teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,587 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2019 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Rohit Khurd (rohit.khurd@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.8
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class Modularity:
31
-
32
- def __init__(self,
33
- vertices_data = None,
34
- edges_data = None,
35
- sources_data = None,
36
- target_key = None,
37
- edge_weight = None,
38
- community_association = None,
39
- resolution = 1.0,
40
- seed = 1,
41
- accumulate = None,
42
- vertices_data_sequence_column = None,
43
- edges_data_sequence_column = None,
44
- sources_data_sequence_column = None,
45
- vertices_data_partition_column = None,
46
- edges_data_partition_column = None,
47
- sources_data_partition_column = None):
48
- """
49
- DESCRIPTION:
50
- The Modularity function uses a clustering algorithm to detect
51
- communities in networks (graphs). The function needs no prior knowledge or
52
- estimation of starting cluster centers and assumes no particular data distribution of the
53
- input data set.
54
-
55
-
56
- PARAMETERS:
57
- vertices_data:
58
- Required Argument.
59
- Specifies vertex teradataml DataFrame where each row represents a vertex of the graph.
60
-
61
- vertices_data_partition_column:
62
- Required Argument.
63
- Specifies Partition By columns for vertices_data.
64
- Values to this argument can be provided as a list, if multiple columns
65
- are used for partition.
66
- Types: str OR list of Strings (str)
67
-
68
- edges_data:
69
- Required Argument.
70
- Specifies edge teradataml DataFrame where each row represents an edge of the graph.
71
-
72
- edges_data_partition_column:
73
- Required Argument.
74
- Specifies Partition By columns for edges_data.
75
- Values to this argument can be provided as a list, if multiple columns
76
- are used for partition.
77
- Types: str OR list of Strings (str)
78
-
79
- sources_data:
80
- Optional Argument.
81
- Specifies source vertices teradataml DataFrame, required for directed graph.
82
- Function ignores this teradataml DataFrame and treats all graphs as undirected.
83
-
84
- sources_data_partition_column:
85
- Optional Argument. Required when 'sources_data' argument is specified.
86
- Specifies Partition By columns for sources_data.
87
- Values to this argument can be provided as a list, if multiple columns
88
- are used for partition.
89
- Types: str OR list of Strings (str)
90
-
91
- target_key:
92
- Required Argument.
93
- Specifies the key of the target vertex of an edge. The key consists
94
- of the names of one or more edges teradataml DataFrame columns.
95
- Types: str OR list of Strings (str)
96
-
97
- edge_weight:
98
- Optional Argument.
99
- Specifies the name of the edges teradataml DataFrame column that
100
- contains edge weights. The weights are positive values. By default,
101
- the weight of each edge is 1 (that is, the graph is unweighted). This
102
- argument determines how the function treats duplicate edges (that is,
103
- edges with the same source and destination, which might have
104
- different weights). For a weighted graph, the function treats
105
- duplicate edges as a single edge whose weight is the sum of the
106
- weights of the duplicate edges. For an unweighted graph, the function
107
- uses only one of the duplicate edges.
108
- Types: str
109
-
110
- community_association:
111
- Optional Argument.
112
- Specifies the name of the column that represents the community
113
- association of the vertices. Use this argument if you already know
114
- some vertex communities.
115
- Types: str
116
-
117
- resolution:
118
- Optional Argument.
119
- Specifies hierarchical-level information for the communities. If you
120
- specify a list of resolution values, the function incrementally finds
121
- the communities for each value and for the default value. Each resolution
122
- must be a distinct float value in the range [0.0, 1000000.0]. The value 0.0
123
- puts each node in its own community of size 1. You can specify a maximum of 500
124
- resolution values. To get the modularity of more than 500 resolution
125
- points, call the function multiple times, specifying different values
126
- in each call.
127
- Default Value: 1.0
128
- Types: float OR list of floats
129
-
130
- seed:
131
- Optional Argument.
