teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,587 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2019 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Rohit Khurd (rohit.khurd@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.8
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class Modularity:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
vertices_data = None,
|
|
34
|
-
edges_data = None,
|
|
35
|
-
sources_data = None,
|
|
36
|
-
target_key = None,
|
|
37
|
-
edge_weight = None,
|
|
38
|
-
community_association = None,
|
|
39
|
-
resolution = 1.0,
|
|
40
|
-
seed = 1,
|
|
41
|
-
accumulate = None,
|
|
42
|
-
vertices_data_sequence_column = None,
|
|
43
|
-
edges_data_sequence_column = None,
|
|
44
|
-
sources_data_sequence_column = None,
|
|
45
|
-
vertices_data_partition_column = None,
|
|
46
|
-
edges_data_partition_column = None,
|
|
47
|
-
sources_data_partition_column = None):
|
|
48
|
-
"""
|
|
49
|
-
DESCRIPTION:
|
|
50
|
-
The Modularity function uses a clustering algorithm to detect
|
|
51
|
-
communities in networks (graphs). The function needs no prior knowledge or
|
|
52
|
-
estimation of starting cluster centers and assumes no particular data distribution of the
|
|
53
|
-
input data set.
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
PARAMETERS:
|
|
57
|
-
vertices_data:
|
|
58
|
-
Required Argument.
|
|
59
|
-
Specifies vertex teradataml DataFrame where each row represents a vertex of the graph.
|
|
60
|
-
|
|
61
|
-
vertices_data_partition_column:
|
|
62
|
-
Required Argument.
|
|
63
|
-
Specifies Partition By columns for vertices_data.
|
|
64
|
-
Values to this argument can be provided as a list, if multiple columns
|
|
65
|
-
are used for partition.
|
|
66
|
-
Types: str OR list of Strings (str)
|
|
67
|
-
|
|
68
|
-
edges_data:
|
|
69
|
-
Required Argument.
|
|
70
|
-
Specifies edge teradataml DataFrame where each row represents an edge of the graph.
|
|
71
|
-
|
|
72
|
-
edges_data_partition_column:
|
|
73
|
-
Required Argument.
|
|
74
|
-
Specifies Partition By columns for edges_data.
|
|
75
|
-
Values to this argument can be provided as a list, if multiple columns
|
|
76
|
-
are used for partition.
|
|
77
|
-
Types: str OR list of Strings (str)
|
|
78
|
-
|
|
79
|
-
sources_data:
|
|
80
|
-
Optional Argument.
|
|
81
|
-
Specifies source vertices teradataml DataFrame, required for directed graph.
|
|
82
|
-
Function ignores this teradataml DataFrame and treats all graphs as undirected.
|
|
83
|
-
|
|
84
|
-
sources_data_partition_column:
|
|
85
|
-
Optional Argument. Required when 'sources_data' argument is specified.
|
|
86
|
-
Specifies Partition By columns for sources_data.
|
|
87
|
-
Values to this argument can be provided as a list, if multiple columns
|
|
88
|
-
are used for partition.
|
|
89
|
-
Types: str OR list of Strings (str)
|
|
90
|
-
|
|
91
|
-
target_key:
|
|
92
|
-
Required Argument.
|
|
93
|
-
Specifies the key of the target vertex of an edge. The key consists
|
|
94
|
-
of the names of one or more edges teradataml DataFrame columns.
|
|
95
|
-
Types: str OR list of Strings (str)
|
|
96
|
-
|
|
97
|
-
edge_weight:
|
|
98
|
-
Optional Argument.
|
|
99
|
-
Specifies the name of the edges teradataml DataFrame column that
|
|
100
|
-
contains edge weights. The weights are positive values. By default,
|
|
101
|
-
the weight of each edge is 1 (that is, the graph is unweighted). This
|
|
102
|
-
argument determines how the function treats duplicate edges (that is,
|
|
103
|
-
edges with the same source and destination, which might have
|
|
104
|
-
different weights). For a weighted graph, the function treats
|
|
105
|
-
duplicate edges as a single edge whose weight is the sum of the
|
|
106
|
-
weights of the duplicate edges. For an unweighted graph, the function
|
|
107
|
-
uses only one of the duplicate edges.
|
|
108
|
-
Types: str
|
|
109
|
-
|
|
110
|
-
community_association:
|
|
111
|
-
Optional Argument.
