configure_table_data_sequence_column=
193
- 'model_file')
194
- # Print the results
195
- print(NamedEntityFinder_out.result)
196
-
197
- # Example 2: Use a custom trained model to find the entities.
198
-
199
- # Load example data.
200
- load_example_data('namedentityfindertrainer', 'nermem_sports_train')
201
-
202
- # Create teradataml DataFrame object
203
- nermem_sports_train = DataFrame.from_table('nermem_sports_train')
204
-
205
- # Training NamedEntityFinder model on entity type "LOCATION"
206
- NamedEntityFinderTrainer_out = NamedEntityFinderTrainer(data = nermem_sports_train,
207
- text_column = 'content',
208
- entity_type = 'LOCATION',
209
- model = 'location.sports')
210
- # The trained model is stored in 'location.sports'
211
-
212
- # Select a subset of the train dataset to use as "newdata" in NamedEntityFinder.
213
- nermem_sports_test = nermem_sports_train[nermem_sports_train.id < 20]
214
-
215
- # Finding entities using custom trained model
216
- NamedEntityFinder_out1 = NamedEntityFinder(newdata = nermem_sports_test,
217
- text_column = 'content',
218
- model = "LOCATION:max entropy:location.sports")
219
- # Print the results
220
- print(NamedEntityFinder_out1.result)
221
-
222
- """
223
-
224
- # Start the timer to get the build time
225
- _start_time = time.time()
226
-
227
- self.newdata = newdata
228
- self.configure_table_data = configure_table_data
229
- self.text_column = text_column
230
- self.model = model
231
- self.show_entity_context = show_entity_context
232
- self.entity_column = entity_column
233
- self.accumulate = accumulate
234
- self.newdata_sequence_column = newdata_sequence_column
235
- self.configure_table_data_sequence_column = configure_table_data_sequence_column
236
- self.newdata_order_column = newdata_order_column
237
- self.configure_table_data_order_column = configure_table_data_order_column
238
-
239
- # Create TeradataPyWrapperUtils instance which contains validation functions.
240
- self.__awu = AnalyticsWrapperUtils()
241
- self.__aed_utils = AedUtils()
242
-
243
- # Create argument information matrix to do parameter checking
244
- self.__arg_info_matrix = []
245
- self.__arg_info_matrix.append(["newdata", self.newdata, False, (DataFrame)])
246
- self.__arg_info_matrix.append(["newdata_order_column", self.newdata_order_column, True, (str,list)])
247
- self.__arg_info_matrix.append(["configure_table_data", self.configure_table_data, True, (DataFrame)])
248
- self.__arg_info_matrix.append(["configure_table_data_order_column", self.configure_table_data_order_column, True, (str,list)])
249
- self.__arg_info_matrix.append(["text_column", self.text_column, False, (str)])
250
- self.__arg_info_matrix.append(["model", self.model, self.configure_table_data is not None, (str,list)])
251
- self.__arg_info_matrix.append(["show_entity_context", self.show_entity_context, True, (int)])
252
- self.__arg_info_matrix.append(["entity_column", self.entity_column, True, (str)])
253
- self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
254
- self.__arg_info_matrix.append(["newdata_sequence_column", self.newdata_sequence_column, True, (str,list)])
255
- self.__arg_info_matrix.append(["configure_table_data_sequence_column", self.configure_table_data_sequence_column, True, (str,list)])
256
-
257
- if inspect.stack()[1][3] != '_from_model_catalog':
258
- # Perform the function validations
259
- self.__validate()
260
- # Generate the ML query
261
- self.__form_tdml_query()
262
- # Execute ML query
263
- self.__execute()
264
- # Get the prediction type
265
- self._prediction_type = self.__awu._get_function_prediction_type(self)
266
-
267
- # End the timer to get the build time
268
- _end_time = time.time()
269
-
270
- # Calculate the build time
271
- self._build_time = (int)(_end_time - _start_time)
272
-
273
- def __validate(self):
274
- """
275
- Function to validate sqlmr function arguments, which verifies missing
276
- arguments, input argument and table types. Also processes the
277
- argument values.
278
- """
279
-
280
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
281
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
282
-
283
- # Make sure that a non-NULL value has been supplied correct type of argument
284
- self.__awu._validate_argument_types(self.__arg_info_matrix)
285
-
286
- # Check to make sure input table types are strings or data frame objects or of valid type.
287
- self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
288
- self.__awu._validate_input_table_datatype(self.configure_table_data, "configure_table_data", None)
289
-
290
- # Check whether the input columns passed to the argument are not empty.
291
- # Also check whether the input columns passed to the argument valid or not.