132
- Specifies the seed to use to create a random number during modularity
133
- computation. The seed must be a positive BIGINT value. The function
134
- multiplies seed by the hash code of vertex_key to generate a unique
135
- seed for each vertex. The seed significantly impacts community formation
136
- (and modularity score), because the function uses seed for these purposes:
137
- • To break ties between different vertices during community formation.
138
- • To determine how deeply to analyze the graph. Deeper analysis of the graph
139
- can improve community formation, but can also increase execution time.
140
- Default Value: 1
141
- Types: int
142
-
143
- accumulate:
144
- Optional Argument.
145
- Specifies the names of the vertices columns to copy to the community
146
- vertex teradataml DataFrame. By default, the function copies the vertex_key
147
- columns to the output vertex teradataml DataFrame for each vertex, changing
148
- the column names to id, id_1, id_2, and so on.
149
- Types: str OR list of Strings (str)
150
-
151
- vertices_data_sequence_column:
152
- Optional Argument.
153
- Specifies the list of column(s) that uniquely identifies each row of
154
- the input argument "vertices_data". The argument is used to ensure
155
- deterministic results for functions which produce results that vary
156
- from run to run.
157
- Types: str OR list of Strings (str)
158
-
159
- edges_data_sequence_column:
160
- Optional Argument.
161
- Specifies the list of column(s) that uniquely identifies each row of
162
- the input argument "edges_data". The argument is used to ensure
163
- deterministic results for functions which produce results that vary
164
- from run to run.
165
- Types: str OR list of Strings (str)
166
-
167
- sources_data_sequence_column:
168
- Optional Argument.
169
- Specifies the list of column(s) that uniquely identifies each row of
170
- the input argument "sources_data". The argument is used to ensure
171
- deterministic results for functions which produce results that vary
172
- from run to run.
173
- Types: str OR list of Strings (str)
174
-
175
- RETURNS:
176
- Instance of Modularity.
177
- Output teradataml DataFrames can be accessed using attribute
178
- references, such as ModularityObj.<attribute_name>.
179
- Output teradataml DataFrame attribute names are:
180
- 1. community_edge_data
181
- 2. output
182
-
183
-
184
- RAISES:
185
- TeradataMlException
186
-
187
-
188
- EXAMPLES:
189
- # Load example data.
190
- # The examples use a graph in which nodes represent persons who are geographically distributed
191
- # across the United States and are connected on an online social network, where they follow each other.
192
- # The directed edges start at the follower and end at the leader.
193
- load_example_data("modularity", ["friends", "followers_leaders"])
194
-
195
- # Create teradataml DataFrame objects.
196
- friends = DataFrame.from_table("friends")
197
- followers_leaders = DataFrame.from_table("followers_leaders")
198
-
199
- # Example 1 - Unweighted Edges.
200
- # Followers follow leaders with equal intensity (all edges have default weight 1).
201
- Modularity_out1 = Modularity(vertices_data = friends,
202
- vertices_data_partition_column = ["friends_name"],
203
- edges_data = followers_leaders,
204
- edges_data_partition_column = ["follower"],
205
- target_key = ["leader"],
206
- community_association = "group_id",
207
- accumulate = ["friends_name","location"]
208
- )
209
- # Print the results
210
- print(Modularity_out1)
211
-
212
- # Example 2 - Weighted Edges and Community Edge Table.
213
- # Followers follow leaders with different intensity.
214
- Modularity_out2 = Modularity(vertices_data = friends,
215
- vertices_data_partition_column = ["friends_name"],
216
- edges_data = followers_leaders,
217
- edges_data_partition_column = ["follower"],
218
- target_key = ["leader"],
219
- edge_weight = "intensity",
220
- community_association = "group_id",
221
- accumulate = ["friends_name","location"]
222
- )
223
- # Print the results
224
- print(Modularity_out2)
225
-
226
- """
227
-
228
- # Start the timer to get the build time
229
- _start_time = time.time()
230
-
231
- self.vertices_data = vertices_data
232
- self.edges_data = edges_data
233
- self.sources_data = sources_data
234
- self.target_key = target_key
235
- self.accumulate = accumulate
236
- self.edge_weight = edge_weight
237
- self.community_association = community_association
238
- self.resolution = resolution
239
- self.seed = seed
240
- self.vertices_data_sequence_column = vertices_data_sequence_column
241
- self.edges_data_sequence_column = edges_data_sequence_column
242
- self.sources_data_sequence_column = sources_data_sequence_column
243
- self.vertices_data_partition_column = vertices_data_partition_column
244
- self.edges_data_partition_column = edges_data_partition_column
245
- self.sources_data_partition_column = sources_data_partition_column
246
-
247
- # Create TeradataPyWrapperUtils instance which contains validation functions.