|
|
112
|
-
Specifies the name of the column that represents the community
|
|
113
|
-
association of the vertices. Use this argument if you already know
|
|
114
|
-
some vertex communities.
|
|
115
|
-
Types: str
|
|
116
|
-
|
|
117
|
-
resolution:
|
|
118
|
-
Optional Argument.
|
|
119
|
-
Specifies hierarchical-level information for the communities. If you
|
|
120
|
-
specify a list of resolution values, the function incrementally finds
|
|
121
|
-
the communities for each value and for the default value. Each resolution
|
|
122
|
-
must be a distinct float value in the range [0.0, 1000000.0]. The value 0.0
|
|
123
|
-
puts each node in its own community of size 1. You can specify a maximum of 500
|
|
124
|
-
resolution values. To get the modularity of more than 500 resolution
|
|
125
|
-
points, call the function multiple times, specifying different values
|
|
126
|
-
in each call.
|
|
127
|
-
Default Value: 1.0
|
|
128
|
-
Types: float OR list of floats
|
|
129
|
-
|
|
130
|
-
seed:
|
|
131
|
-
Optional Argument.
|
|
132
|
-
Specifies the seed to use to create a random number during modularity
|
|
133
|
-
computation. The seed must be a positive BIGINT value. The function
|
|
134
|
-
multiplies seed by the hash code of vertex_key to generate a unique
|
|
135
|
-
seed for each vertex. The seed significantly impacts community formation
|
|
136
|
-
(and modularity score), because the function uses seed for these purposes:
|
|
137
|
-
• To break ties between different vertices during community formation.
|
|
138
|
-
• To determine how deeply to analyze the graph. Deeper analysis of the graph
|
|
139
|
-
can improve community formation, but can also increase execution time.
|
|
140
|
-
Default Value: 1
|
|
141
|
-
Types: int
|
|
142
|
-
|
|
143
|
-
accumulate:
|
|
144
|
-
Optional Argument.
|
|
145
|
-
Specifies the names of the vertices columns to copy to the community
|
|
146
|
-
vertex teradataml DataFrame. By default, the function copies the vertex_key
|
|
147
|
-
columns to the output vertex teradataml DataFrame for each vertex, changing
|
|
148
|
-
the column names to id, id_1, id_2, and so on.
|
|
149
|
-
Types: str OR list of Strings (str)
|
|
150
|
-
|
|
151
|
-
vertices_data_sequence_column:
|
|
152
|
-
Optional Argument.
|
|
153
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
154
|
-
the input argument "vertices_data". The argument is used to ensure
|
|
155
|
-
deterministic results for functions which produce results that vary
|
|
156
|
-
from run to run.
|
|
157
|
-
Types: str OR list of Strings (str)
|
|
158
|
-
|
|
159
|
-
edges_data_sequence_column:
|
|
160
|
-
Optional Argument.
|
|
161
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
162
|
-
the input argument "edges_data". The argument is used to ensure
|
|
163
|
-
deterministic results for functions which produce results that vary
|
|
164
|
-
from run to run.
|
|
165
|
-
Types: str OR list of Strings (str)
|
|
166
|
-
|
|
167
|
-
sources_data_sequence_column:
|
|
168
|
-
Optional Argument.
|
|
169
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
170
|
-
the input argument "sources_data". The argument is used to ensure
|
|
171
|
-
deterministic results for functions which produce results that vary
|
|
172
|
-
from run to run.
|
|
173
|
-
Types: str OR list of Strings (str)
|
|
174
|
-
|
|
175
|
-
RETURNS:
|
|
176
|
-
Instance of Modularity.
|
|
177
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
178
|
-
references, such as ModularityObj.<attribute_name>.