292
- self.__awu._validate_input_columns_not_empty(self.text_column, "text_column")
293
- self.__awu._validate_dataframe_has_argument_columns(self.text_column, "text_column", self.newdata, "newdata", False)
294
-
295
- self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
296
- self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.newdata, "newdata", False)
297
-
298
- self.__awu._validate_input_columns_not_empty(self.newdata_sequence_column, "newdata_sequence_column")
299
- self.__awu._validate_dataframe_has_argument_columns(self.newdata_sequence_column, "newdata_sequence_column", self.newdata, "newdata", False)
300
-
301
- self.__awu._validate_input_columns_not_empty(self.configure_table_data_sequence_column, "configure_table_data_sequence_column")
302
- self.__awu._validate_dataframe_has_argument_columns(self.configure_table_data_sequence_column, "configure_table_data_sequence_column", self.configure_table_data, "configure_table_data", False)
303
-
304
- self.__awu._validate_input_columns_not_empty(self.newdata_order_column, "newdata_order_column")
305
- self.__awu._validate_dataframe_has_argument_columns(self.newdata_order_column, "newdata_order_column", self.newdata, "newdata", False)
306
-
307
- self.__awu._validate_input_columns_not_empty(self.configure_table_data_order_column, "configure_table_data_order_column")
308
- self.__awu._validate_dataframe_has_argument_columns(self.configure_table_data_order_column, "configure_table_data_order_column", self.configure_table_data, "configure_table_data", False)
309
-
310
- # Validate that value passed to the output column argument is not empty.
311
- self.__awu._validate_input_columns_not_empty(self.entity_column, "entity_column")
312
-
313
- def __form_tdml_query(self):
314
- """
315
- Function to generate the analytical function queries. The function defines
316
- variables and list of arguments required to form the query.
317
- """
318
-
319
- # Output table arguments list
320
- self.__func_output_args_sql_names = []
321
- self.__func_output_args = []
322
-
323
- # Model Cataloging related attributes.
324
- self._sql_specific_attributes = {}
325
- self._sql_formula_attribute_mapper = {}
326
- self._target_column = None
327
- self._algorithm_name = None
328
-
329
- # Generate lists for rest of the function arguments
330
- self.__func_other_arg_sql_names = []
331
- self.__func_other_args = []
332
- self.__func_other_arg_json_datatypes = []
333
-
334
- self.__func_other_arg_sql_names.append("TextColumn")
335
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.text_column, "'"))
336
- self.__func_other_arg_json_datatypes.append("COLUMNS")
337
-
338
- if self.accumulate is not None:
339
- self.__func_other_arg_sql_names.append("Accumulate")
340
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
341
- self.__func_other_arg_json_datatypes.append("COLUMNS")
342
-
343
- if self.model is not None:
344
- self.__func_other_arg_sql_names.append("Model")
345
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.model, "'"))
346
- self.__func_other_arg_json_datatypes.append("STRING")
347
-
348
- if self.show_entity_context is not None and self.show_entity_context != 0:
349
- self.__func_other_arg_sql_names.append("ShowEntityContext")
350
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.show_entity_context, "'"))
351
- self.__func_other_arg_json_datatypes.append("INTEGER")
352
-
353
- if self.entity_column is not None and self.entity_column != "entity":
354
- self.__func_other_arg_sql_names.append("EntityColumn")
355
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.entity_column, "'"))
356
- self.__func_other_arg_json_datatypes.append("STRING")
357
-
358
- # Generate lists for rest of the function arguments
359
- sequence_input_by_list = []
360
- if self.newdata_sequence_column is not None:
361
- sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.newdata_sequence_column, ""))
362
-
363
- if self.configure_table_data_sequence_column is not None:
364
- sequence_input_by_list.append("ConfigureTable:" + UtilFuncs._teradata_collapse_arglist(self.configure_table_data_sequence_column, ""))
365
-
366
- if len(sequence_input_by_list) > 0:
367
- self.__func_other_arg_sql_names.append("SequenceInputBy")
368
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
369
- self.__func_other_args.append(sequence_input_by_arg_value)
370
- self.__func_other_arg_json_datatypes.append("STRING")
371
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
372
-
373
-
374
- # Declare empty lists to hold input table information.