248
- self.__awu = AnalyticsWrapperUtils()
249
- self.__aed_utils = AedUtils()
250
-
251
- # Create argument information matrix to do parameter checking
252
- self.__arg_info_matrix = []
253
- self.__arg_info_matrix.append(["vertices_data", self.vertices_data, False, (DataFrame)])
254
- self.__arg_info_matrix.append(["vertices_data_partition_column", self.vertices_data_partition_column, False, (str,list)])
255
- self.__arg_info_matrix.append(["edges_data", self.edges_data, False, (DataFrame)])
256
- self.__arg_info_matrix.append(["edges_data_partition_column", self.edges_data_partition_column, False, (str,list)])
257
- self.__arg_info_matrix.append(["sources_data", self.sources_data, True, (DataFrame)])
258
- self.__arg_info_matrix.append(["sources_data_partition_column", self.sources_data_partition_column, self.sources_data is None, (str,list)])
259
- self.__arg_info_matrix.append(["target_key", self.target_key, False, (str,list)])
260
- self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
261
- self.__arg_info_matrix.append(["edge_weight", self.edge_weight, True, (str)])
262
- self.__arg_info_matrix.append(["community_association", self.community_association, True, (str)])
263
- self.__arg_info_matrix.append(["resolution", self.resolution, True, (float,list)])
264
- self.__arg_info_matrix.append(["seed", self.seed, True, (int)])
265
- self.__arg_info_matrix.append(["vertices_data_sequence_column", self.vertices_data_sequence_column, True, (str,list)])
266
- self.__arg_info_matrix.append(["edges_data_sequence_column", self.edges_data_sequence_column, True, (str,list)])
267
- self.__arg_info_matrix.append(["sources_data_sequence_column", self.sources_data_sequence_column, True, (str,list)])
268
-
269
- if inspect.stack()[1][3] != '_from_model_catalog':
270
- # Perform the function validations
271
- self.__validate()
272
- # Generate the ML query
273
- self.__form_tdml_query()
274
- # Execute ML query
275
- self.__execute()
276
- # Get the prediction type
277
- self._prediction_type = self.__awu._get_function_prediction_type(self)
278
-
279
- # End the timer to get the build time
280
- _end_time = time.time()
281
-
282
- # Calculate the build time
283
- self._build_time = (int)(_end_time - _start_time)
284
-
285
- def __validate(self):
286
- """
287
- Function to validate sqlmr function arguments, which verifies missing
288
- arguments, input argument and table types. Also processes the
289
- argument values.
290
- """
291
-
292
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
293
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
294
-
295
- # Make sure that a non-NULL value has been supplied correct type of argument
296
- self.__awu._validate_argument_types(self.__arg_info_matrix)
297
-
298
- # Check to make sure input table types are strings or data frame objects or of valid type.
299
- self.__awu._validate_input_table_datatype(self.vertices_data, "vertices_data", None)
300
- self.__awu._validate_input_table_datatype(self.edges_data, "edges_data", None)
301
- self.__awu._validate_input_table_datatype(self.sources_data, "sources_data", None)
302
-
303
- # Check whether the input columns passed to the argument are not empty.
304
- # Also check whether the input columns passed to the argument valid or not.