|
|
179
|
-
Output teradataml DataFrame attribute names are:
|
|
180
|
-
1. community_edge_data
|
|
181
|
-
2. output
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
RAISES:
|
|
185
|
-
TeradataMlException
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
EXAMPLES:
|
|
189
|
-
# Load example data.
|
|
190
|
-
# The examples use a graph in which nodes represent persons who are geographically distributed
|
|
191
|
-
# across the United States and are connected on an online social network, where they follow each other.
|
|
192
|
-
# The directed edges start at the follower and end at the leader.
|
|
193
|
-
load_example_data("modularity", ["friends", "followers_leaders"])
|
|
194
|
-
|
|
195
|
-
# Create teradataml DataFrame objects.
|
|
196
|
-
friends = DataFrame.from_table("friends")
|
|
197
|
-
followers_leaders = DataFrame.from_table("followers_leaders")
|
|
198
|
-
|
|
199
|
-
# Example 1 - Unweighted Edges.
|
|
200
|
-
# Followers follow leaders with equal intensity (all edges have default weight 1).
|
|
201
|
-
Modularity_out1 = Modularity(vertices_data = friends,
|
|
202
|
-
vertices_data_partition_column = ["friends_name"],
|
|
203
|
-
edges_data = followers_leaders,
|
|
204
|
-
edges_data_partition_column = ["follower"],
|
|
205
|
-
target_key = ["leader"],
|
|
206
|
-
community_association = "group_id",
|
|
207
|
-
accumulate = ["friends_name","location"]
|
|
208
|
-
)
|
|
209
|
-
# Print the results
|
|
210
|
-
print(Modularity_out1)
|
|
211
|
-
|
|
212
|
-
# Example 2 - Weighted Edges and Community Edge Table.
|
|
213
|
-
# Followers follow leaders with different intensity.
|
|
214
|
-
Modularity_out2 = Modularity(vertices_data = friends,
|
|
215
|
-
vertices_data_partition_column = ["friends_name"],
|
|
216
|
-
edges_data = followers_leaders,
|
|
217
|
-
edges_data_partition_column = ["follower"],
|
|
218
|
-
target_key = ["leader"],
|
|
219
|
-
edge_weight = "intensity",
|
|
220
|
-
community_association = "group_id",
|
|
221
|
-
accumulate = ["friends_name","location"]
|
|
222
|
-
)
|
|
223
|
-
# Print the results
|
|
224
|
-
print(Modularity_out2)
|
|
225
|
-
|
|
226
|
-
"""
|
|
227
|
-
|
|
228
|
-
# Start the timer to get the build time
|
|
229
|
-
_start_time = time.time()
|
|
230
|
-
|
|
231
|
-
self.vertices_data = vertices_data
|
|
232
|
-
self.edges_data = edges_data
|
|
233
|
-
self.sources_data = sources_data
|
|
234
|
-
self.target_key = target_key
|
|
235
|
-
self.accumulate = accumulate
|
|
236
|
-
self.edge_weight = edge_weight
|
|
237
|
-
self.community_association = community_association
|
|
238
|
-
self.resolution = resolution
|
|
239
|
-
self.seed = seed
|
|
240
|
-
self.vertices_data_sequence_column = vertices_data_sequence_column
|
|
241
|
-
self.edges_data_sequence_column = edges_data_sequence_column
|
|
242
|
-
self.sources_data_sequence_column = sources_data_sequence_column
|
|
243
|
-
self.vertices_data_partition_column = vertices_data_partition_column
|
|
244
|
-
self.edges_data_partition_column = edges_data_partition_column
|
|
245
|
-
self.sources_data_partition_column = sources_data_partition_column
|
|
246
|
-
|
|
247
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
248
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
249
|
-
self.__aed_utils = AedUtils()
|
|
250
|
-
|
|
251
|
-
# Create argument information matrix to do parameter checking
|
|
252
|
-
self.__arg_info_matrix = []
|
|
253
|
-
self.__arg_info_matrix.append(["vertices_data", self.vertices_data, False, (DataFrame)])
|
|
254
|
-
self.__arg_info_matrix.append(["vertices_data_partition_column", self.vertices_data_partition_column, False, (str,list)])
|
|
255
|
-
self.__arg_info_matrix.append(["edges_data", self.edges_data, False, (DataFrame)])
|
|
256
|
-
self.__arg_info_matrix.append(["edges_data_partition_column", self.edges_data_partition_column, False, (str,list)])
|
|
257
|
-
self.__arg_info_matrix.append(["sources_data", self.sources_data, True, (DataFrame)])
|
|
258
|
-
self.__arg_info_matrix.append(["sources_data_partition_column", self.sources_data_partition_column, self.sources_data is None, (str,list)])
|
|
259
|
-
self.__arg_info_matrix.append(["target_key", self.target_key, False, (str,list)])
|
|
260
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
|
|
261
|
-
self.__arg_info_matrix.append(["edge_weight", self.edge_weight, True, (str)])
|
|
262
|
-
self.__arg_info_matrix.append(["community_association", self.community_association, True, (str)])
|
|
263
|
-
self.__arg_info_matrix.append(["resolution", self.resolution, True, (float,list)])
|
|
264
|
-
self.__arg_info_matrix.append(["seed", self.seed, True, (int)])
|
|
265
|
-
self.__arg_info_matrix.append(["vertices_data_sequence_column", self.vertices_data_sequence_column, True, (str,list)])
|
|
266
|
-