375
- self.__func_input_arg_sql_names = []
376
- self.__func_input_table_view_query = []
377
- self.__func_input_dataframe_type = []
378
- self.__func_input_distribution = []
379
- self.__func_input_partition_by_cols = []
380
- self.__func_input_order_by_cols = []
381
-
382
- # Process newdata
383
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.newdata, False)
384
- self.__func_input_distribution.append("FACT")
385
- self.__func_input_arg_sql_names.append("input")
386
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
387
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
388
- self.__func_input_partition_by_cols.append("ANY")
389
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.newdata_order_column, "\""))
390
-
391
- # Process configure_table_data
392
- if self.configure_table_data is not None:
393
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.configure_table_data, False)
394
- self.__func_input_distribution.append("DIMENSION")
395
- self.__func_input_arg_sql_names.append("ConfigureTable")
396
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
397
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
398
- self.__func_input_partition_by_cols.append("NA_character_")
399
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.configure_table_data_order_column, "\""))
400
-
401
- function_name = "NamedEntityFinder"
402
- # Create instance to generate SQLMR.
403
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
404
- self.__func_input_arg_sql_names,
405
- self.__func_input_table_view_query,
406
- self.__func_input_dataframe_type,
407
- self.__func_input_distribution,
408
- self.__func_input_partition_by_cols,
409
- self.__func_input_order_by_cols,
410
- self.__func_other_arg_sql_names,
411
- self.__func_other_args,
412
- self.__func_other_arg_json_datatypes,
413
- self.__func_output_args_sql_names,
414
- self.__func_output_args,
415
- engine="ENGINE_ML")
416
- # Invoke call to SQL-MR generation.
417
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
418
-
419
- # Print SQL-MR query if requested to do so.
420
- if display.print_sqlmr_query:
421
- print(self.sqlmr_query)
422
-
423
- # Set the algorithm name for Model Cataloging.
424
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
425
-
426
- def __execute(self):
427
- """
428
- Function to execute SQL-MR queries.
429
- Create DataFrames for the required SQL-MR outputs.
430
- """
431
- # Generate STDOUT table name and add it to the output table list.
432
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
433
- try:
434
- # Generate the output.
435
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
436
- except Exception as emsg:
437
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
438
-
439
- # Update output table data frames.
440
- self._mlresults = []
441
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
442
- self._mlresults.append(self.result)
443
-
444
- def show_query(self):
445
- """
446
- Function to return the underlying SQL query.
447
- When model object is created using retrieve_model(), then None is returned.
448
- """
449
- return self.sqlmr_query
450
-
451
- def get_prediction_type(self):
452
- """
453
- Function to return the Prediction type of the algorithm.
454
- When model object is created using retrieve_model(), then the value returned is
455
- as saved in the Model Catalog.
456
- """
457
- return self._prediction_type
458
-
459
- def get_target_column(self):
460
- """
461
- Function to return the Target Column of the algorithm.
462
- When model object is created using retrieve_model(), then the value returned is
463
- as saved in the Model Catalog.
464
- """
465
- return self._target_column
466
-
467
- def get_build_time(self):
468
- """
469
- Function to return the build time of the algorithm in seconds.
470
- When model object is created using retrieve_model(), then the value returned is
471
- as saved in the Model Catalog.
472
- """
473
- return self._build_time
474
-
475
- def _get_algorithm_name(self):
476
- """
477
- Function to return the name of the algorithm.
478
- """
479
- return self._algorithm_name
480
-
481
- def _get_sql_specific_attributes(self):
482
- """
483
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
484
- """
485
- return self._sql_specific_attributes
486
-
487
- @classmethod
488
- def _from_model_catalog(cls,
489
- result = None,
490
- **kwargs):
491
- """
492
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
493
- """
494
- kwargs.pop("result", None)
495
-
496
- # Model Cataloging related attributes.
497
- target_column = kwargs.pop("__target_column", None)
498
- prediction_type = kwargs.pop("__prediction_type", None)
499
- algorithm_name = kwargs.pop("__algorithm_name", None)
500
- build_time = kwargs.pop("__build_time", None)
501
-
502
- # Let's create an object of this class.
503
- obj = cls(**kwargs)
504
- obj.result = result
505
-
506
- # Initialize the sqlmr_query class attribute.
507
- obj.sqlmr_query = None
508
-
509
- # Initialize the SQL specific Model Cataloging attributes.
510
- obj._sql_specific_attributes = None
511
- obj._target_column = target_column
512
- obj._prediction_type = prediction_type
513
- obj._algorithm_name = algorithm_name
514
- obj._build_time = build_time
515
-
516
- # Update output table data frames.
517
- obj._mlresults = []
518
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
519
- obj._mlresults.append(obj.result)
520
- return obj
521
-
522
- def __repr__(self):
523
- """
524
- Returns the string representation for a NamedEntityFinder class instance.
525
- """
526
- repr_string="############ STDOUT Output ############"
527
- repr_string = "{}\n\n{}".format(repr_string,self.result)
528
- return repr_string
529
-