305
- self.__awu._validate_input_columns_not_empty(self.target_key, "target_key")
306
- self.__awu._validate_dataframe_has_argument_columns(self.target_key, "target_key", self.edges_data, "edges_data", False)
307
-
308
- self.__awu._validate_input_columns_not_empty(self.community_association, "community_association")
309
- self.__awu._validate_dataframe_has_argument_columns(self.community_association, "community_association", self.vertices_data, "vertices_data", False)
310
-
311
- self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
312
- self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.vertices_data, "vertices_data", False)
313
-
314
- self.__awu._validate_input_columns_not_empty(self.edge_weight, "edge_weight")
315
- self.__awu._validate_dataframe_has_argument_columns(self.edge_weight, "edge_weight", self.edges_data, "edges_data", False)
316
-
317
- self.__awu._validate_input_columns_not_empty(self.vertices_data_sequence_column, "vertices_data_sequence_column")
318
- self.__awu._validate_dataframe_has_argument_columns(self.vertices_data_sequence_column, "vertices_data_sequence_column", self.vertices_data, "vertices_data", False)
319
-
320
- self.__awu._validate_input_columns_not_empty(self.edges_data_sequence_column, "edges_data_sequence_column")
321
- self.__awu._validate_dataframe_has_argument_columns(self.edges_data_sequence_column, "edges_data_sequence_column", self.edges_data, "edges_data", False)
322
-
323
- self.__awu._validate_input_columns_not_empty(self.sources_data_sequence_column, "sources_data_sequence_column")
324
- self.__awu._validate_dataframe_has_argument_columns(self.sources_data_sequence_column, "sources_data_sequence_column", self.sources_data, "sources_data", False)
325
-
326
- self.__awu._validate_input_columns_not_empty(self.vertices_data_partition_column, "vertices_data_partition_column")
327
- self.__awu._validate_dataframe_has_argument_columns(self.vertices_data_partition_column, "vertices_data_partition_column", self.vertices_data, "vertices_data", True)
328
-
329
- self.__awu._validate_input_columns_not_empty(self.edges_data_partition_column, "edges_data_partition_column")
330
- self.__awu._validate_dataframe_has_argument_columns(self.edges_data_partition_column, "edges_data_partition_column", self.edges_data, "edges_data", True)
331
-
332
- self.__awu._validate_input_columns_not_empty(self.sources_data_partition_column, "sources_data_partition_column")
333
- self.__awu._validate_dataframe_has_argument_columns(self.sources_data_partition_column, "sources_data_partition_column", self.sources_data, "sources_data", True)
334
-
335
-
336
- def __form_tdml_query(self):
337
- """
338
- Function to generate the analytical function queries. The function defines
339
- variables and list of arguments required to form the query.
340
- """
341
- # Generate temp table names for output table parameters if any.
342
- self.__community_edge_data_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_modularity0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
343
-
344
- # Output table arguments list
345
- self.__func_output_args_sql_names = ["CommunityEdgeTable"]
346
- self.__func_output_args = [self.__community_edge_data_temp_tablename]
347
-
348
- # Model Cataloging related attributes.