self.__arg_info_matrix.append(["edges_data_sequence_column", self.edges_data_sequence_column, True, (str,list)])
|
|
267
|
-
self.__arg_info_matrix.append(["sources_data_sequence_column", self.sources_data_sequence_column, True, (str,list)])
|
|
268
|
-
|
|
269
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
270
|
-
# Perform the function validations
|
|
271
|
-
self.__validate()
|
|
272
|
-
# Generate the ML query
|
|
273
|
-
self.__form_tdml_query()
|
|
274
|
-
# Execute ML query
|
|
275
|
-
self.__execute()
|
|
276
|
-
# Get the prediction type
|
|
277
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
278
|
-
|
|
279
|
-
# End the timer to get the build time
|
|
280
|
-
_end_time = time.time()
|
|
281
|
-
|
|
282
|
-
# Calculate the build time
|
|
283
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
284
|
-
|
|
285
|
-
def __validate(self):
|
|
286
|
-
"""
|
|
287
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
288
|
-
arguments, input argument and table types. Also processes the
|
|
289
|
-
argument values.
|
|
290
|
-
"""
|
|
291
|
-
|
|
292
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
293
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
294
|
-
|
|
295
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
296
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
297
|
-
|
|
298
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
299
|
-
self.__awu._validate_input_table_datatype(self.vertices_data, "vertices_data", None)
|
|
300
|
-
self.__awu._validate_input_table_datatype(self.edges_data, "edges_data", None)
|
|
301
|
-
self.__awu._validate_input_table_datatype(self.sources_data, "sources_data", None)
|
|
302
|
-
|
|
303
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
304
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
305
|
-
self.__awu._validate_input_columns_not_empty(self.target_key, "target_key")
|
|
306
|
-
self.__awu._validate_dataframe_has_argument_columns(self.target_key, "target_key", self.edges_data, "edges_data", False)
|
|
307
|
-
|
|
308
|
-
self.__awu._validate_input_columns_not_empty(self.community_association, "community_association")
|
|
309
|
-
self.__awu._validate_dataframe_has_argument_columns(self.community_association, "community_association", self.vertices_data, "vertices_data", False)
|
|
310
|
-
|
|
311
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
312
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.vertices_data, "vertices_data", False)
|
|
313
|
-
|
|
314
|
-
self.__awu._validate_input_columns_not_empty(self.edge_weight, "edge_weight")
|
|
315
|
-
self.__awu._validate_dataframe_has_argument_columns(self.edge_weight, "edge_weight", self.edges_data, "edges_data", False)
|
|
316
|
-
|
|
317
|
-
self.__awu._validate_input_columns_not_empty(self.vertices_data_sequence_column, "vertices_data_sequence_column")
|
|
318
|
-
self.__awu._validate_dataframe_has_argument_columns(self.vertices_data_sequence_column, "vertices_data_sequence_column", self.vertices_data, "vertices_data", False)
|
|
319
|
-
|
|
320
|
-
self.__awu._validate_input_columns_not_empty(self.edges_data_sequence_column, "edges_data_sequence_column")
|
|
321
|
-
self.__awu._validate_dataframe_has_argument_columns(self.edges_data_sequence_column, "edges_data_sequence_column", self.edges_data, "edges_data", False)
|
|
322
|
-
|
|
323
|
-
self.__awu._validate_input_columns_not_empty(self.sources_data_sequence_column, "sources_data_sequence_column")
|
|
324
|
-
self.__awu._validate_dataframe_has_argument_columns(self.sources_data_sequence_column, "sources_data_sequence_column", self.sources_data, "sources_data", False)
|
|
325
|
-
|
|
326
|
-
self.__awu._validate_input_columns_not_empty(self.vertices_data_partition_column, "vertices_data_partition_column")
|
|
327
|
-
self.__awu._validate_dataframe_has_argument_columns(self.vertices_data_partition_column, "vertices_data_partition_column", self.vertices_data, "vertices_data", True)
|
|
328
|
-
|
|
329
|
-
self.__awu._validate_input_columns_not_empty(self.edges_data_partition_column, "edges_data_partition_column")
|
|
330
|
-
self.__awu._validate_dataframe_has_argument_columns(self.edges_data_partition_column, "edges_data_partition_column", self.edges_data, "edges_data", True)
|
|
331
|
-
|
|
332
|
-
self.__awu._validate_input_columns_not_empty(self.sources_data_partition_column, "sources_data_partition_column")
|
|
333
|
-
self.__awu._validate_dataframe_has_argument_columns(self.sources_data_partition_column, "sources_data_partition_column", self.sources_data, "sources_data", True)
|
|
334
|
-
|
|
335
|
-
|
|
336
|
-
def __form_tdml_query(self):
|
|
337
|
-
"""
|
|
338
|
-
Function to generate the analytical function queries. The function defines
|
|
339
|
-
variables and list of arguments required to form the query.