349
- self._sql_specific_attributes = {}
350
- self._sql_formula_attribute_mapper = {}
351
- self._target_column = None
352
- self._algorithm_name = None
353
-
354
- # Generate lists for rest of the function arguments
355
- self.__func_other_arg_sql_names = []
356
- self.__func_other_args = []
357
- self.__func_other_arg_json_datatypes = []
358
-
359
- self.__func_other_arg_sql_names.append("TargetKey")
360
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.target_key, "\""), "'"))
361
- self.__func_other_arg_json_datatypes.append("COLUMNS")
362
-
363
- if self.community_association is not None:
364
- self.__func_other_arg_sql_names.append("CommunityAssociation")
365
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.community_association, "\""), "'"))
366
- self.__func_other_arg_json_datatypes.append("COLUMNS")
367
-
368
- if self.accumulate is not None:
369
- self.__func_other_arg_sql_names.append("Accumulate")
370
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
371
- self.__func_other_arg_json_datatypes.append("COLUMNS")
372
-
373
- if self.edge_weight is not None:
374
- self.__func_other_arg_sql_names.append("EdgeWeight")
375
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.edge_weight, "\""), "'"))
376
- self.__func_other_arg_json_datatypes.append("COLUMNS")
377
-
378
- if self.resolution is not None and self.resolution != [1]:
379
- self.__func_other_arg_sql_names.append("Resolution")
380
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.resolution, "'"))
381
- self.__func_other_arg_json_datatypes.append("FLOAT")
382
-
383
- if self.seed is not None and self.seed != 1:
384
- self.__func_other_arg_sql_names.append("Seed")
385
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seed, "'"))
386
- self.__func_other_arg_json_datatypes.append("LONG")
387
-
388
- # Generate lists for rest of the function arguments
389
- sequence_input_by_list = []
390
- if self.vertices_data_sequence_column is not None:
391
- sequence_input_by_list.append("vertices:" + UtilFuncs._teradata_collapse_arglist(self.vertices_data_sequence_column, ""))
392
-
393
- if self.edges_data_sequence_column is not None:
394
- sequence_input_by_list.append("edges:" + UtilFuncs._teradata_collapse_arglist(self.edges_data_sequence_column, ""))
395
-
396
- if self.sources_data_sequence_column is not None:
397
- sequence_input_by_list.append("sources:" + UtilFuncs._teradata_collapse_arglist(self.sources_data_sequence_column, ""))
398
-
399
- if len(sequence_input_by_list) > 0:
400
- self.__func_other_arg_sql_names.append("SequenceInputBy")
401
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
402
- self.__func_other_args.append(sequence_input_by_arg_value)
403
- self.__func_other_arg_json_datatypes.append("STRING")
404
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
405
-
406
-
407
- # Declare empty lists to hold input table information.
408
- self.__func_input_arg_sql_names = []
409
- self.__func_input_table_view_query = []
410
- self.__func_input_dataframe_type = []
411
- self.__func_input_distribution = []
412
- self.__func_input_partition_by_cols = []
413
- self.__func_input_order_by_cols = []
414
-
415
- # Process vertices_data
416
- self.vertices_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.vertices_data_partition_column, "\"")
417
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.vertices_data, False)
418
- self.__func_input_distribution.append("FACT")
419
- self.__func_input_arg_sql_names.append("vertices")
420
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
421
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
422
- self.__func_input_partition_by_cols.append(self.vertices_data_partition_column)
423
- self.__func_input_order_by_cols.append("NA_character_")
424
-
425
- # Process edges_data
426
- self.edges_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.edges_data_partition_column, "\"")
427
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.edges_data, False)
428
- self.__func_input_distribution.append("FACT")
429
- self.__func_input_arg_sql_names.append("edges")
430
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
431
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
432
- self.__func_input_partition_by_cols.append(self.edges_data_partition_column)
433
- self.__func_input_order_by_cols.append("NA_character_")
434
-
435
- # Process sources_data
436
- self.sources_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.sources_data_partition_column, "\"")
437
- if self.sources_data is not None:
438
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.sources_data, False)
439
- self.__func_input_distribution.append("FACT")
440
- self.__func_input_arg_sql_names.append("sources")
441
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
442
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
443
- self.__func_input_partition_by_cols.append(self.sources_data_partition_column)
444
- self.__func_input_order_by_cols.append("NA_character_")
445
-
446
- function_name = "Modularity"
447
- # Create instance to generate SQLMR.
448
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
449
- self.__func_input_arg_sql_names,
450
- self.__func_input_table_view_query,
451
- self.__func_input_dataframe_type,
452
- self.__func_input_distribution,
453
- self.__func_input_partition_by_cols,
454
- self.__func_input_order_by_cols,
455
- self.__func_other_arg_sql_names,
456
- self.__func_other_args,
457
- self.__func_other_arg_json_datatypes,
458
- self.__func_output_args_sql_names,
459
- self.__func_output_args,
460
- engine="ENGINE_ML")
461
- # Invoke call to SQL-MR generation.
462
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
463
-
464
- # Print SQL-MR query if requested to do so.
465
- if display.print_sqlmr_query:
466
- print(self.sqlmr_query)
467
-
468
- # Set the algorithm name for Model Cataloging.