|
|
340
|
-
"""
|
|
341
|
-
# Generate temp table names for output table parameters if any.
|
|
342
|
-
self.__community_edge_data_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_modularity0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
343
|
-
|
|
344
|
-
# Output table arguments list
|
|
345
|
-
self.__func_output_args_sql_names = ["CommunityEdgeTable"]
|
|
346
|
-
self.__func_output_args = [self.__community_edge_data_temp_tablename]
|
|
347
|
-
|
|
348
|
-
# Model Cataloging related attributes.
|
|
349
|
-
self._sql_specific_attributes = {}
|
|
350
|
-
self._sql_formula_attribute_mapper = {}
|
|
351
|
-
self._target_column = None
|
|
352
|
-
self._algorithm_name = None
|
|
353
|
-
|
|
354
|
-
# Generate lists for rest of the function arguments
|
|
355
|
-
self.__func_other_arg_sql_names = []
|
|
356
|
-
self.__func_other_args = []
|
|
357
|
-
self.__func_other_arg_json_datatypes = []
|
|
358
|
-
|
|
359
|
-
self.__func_other_arg_sql_names.append("TargetKey")
|
|
360
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.target_key, "\""), "'"))
|
|
361
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
362
|
-
|
|
363
|
-
if self.community_association is not None:
|
|
364
|
-
self.__func_other_arg_sql_names.append("CommunityAssociation")
|
|
365
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.community_association, "\""), "'"))
|
|
366
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
367
|
-
|
|
368
|
-
if self.accumulate is not None:
|
|
369
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
370
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
371
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
372
|
-
|
|
373
|
-
if self.edge_weight is not None:
|
|
374
|
-
self.__func_other_arg_sql_names.append("EdgeWeight")
|
|
375
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.edge_weight, "\""), "'"))
|
|
376
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
377
|
-
|
|
378
|
-
if self.resolution is not None and self.resolution != [1]:
|
|
379
|
-
self.__func_other_arg_sql_names.append("Resolution")
|
|
380
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.resolution, "'"))
|
|
381
|
-
self.__func_other_arg_json_datatypes.append("FLOAT")
|
|
382
|
-
|
|
383
|
-
if self.seed is not None and self.seed != 1:
|
|
384
|
-
self.__func_other_arg_sql_names.append("Seed")
|
|
385
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seed, "'"))
|
|
386
|
-
self.__func_other_arg_json_datatypes.append("LONG")
|
|
387
|
-
|
|
388
|
-
# Generate lists for rest of the function arguments
|
|
389
|
-
sequence_input_by_list = []
|
|
390
|
-
if self.vertices_data_sequence_column is not None:
|
|
391
|
-
sequence_input_by_list.append("vertices:" + UtilFuncs._teradata_collapse_arglist(self.vertices_data_sequence_column, ""))
|
|
392
|
-
|
|
393
|
-
if self.edges_data_sequence_column is not None:
|
|
394
|
-
sequence_input_by_list.append("edges:" + UtilFuncs._teradata_collapse_arglist(self.edges_data_sequence_column, ""))
|
|
395
|
-
|
|
396
|
-
if self.sources_data_sequence_column is not None:
|
|
397
|
-
sequence_input_by_list.append("sources:" + UtilFuncs._teradata_collapse_arglist(self.sources_data_sequence_column, ""))
|
|
398
|
-
|
|
399
|
-
if len(sequence_input_by_list) > 0:
|
|
400
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
401
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
402
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
403
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
404
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
405
|
-
|
|
406
|
-
|
|
407
|
-
# Declare empty lists to hold input table information.
|
|
408
|
-
self.__func_input_arg_sql_names = []
|
|
409
|
-
self.__func_input_table_view_query = []
|
|
410
|
-
self.__func_input_dataframe_type = []
|
|
411
|
-
self.__func_input_distribution = []
|
|
412
|
-
self.__func_input_partition_by_cols = []
|
|
413
|
-
self.__func_input_order_by_cols = []
|
|
414
|
-
|
|
415
|
-
# Process vertices_data
|
|
416
|
-
self.vertices_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.vertices_data_partition_column, "\"")
|
|
417
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.vertices_data, False)
|
|
418
|
-
self.__func_input_distribution.append("FACT")
|
|
419
|
-
self.__func_input_arg_sql_names.append("vertices")
|
|
420
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
421
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
422
|
-
self.__func_input_partition_by_cols.append(self.vertices_data_partition_column)
|
|
423
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
424
|
-
|
|
425
|
-
# Process edges_data
|
|
426
|
-
self.edges_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.edges_data_partition_column, "\"")
|
|
427
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.edges_data, False)
|
|
428
|
-
self.__func_input_distribution.append("FACT")
|
|
429
|
-
self.__func_input_arg_sql_names.append("edges")
|
|
430
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
431
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
432
|
-
self.__func_input_partition_by_cols.append(self.edges_data_partition_column)
|
|
433
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
434
|
-
|
|
435
|
-
# Process sources_data
|
|
436
|
-
self.sources_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.sources_data_partition_column, "\"")
|
|
437
|
-
if self.sources_data is not None:
|
|
438
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.sources_data, False)
|
|
439
|
-
self.__func_input_distribution.append("FACT")
|
|
440
|
-
self.__func_input_arg_sql_names.append("sources")
|
|
441
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
442
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
443
|
-
self.__func_input_partition_by_cols.append(self.sources_data_partition_column)
|
|
444
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
445
|
-
|
|
446
|
-
function_name = "Modularity"
|
|
447
|
-
# Create instance to generate SQLMR.
|
|
448
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
449
|
-
self.__func_input_arg_sql_names,
|
|
450
|
-
self.__func_input_table_view_query,
|
|
451
|
-
self.__func_input_dataframe_type,
|
|
452
|
-
self.__func_input_distribution,
|
|
453
|
-
self.__func_input_partition_by_cols,
|
|
454
|
-
self.__func_input_order_by_cols,
|
|
455
|
-
self.__func_other_arg_sql_names,
|
|
456
|
-
self.__func_other_args,
|
|
457
|
-
self.__func_other_arg_json_datatypes,
|
|
458
|
-
self.__func_output_args_sql_names,
|
|
459
|
-
self.__func_output_args,
|
|
460
|
-
engine="ENGINE_ML")
|
|
461
|
-
# Invoke call to SQL-MR generation.
|
|
462
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
463
|
-
|
|
464
|
-
# Print SQL-MR query if requested to do so.
|
|
465
|
-
if display.print_sqlmr_query:
|
|
466
|
-
print(self.sqlmr_query)
|
|
467
|
-
|
|
468
|
-
# Set the algorithm name for Model Cataloging.
|
|
469
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
470
|
-
|
|
471
|
-
def __execute(self):
|
|
472
|
-
"""
|
|
473
|
-
Function to execute SQL-MR queries.
|
|
474
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
475
|
-
"""
|
|
476
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
477
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
478
|
-
try:
|
|
479
|
-
# Generate the output.
|
|
480
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
481
|
-
except Exception as emsg:
|
|
482
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
483
|
-
|
|
484
|
-
# Update output table data frames.
|
|
485
|
-
self._mlresults = []
|
|
486
|
-
self.community_edge_data = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__community_edge_data_temp_tablename),
|
|
487
|
-
source_type="table",
|
|
488
|
-
database_name=UtilFuncs._extract_db_name(self.__community_edge_data_temp_tablename))
|
|
489
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename),
|
|
490
|
-
source_type="table",
|
|
491
|
-
database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
492
|
-
self._mlresults.append(self.community_edge_data)
|
|
493
|
-
self._mlresults.append(self.output)
|
|
494
|
-
|
|
495
|
-
def show_query(self):
|
|
496
|
-
"""
|
|
497
|
-
Function to return the underlying SQL query.