469
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
470
-
471
- def __execute(self):
472
- """
473
- Function to execute SQL-MR queries.
474
- Create DataFrames for the required SQL-MR outputs.
475
- """
476
- # Generate STDOUT table name and add it to the output table list.
477
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
478
- try:
479
- # Generate the output.
480
- UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
481
- except Exception as emsg:
482
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
483
-
484
- # Update output table data frames.
485
- self._mlresults = []
486
- self.community_edge_data = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__community_edge_data_temp_tablename),
487
- source_type="table",
488
- database_name=UtilFuncs._extract_db_name(self.__community_edge_data_temp_tablename))
489
- self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename),
490
- source_type="table",
491
- database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
492
- self._mlresults.append(self.community_edge_data)
493
- self._mlresults.append(self.output)
494
-
495
- def show_query(self):
496
- """
497
- Function to return the underlying SQL query.
498
- When model object is created using retrieve_model(), then None is returned.
499
- """
500
- return self.sqlmr_query
501
-
502
- def get_prediction_type(self):
503
- """
504
- Function to return the Prediction type of the algorithm.
505
- When model object is created using retrieve_model(), then the value returned is
506
- as saved in the Model Catalog.
507
- """
508
- return self._prediction_type
509
-
510
- def get_target_column(self):
511
- """
512
- Function to return the Target Column of the algorithm.
513
- When model object is created using retrieve_model(), then the value returned is
514
- as saved in the Model Catalog.
515
- """
516
- return self._target_column
517
-
518
- def get_build_time(self):
519
- """
520
- Function to return the build time of the algorithm in seconds.
521
- When model object is created using retrieve_model(), then the value returned is
522
- as saved in the Model Catalog.
523
- """
524
- return self._build_time
525
-
526
- def _get_algorithm_name(self):
527
- """
528
- Function to return the name of the algorithm.
529
- """
530
- return self._algorithm_name
531
-
532
- def _get_sql_specific_attributes(self):
533
- """
534
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
535
- """
536
- return self._sql_specific_attributes
537
-
538
- @classmethod
539
- def _from_model_catalog(cls,
540
- community_edge_data = None,
541
- output = None,
542
- **kwargs):
543
- """
544
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
545
- """
546
- kwargs.pop("community_edge_data", None)
547
- kwargs.pop("output", None)
548
-
549
- # Model Cataloging related attributes.
550
- target_column = kwargs.pop("__target_column", None)
551
- prediction_type = kwargs.pop("__prediction_type", None)
552
- algorithm_name = kwargs.pop("__algorithm_name", None)
553
- build_time = kwargs.pop("__build_time", None)
554
-
555
- # Let's create an object of this class.
556
- obj = cls(**kwargs)
557
- obj.community_edge_data = community_edge_data
558
- obj.output = output
559
-
560
- # Initialize the sqlmr_query class attribute.
561
- obj.sqlmr_query = None
562
-
563
- # Initialize the SQL specific Model Cataloging attributes.
564
- obj._sql_specific_attributes = None
565
- obj._target_column = target_column
566
- obj._prediction_type = prediction_type
567
- obj._algorithm_name = algorithm_name
568
- obj._build_time = build_time
569
-
570
- # Update output table data frames.
571
- obj._mlresults = []
572
- obj.community_edge_data = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.community_edge_data), source_type="table", database_name=UtilFuncs._extract_db_name(obj.community_edge_data))
573
- obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
574
- obj._mlresults.append(obj.community_edge_data)
575
- obj._mlresults.append(obj.output)
576
- return obj
577
-
578
- def __repr__(self):
579
- """
580
- Returns the string representation for a Modularity class instance.
581
- """
582
- repr_string="############ STDOUT Output ############"
583
- repr_string = "{}\n\n{}".format(repr_string,self.output)
584
- repr_string="{}\n\n\n############ community_edge_data Output ############".format(repr_string)
585
- repr_string = "{}\n\n{}".format(repr_string,self.community_edge_data)
586
- return repr_string
587
-