|
|
498
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
499
|
-
"""
|
|
500
|
-
return self.sqlmr_query
|
|
501
|
-
|
|
502
|
-
def get_prediction_type(self):
|
|
503
|
-
"""
|
|
504
|
-
Function to return the Prediction type of the algorithm.
|
|
505
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
506
|
-
as saved in the Model Catalog.
|
|
507
|
-
"""
|
|
508
|
-
return self._prediction_type
|
|
509
|
-
|
|
510
|
-
def get_target_column(self):
|
|
511
|
-
"""
|
|
512
|
-
Function to return the Target Column of the algorithm.
|
|
513
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
514
|
-
as saved in the Model Catalog.
|
|
515
|
-
"""
|
|
516
|
-
return self._target_column
|
|
517
|
-
|
|
518
|
-
def get_build_time(self):
|
|
519
|
-
"""
|
|
520
|
-
Function to return the build time of the algorithm in seconds.
|
|
521
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
522
|
-
as saved in the Model Catalog.
|
|
523
|
-
"""
|
|
524
|
-
return self._build_time
|
|
525
|
-
|
|
526
|
-
def _get_algorithm_name(self):
|
|
527
|
-
"""
|
|
528
|
-
Function to return the name of the algorithm.
|
|
529
|
-
"""
|
|
530
|
-
return self._algorithm_name
|
|
531
|
-
|
|
532
|
-
def _get_sql_specific_attributes(self):
|
|
533
|
-
"""
|
|
534
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
535
|
-
"""
|
|
536
|
-
return self._sql_specific_attributes
|
|
537
|
-
|
|
538
|
-
@classmethod
|
|
539
|
-
def _from_model_catalog(cls,
|
|
540
|
-
community_edge_data = None,
|
|
541
|
-
output = None,
|
|
542
|
-
**kwargs):
|
|
543
|
-
"""
|
|
544
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
545
|
-
"""
|
|
546
|
-
kwargs.pop("community_edge_data", None)
|
|
547
|
-
kwargs.pop("output", None)
|
|
548
|
-
|
|
549
|
-
# Model Cataloging related attributes.
|
|
550
|
-
target_column = kwargs.pop("__target_column", None)
|
|
551
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
552
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
553
|
-
build_time = kwargs.pop("__build_time", None)
|
|
554
|
-
|
|
555
|
-
# Let's create an object of this class.
|
|
556
|
-
obj = cls(**kwargs)
|
|
557
|
-
obj.community_edge_data = community_edge_data
|
|
558
|
-
obj.output = output
|
|
559
|
-
|
|
560
|
-
# Initialize the sqlmr_query class attribute.
|
|
561
|
-
obj.sqlmr_query = None
|
|
562
|
-
|
|
563
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
564
|
-
obj._sql_specific_attributes = None
|
|
565
|
-
obj._target_column = target_column
|
|
566
|
-
obj._prediction_type = prediction_type
|
|
567
|
-
obj._algorithm_name = algorithm_name
|
|
568
|
-
obj._build_time = build_time
|
|
569
|
-
|
|
570
|
-
# Update output table data frames.
|
|
571
|
-
obj._mlresults = []
|
|
572
|
-
obj.community_edge_data = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.community_edge_data), source_type="table", database_name=UtilFuncs._extract_db_name(obj.community_edge_data))
|
|
573
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
574
|
-
obj._mlresults.append(obj.community_edge_data)
|
|
575
|
-
obj._mlresults.append(obj.output)
|
|
576
|
-
return obj
|
|
577
|
-
|
|
578
|
-
def __repr__(self):
|
|
579
|
-
"""
|
|
580
|
-
Returns the string representation for a Modularity class instance.
|
|
581
|
-
"""
|
|
582
|
-
repr_string="############ STDOUT Output ############"
|
|
583
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
584
|
-
repr_string="{}\n\n\n############ community_edge_data Output ############".format(repr_string)
|
|
585
|
-
repr_string = "{}\n\n{}".format(repr_string,self.community_edge_data)
|
|
586
|
-
return repr_string
|
|
587
|
-
|